RESUMENES DE TRABAJOS PRESENTADOS
EN EL SEGUNDO PANEL SOBRE
GEOLOGIA DEL LITORAL *

LOS SUELOS DEL LITORAL FLUVIAL ARGENTINO Y SU RELACION
CON LA GEOLOGIA SUPERFICIAL

Carlos Octavio Scoppa
Unidad de Reconocimiento de Suelos
INTA. Castelar, Buenos Aires
Argentina

Entre el conjunto de factores genéticos que condicionan la evolución y distribución de los suelos, el material originario y las formas del paisaje, son de naturaleza fundamentalmente geológica. De allí la estrecha relación existente entre pedología y geología que permite la extracción de conclusiones recíprocas entre ambas disciplinas.

Basándonos en esta interacción, es que tratamos en este relato de obtener algunas conclusiones acerca de la geología superficial del litoral, a partir del conocimiento que se dispone de sus suelos.

Sin duda los órdenes taxonómicos de suelos más representativos dentro de la provincia de Buenos Aires, Santa Fe, Entre Ríos y el sudeste de la República oriental del Uruguay, son aquellos que la sistemática norteamericana define como Molisoles y Vertisoles.

Los primeros son dominantes en el noreste bonaerense y sud de Santa Fe, mientras los segundos lo son en Entre Ríos, y el Uruguay. Asimismo en estas últimas comarcas como en un pequeño sector ubicado al sur de la ciudad de La Plata, es posible hallarlos asociados en el paisaje. Es indudable que tal repartición dentro de un área geográfica que manifiesta condiciones de clima y vegetación más o menos similares, otro de los factores formadores de suelos, tiene que obedecer a los otros condicionantes que son: material originario, paisaje y/o tiempo de formación.

Los Molisoles forman una secuencia de rumbo SW-NE que se extiende desde aproximadamente la ciudad de Junín, en territorio bonaerense, hasta el sudeste uruguayo y a través de la cual pasan gradualmente de Hapludoles écticos, en el extremo primeramente

* Organizado por la Asociación de Ciencias Naturales del Litoral y realizado en la ciudad de Corrientes, durante los días 24 y 25 de setiembre de 1976.
mencionado, a Argiudole's vérticos en el otro. Es decir que en el sentido señalado van alcanzando un mayor grado de desarrollo que se manifiesta fundamentalmente por la mayor expresión de su horizonte argilico.

El análisis granulométrico del material parental de estos suelos (horizonte C) indica un incremento gradual y continuo de la fracción arcillosa en la dirección señalada, pasando de aproximadamente el 10% en Junín a 17% en Pergamino, 24% en Ramallo, 28% en Tezanos Pinto (Entre Ríos) para llegar a casi el 40% en el Uruguay.

El estudio sedimentológico (Scoppa, 1974), indica la existencia de un típico proceso de sedimentación eólica en esa misma dirección, provocada por la acción de los vientos más efectivos para el área, aquellos provenientes del S.W. y que tienen su origen en el anticiclón del Pacifico sur y la cordillera patagónica.

Mz y otros parámetros expresan que el tamaño de las partículas disminuye a medida que aumenta la distancia de transporte, o sea del SW al NE. SkI decrece asimismo con esa distancia, teniendo a dibujar distribuciones más simétricas y chatas después del transporte por largos períodos.

A semejantes conclusiones se arriba cuando al utilizar taxonomía numérica, mediante comparación por el índice de similitud propuesto por Langhor et al (1976), se visualiza que las variaciones más marcadas ocurren entre el horizonte más profundo del perfil de un extremo de la secuencia y el superior del otro (Scoppa, 1975 b).

La mineralogía de los Molisoles, por su parte, manifiesta una notable homogeneidad que se hace más evidente en las arcillas. Una alta proporción de minerales livianos (> 97%) compuestos fundamentalmente por plagioclases, normalmente cálcicas y medias, a la que siguen en importancia cuarzo y feldespato potásico junto con variables, pero siempre significativos, porcentajes de vidrio volcánico, caracteriza a las arenas. Los minerales pesados más abundantes son los opacos y la hornblenda a los que acompañan en cantidades menores y decrecientes, piroxenos (especialmente clinopiroxenos) epidoto, micas, granate, zircon, apatita, lamprobolita, etc. (Scoppa, 1975 b).

En lo que respecta a la mineralogía de sus arcillas, los trabajos de Guedes y Pécora (1964 y 1966), Iriñez y Scoppa (1969, 1971 y 1971 b) y de Scoppa (1975), siempre indican que el mineral predominante es la ilíta y en evidente menor proporción caolinita y smectitas. Estas últimas son más abundantes en las fracciones más finas (0,2–0,08 μ y < 0,08μ) y en los horizontes iluviales (Scoppa 1974 a).

Es de destacar que la mineralogía descripta para los Molisoles concuerda cuali y cuantitativamente con la que describieron para el loess pampeano Frenguelli, 1925; Teruggi, 1957 y González Bonorino, 1965. Tal similitud indica que a partir de ese sedimento se desarrollan estos suelos, descontándose de tal forma la participación de formaciones precuaternarias en su evolución (Cappannini, et al., 1970 y Vargas Gil y Scoppa, 1973).

Sén duda y según lo señalan diversos autores (G. Bonorino 1965.), la fuente de estos minerales debe encontrarse fuera del área pampeana, especialmente al S y al W donde las formaciones geológicas, presentes en esa dirección, manifiestan una petrología de esa naturaleza. Efectivamente son comunes en la dirección apuntadas, traquitás, traquian-desitas, basaltos, andesitas y el vulcanismo andino. En lo que hace a las arcillas, este mismo autor señala que provendrían de la alteración de los feldespatos presentes en esas rocas que luego fueron transportados en agregados del tamaño limo. De tal forma gran parte de ella no habría sido formada “en situ”, sino transportada y depositada junto con los demás componentes. No obstante investigaciones recientes señalan un proceso de neoformación cuya magnitud se relaciona con la granulometría original del material parental de los Molisoles (Scoppa, 1974).
En lo que se refiere a los Vertisoles, éstos se ubican en las porciones más elevadas (lomas) del paisaje ondulado existente en E. Ríos y el Uruguay, donde se asocian a los Molisoles que lo hacen en las más bajas localizadas entre aquéllas.

La sedimentología de los vertisoles aun no ha sido estudiada en detalle, no obstante resultados obtenidos por el autor (no publicados) indican, en principio, características diferentes a las encontradas en los Molisoles.

Los análisis mineralógicos realizados (Scoppa, 1974 b) indican, por su parte, un elevado contenido de cuarzo en las arenas, acompañadas de muy escasas proporciones de plagioclasas y vidrio volcánico. Asimismo entre los pesados son característicos los minerales de origen metamórfico, como estaurolita, clinilita, zircon y sillimanita.

En lo que hace a las arcillas, éstas se componen fundamentalmente de minerales expandibles del tipo de las smectitas a la cual acompañan cantidades poco significativas de caulinita e illita.

Una mineralogía similar se manifiesta en los vertisoles existentes en la provincia de Buenos Aires.

De lo expuesto surge que los Molisoles y Vertisoles tienen una sedimentología y composición mineralógica diferente, la cual es característica para cada uno de ellos. Tales diferencias sólo pueden ser, en el área geográfica considerada, consecuencia de que los mismos se desarrollan a partir de distintos materiales parentales.

Según G. Bonorino (1966) la formación pampiana estaría compuesta por tres niveles estratigráficos: Pampiano Inferior, Medio y Superior, a cada uno de los cuales corresponde una característica mineralógica de arcillas. Al inferior lo define la abundancia de montmorillonita, al Medio la illita y al Superior una mezcla de ambos. La procedencia de la montmorillonita sería el resultado de la alteración de las rocas efusivas básicas y latosoles existentes en el curso inferior y medio del río Paraná y transportadas por éste hasta la región del río de La Plata. En cuanto a la illita es la que ya se explicó precedentemente.

Siempre, según este autor, como consecuencia de la falla por la que corre el Paraná, el bloque mesopotámico estaría estructuramente levantado incrementando su altura en dirección noreste, haciendo aflorar los sedimentos del pampiano inferior, rico en montmorillonita. Solamente en el extremo sudoeste de Entre Ríos, donde están fundamentalmente localizados los molisoles de esa provincia, se manifestarían los sedimentos ricos en illita del Pampiano medio.

Sin embargo, como ya se expresara, vertisoles y molisoles se presentan asociados y con características similares en el paisaje entrerrino y uruguayo (Fynn, 1951; L. Taborda, 1967, Puentes y Altamirano, 1875 y Duran comunicación personal). De acuerdo a los autores uruguayos, los vertisoles se desarrollan a partir de las “lodolitas” de la formación libertad, a la cual Tricart (1972) correlacionara con el Pampiano Inferior de su esquema estratigráfico para la Pampa Deprimida.

Es entonces muy probable que la misma formación, caracterizada por montmorillonita, sea el material originario de ese orden taxonómico de suelos en ambas márgenes del Plata.

Así el loess del Pampiano Medio de G. Bonorino, illítico y que constituye el sedimento generador de los Molísoles, no se circunscribe a la provincia de Buenos Aires y el sudoeste de la E. Ríos, sino que cubre gran parte de esta última provincia, extendiéndose hasta el Uruguay.

Por lo tanto, no serían solamente las razones tectónicas apuntadas las que gobiernan la distribución del material originario de los suelos considerados. Esta estaría regulada también por la circunstancia de que la deposición del loess del Pampiano medio no haya sido lo
suficientemente potente como para separar completamente el viejo paisaje ondulado enterrado y uruguayo, dejando aflorar las lomas en las cuales se encuentran los vertísoles.

A ello se agregaría la acción del agua superficial y una multitud de situaciones podrían presentarse en relación con las geóformas y el potencial morfogenético.

Esta mecánica se ve corroborada por la selección granulométrica del material parental de los Molisoles, que se manifiestan con rumbo SW-NE. Con relación a los Vertísoles bonaerenses, su presencia se explica pues los mismos se encuentran en un "glacis" existente entre la Pampa Ondulada y la Depresión, donde el escurrimiento mantiforme del agua habría posibilitado el afioramiento de los sedimentos del Pampiano inferior.

Por último, debe destacarse que estas consideraciones involucran necesariamente el concepto de edad de los suelos. Si los vertísoles evolucionan a partir de materiales más antiguos, es lógico suponer que su formación haya comenzado con anterioridad a los molisoles.

Conclusivamente, puede expresarse que la presencia de los dos órdenes de suelos más importantes existentes en el área considerado, es consecuencia directa de su particular geología superficial.

Bibliografía

Cappannini, D., C Scooppa y J. Vargas Gil. 1970. Sueos de las sierras australes de la provincia de Buenos Aires. *Actas Reunión Geología de las Sierras Australes de la prov. de Bs. As.*, CIC.


Scopppa, C. 1975b. La mineralogía de los suelos de la llanura pampeana en la interpretación de su génesis y distribución. Actas 7º Reunión Argentina de la Ciencia del Suelo.

HIDROGEOLOGÍA DE CORRIENTES (ARGENTINA)

Jorge Néstor Santa Cruz
Instituto Nacional de Ciencia y Tecnología Hídricas.
Corrientes, Argentina.

En la provincia de Corrientes se identificaron, a grados rasgos, dos cuencas subterráneas principales: Oriental y Occidental. Tal división es determinada por los caracteres geológicos imperantes.

A) Cuenca Occidental: limitada al N y W por el río Paraná, al E por los esteros del Iberá; al S penetra en E. Ríos. Posee un relleno sedimentario de variadas características. Se conoce en el subsuelo del área del río Paraná —hasta la ciudad de Corrientes— sedimentas de la Formación Paraná (arcilitas verdes con yeso) y con profundización hacia el norte (Corrientes: - 166 b.b.p.). Esta unidad sería sincrónica y se interdigitaría con parte de los materiales de la formación Fray Bentos del este de la cuenca. Sobre las arcilitas se dispone un paquete psammitico con algo de grava e intercalaciones pelíticas, bastante homogéneo, con espesores que varían entre 60 y 150 m y que denominaremos Formación Ituzaingó. Se considera que esta unidad aflora en lomadas de orientación general NE-SW como relictos de erosión, entre las cuales aparecen extensas depresiones rellenas de material más fino (arenas pelíticas y pelites arenosas) de la Formación Yupói.

Agua subterránea

Acuífero freático: en términos generales se halla más cerca de la superficie (y aflorando en depresiones lagunares) en las zonas de las lomadas de la Fm. Ituzaingó (líneas Loreto-San Miguel-Santa Rosa; Gral. Paz-Mburucuyá-Saladas, etc.). Por lo común, en las áreas de afloramiento de la Fm. Yupói y otros rellenos modernos está un poco más profunda. La base generalmente se encuentra en delgados bancos pelíticos de la Fm. Ituzaingó con profundidades que oscilan entre -12 y -16 b.b.p. En toda su extensión es un acuífero influente con respecto a la red de drenaje principal. Los datos disponibles indican para algunas zonas una correlación directa e inmediata entre precipitaciones y recarga de la napa freática, en particular en las épocas de fin de verano y de otoño. Los caudales máximos que se pueden extraer llegan a 500 l/h y el agua es un poco más salina que la del segundo acuífero. Salvo en grandes centros urbanos, constituye la mayor o exclusiva fuente de abastecimiento. Segundo acuífero: corresponde a la Fm. Ituzaingó, especialmente a su sector superior. Aún no es bien conocido hidráulicamente, utilizándose cri-
terios geológicos del cuerpo sedimentario para poder generalizar suas propiedades. Su base está constituida por materiales acumulados de la Fam. Fray Bentos (en el sector oriental) o bancos más pelíticos dentro de la Fam. Ituzaingó (en el sector occidental; Corrientes —60 b.b.p.). Presenta características de semicontinuación y buena transmisibilidad; es común encontrar que se exploten, sin ninguna dificultad, 10,000 l/h por metro de depresión. Se puede considerar que el río Paraná (por lo menos desde Ita Ibaté hacia aguas abajo) constituye su zona de descarga. En general es agua de excelente calidad. Se presentan algunas áreas pequeñas con anomalías de salinidad e hielo. Dentro de un área de aproximadamente 4,000 km², para un espesor promedio de 0,50 hm y con una porosidad eficaz del 10 %, se podría calcular “a priori” una reserva total de 200,000 hm³. Tercer y cuarto acuíferos son muy poco conocidos. El tercero se encuentra en explotación, especialmente entre Goya y Corrientes, salinizándose hacia abajo. El cuarto está muy salinizado en todos los casos, correspondiendo posiblemente al ambiente de influencia hidrogeológica de la Fam. Paraná.

B) Cuenca Oriental: está limitada por el río Uruguay al Este y los esteros del Iberá al Oeste, pudiendo establecerse arbitrariamente sus límites N y S coincidentemente con los provinciales. Dadas las distintas características geológicas imperantes, en relación a la cuenca occidental, el comportamiento del agua subterránea es también distinto y muy variado. En esta área impera fundamentalmente el ambiente de la Fam. Solari, es decir basaltos y areniscas. En muchos lugares la única fuente hídrica subterránea se encuentra alojada en fracturas de estas rocas por lo que su captación es más riesgosa y costosa. Además constituyen buenos acuíferos las areniscas rojizas Cretácicas relacionadas con el basalto. Por otro lado se encuentran cuencas más pequeñas excavadas en la Fam. Solari y relleñas por sedimentos que podrían proporcionar agua como para desarrollar localmente regiones aún muy poco explotadas.

En el área SW de Mercedes existe una napa surgente.

Los caudales específicos explotados son variables, encontrándose valores entre 1,000 y 10,000 l/h por metro de depresión. La calidad también es muy variable; se registran datos en lugares cercanos al río Uruguay con valores muy bajos de salinidad.

Bibliografía


NOVEDADES EN LA ESTRATIGRAFIA DE LA MESOPOTAMIA

Rafael Herbst
Fac. de Ciencias Exactas y Naturales y Agrimensura
(3400) Corrientes, Argentina

Desde el punto de vista geológico, es posible dividir a la prov. de Corrientes en dos “ámbitos” distintos: el occidental (fundamentalmente terciario-quaternario) y el oriental (mesozoico-terciario); ambos están separados por una línea o franja de dirección general NE-SW que abarca la depresión iberaña desde Ituzaingó y que se continúa por el río Corrientes, hasta aproximadamente la latitud de Perugoría. La mitad occidental de la prov. de Entre Ríos comparte su geología con la occidental de Corrientes; del mismo modo, una franja relativamente ancha a lo largo del río Uruguay, hasta la zona de Colón, no es más que la prolongación del ámbito oriental de Corrientes hacia el sur.

Sintéticamente las Formaciones que integran la columna general, válida para estas dos provincias mesopotámicas, son las siguientes:

1) Formación Solar: con a) Miembro Solar: areniscas cuarzosas rojas y rosadas, de origen principalmente cólico, intercaladas en forma de lentes o paquetes de estratos entre el b) Miembro Serra Ceral: numerosas coadas de basaltos toleíticos, desde muy compactos a alveolares, negros a rojos. Afloran en el ámbito oriental de Corrientes y NE de Entre Ríos, y siguen en el subsuelo por el sur de Entre Ríos, parte de Santa Fe, de Chaco, de Santiago del Estero, de Formosa y cubren prácticamente toda Misiones.

Edad: basada en mediciones radimétricas de los basaltos: Cretácico inferior.

2) Formación Yerúa: areniscas, a veces algo calcáreas, limolitas y conglomerados; rojizos, rosados y blanquecinos; afloran principalmente en el NE de Entre Ríos y a lo largo del río Uruguay hasta aproximadamente Colón. En Corrientes se conoce un solo y pequeño afloramiento, al E de Mercedes.

Edad: basada en restos de dinosaurios en Entre Ríos y de cocodrilos en sus equivalentes de Uruguay, Cretácico superior.

3) Formación Arroyo Castillo: areniscas muy calcáreas, calcáreos y conglomerados y brechas calcáreas blanquecinas y rosadas; afloran en la zona de Curuzú Cuatiá y Mercedes y en buena parte del subsuelo de Corrientes; zona del A9 María Grande, Itá y zonas de Perugoría, Sauce y hacia la costa del río Uruguay, etc.; en el NE de Entre Ríos hasta aproximadamente Concordia en el Sur.

Edad: basada en un mamífero muy característico (de Curuzú Cuatiá): Oligoceno medio.

4) Formación Fray Bento: Limolitas y areniscas, en partes muy consolidadas, a veces algo calcáreas, rosadas, rojizas y blanquecinas. Aflora muy localmente en el ámbito oriental de Corrientes pero tiene amplia difusión en toda la porción SE de esta provincia. A lo largo del río Uruguay se la encuentra hasta la latitud de Concordia.

Edad: basada en relaciones estratigráficas y en escasos restos de vertebrados (de Entre Ríos): Mioceno superior (?).

5) Formación Paraná: arenas blanquecinas, arenas y arcillas verdes de origen marino, con bancos calcáreos en parte fosilíferos intercalados en su porción superior. Aflora en Entre Ríos, desde Victoria hasta la latitud de Pueblo Brugo y Cerrito y se detecta en el subsuelo de Corrientes hasta su capital; también en el subsuelo de Santa Fe y Chaco (?).

Edad: basada principalmente en sus microfósiles marinos: Mioceno superior.
6) Formación Ituzaingó: arenas y areniscas cuarzosas, a veces conglomeradicas, amarillentas, pardas y rojizas, de origen netamente fluvial. Aflora en todo el ámbito occidental de Corrientes, especialmente a lo largo del río Paraná y Entre Ríos hasta la ciudad de Paraná. Eventualmente se le asignan sedimentos similares, más conglomeradicos, con abundante madera petrificada, que afloran a lo largo del río Uruguay hasta el Palmar de Ubajay. Se la detecta normamente en perforaciones de la zona occidental de Corrientes.

Edad: Por sus relaciones estratigráficas solamente: Plioceno (sensu lato).

7) Formaciones Toropi y Yupoí: bastante difíciles de diferenciar en el campo; arenas y limos arcillosos y arcillas arenosas, grasas, verdosas y a veces rosadas, en partes con yesos, a veces impregnadas de carbonato de calcio, de origen fluviolacustre (?). Afloran en todo el ámbito occidental de Corrientes y Entre Ríos, por lo menos hasta la zona de Diamante y esporádicamente en otras partes de Corrientes y Entre Ríos. En esta última provincia algunos autores reconocen a la F. Yupoí con el nombre de t. Hernandarias.

Edad: En base a los vertebrados fósiles (principalmente de t. Toropi, Corrientes): Ensenadense superior y Lujanense inferior respectivamente.

8) Formaciones post-Yupoí: diversas unidades no debidamente delimitadas. definidas ni mapeadas. Coexisten en arenas, limos, etc., aflorando en diversos valles fluviales, formando terrazas, islas, etc.

Edad: Lujanense a reciente.

Los aportes más importantes se refieren al engranaje lateral entre las Formaciones Fray Bentos y Paraná, y a las especulaciones sobre la edad de la Formación Ituzaingó.

Con respecto al primer tema, las evidencias (aunque bastante escasas) de los pozos Concepción y Santa Rosa (Ctes.) donde la Formación Fray Bentos estaría presente por encima de sedimentos y basaltos de la Formación Solarí, y la del Pozo Corrientes, a un poco más de 100 km al NW de los anteriores, donde aparece un buen espece el de la Formación Paraná, tenderían a señalar este tipo de relación lateral. Su presunta contemporaneidad (todavía no bien confirmada para Fray Bentos) es un argumento adicional de peso.

En cuanto a la Formación Ituzaingó representa uno de los...sedimentos de un amplio sistema fluvial que paulatinamente fue trasladando su frente hacia el sur en forma “transgresiva” siguiendo la retirada del mar paranaense” (Herbst et al., 1976). Los vertebrados fósiles de la zona de Paraná indicarían para esta Formación en esa región una edad Plioceno medio (Huayqueriense); en Corrientes es posible que sus capas inferiores sean algo más antiguas y que las cuipídalas sean bastante más modernas, llegando quizás al Cuartario inferior. El espesor de esta Formación es del orden de 150 m en Corrientes; sus capas superiores están constituidas por areniscas rojizas y rosado-blanquecinas que sa'vo en su color son muy semejantes al resto. Estas afloran como relictos erosivos de un paisaje más antiguo y las depresiones que las limitan están rellenas con sedimentos de las Formaciones Toropi-Yupoí y más modernas. La falta de sedimentos atribuibles al Cuartario inferior hace plausible inferir que la F. Ituzaingó “pueda” llegar al Pleistoceno. Parte de estas afirmaciones y presunciones deben ser confirmadas con argumentos más sólidos pero constituyen una interesante base de trabajo.

Bibliografía


INTRODUCCIÓN AL CONOCIMIENTO DE LA GEOMORFOLOGÍA DEL CHACO

José Manuel Sayago
Estación Experimental Agropecuaria de Roque Saenz Peña - Chaco, Argentina.

La Geomorfología no siempre ha sido considerada una disciplina “genuinamente” geológica. Aún en los levantamientos geológicos del Cuaternario, generalmente se ha prestado poca atención a los aspectos morfogenéticos y morfodinámicos. En los últimos años, con la aplicación de criterios interpretativos y métodos experimentales, esta concepción se está revirtiendo, incrementando aceleradamente sus posibilidades aplicadas.

Sin embargo, subsiste aún en los geólogos la carencia de una “visión” morfoclimática que permita reconocer la importancia del clima actual y pasado en la génesis y evolución del relieve. El Chaco argentino constituye una región donde el análisis de tales aspectos es condición imprescindible para valorar tanto la influencia de los procesos geomórficos (derivados del clima actual) en los ecosistemas productivos, como la importancia de los paleoclimas en la dilucidación de la cronología cuaternaria.

Las grandes unidades morfoestructurales de la provincia del Chaco, constituidas por los extensos conos de deyección del Salado y Bermejo, el sistema fluvial del Paraná-Paraguay y la planicie de colmatación de los Bajos Sub-meridionales, definen sistemas naturales. Su individualidad está dada a nivel de las formaciones sedimentarias superficiales, los materiales originarios de los suelos, los procesos pedogenéticos y morfodinámicos, la ocupación de la tierra y aún de la actividad socio-económica, que directa o indirectamente están interrelacionados con el clima actual y/o los caracteres paleoclimáticos.

La cualidad esencial del clima chaqueño en relación al modelado es la amplitud de sus variaciones estacionales. Así, por ejemplo, en el centro del Chaco el clima varía entre tropical seco/húmedo en verano a semi/árido en invierno. Durante esta última estación los procesos dominantes son la erosión eólica y la meteorización física, mientras que en el verano cálido y húmedo la remoción en masa y la meteorización química alcanzan valores máximos, todo lo cual prepara el terreno para que las lluvias de primavera y otoño provoquen la intensa erosión hídrica que hoy afecta al centro y oeste chaqueños.

Esta definida habilidad ambiental se vio explosivamente intensificada por la tala irracional y el monocultivo; en el primer caso, al desaparecer casi en su totalidad el estrato arbóreo, el horizonte superficial del suelo y la cubierta herbácea sufrieron el ataque directo de los factores exógenos, provocando la desaparición de pasturas naturales, denudación de horizontes orgánicos, pérdida de estructura, anegamiento y salinización de los suelos. Símilares efectos se produjeron en las tierras sometidas al monocultivo donde los antaño excelentes suelos de pastizales, presentan pronunciada degradación y disminución de fertilidad.

Un problema distinto es el de los climas que afectaron la corteza durante el Cuaternario, que adquiere particular relevancia en razón de que la mayor parte de los relieves actuales son consecuencia de uno o varios procesos, derivados de condiciones paleoclimáticas.

En tal sentido es conocida la influencia que sobre el ámbito terrestre ejercieron las glacaciones cuaternarias, afectando las superficies continentales del hemisferio Norte y las montañas de ambos hemisferios. A su vez, las planicies de latitudes intermedias y las regiones costeras recibieron su influencia indirecta a través de fenómenos “pluviales” y transgresivos. Todo ello implica que la circulación atmosférica fue considerablemente modificada, aceptándose —a partir del esquema actual de la circulación atmosférica— que durante los períodos glaciales el frente polar fue comprimido hacia el Norte, desplazándose en tal
<table>
<thead>
<tr>
<th>C R O N O L O G I A</th>
<th>CLIMA</th>
<th>PROCESOS</th>
<th>FORMAS</th>
<th>SUELOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-ACTUAL</td>
<td>Sub-tropical seco-húmedo</td>
<td>Erosión, Remoción en masa</td>
<td>Lagunas y cauces colmatados</td>
<td>Salinización y alcalinización de suelos</td>
</tr>
<tr>
<td>HOLOCENO SUPERIOR</td>
<td>Post</td>
<td>Más húmedo que el actual (CORTELEZZI, 1973)</td>
<td>Acciones fluviales y lagunares decrecientes</td>
<td>Paleocauces divagantes, Lagunas encauzadas</td>
</tr>
<tr>
<td>(- 2.700)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLOCENO</td>
<td>?</td>
<td>Seco y frío</td>
<td>Sedimentación y erosión eólica</td>
<td>Planicie loéscica, Cubetas de deflación</td>
</tr>
<tr>
<td>MEDIO</td>
<td>- 8.000</td>
<td>Húmedo (Pluvial de GROEBER)</td>
<td>Acciones fluviales, lagunares, de taicas</td>
<td>Expansiones de derrame, Planicie de pant. fluviales, Delta fluviales</td>
</tr>
<tr>
<td>(- 4.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLOCENO INFERIOR</td>
<td>Glacial</td>
<td>Sub-húmedo a húmedo (FERNANDEZ, 1973)</td>
<td>Acciones fluviales y lagunares</td>
<td>Paleoalbardones, Lagunas de disolución</td>
</tr>
<tr>
<td>(- 9.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEISTOCENO</td>
<td>Glacial</td>
<td>Frío y Seco</td>
<td>Erosión y sedimentación eólica</td>
<td>Planicies eólicas, Cubetas de deflación, Campos dunarios</td>
</tr>
<tr>
<td>SUPERIOR</td>
<td>Interglacial o Interestadial</td>
<td>Cálido y moderadamente húmedo</td>
<td>Acciones fluvio-aluviales y lagunares</td>
<td>Pediplanicie aluvial, Lagunas anchas y someras</td>
</tr>
</tbody>
</table>
sentido las fajas de precipitación, mientras que en los interglaciares el desplazamiento del centro de alta presión del atlántico habría determinado un ensanchamiento de la franja templada húmeda.

A partir de esta hipótesis y de la comprobada relación entre ingestiones marinas y acciones fluviales en el litoral bonaerense, alternantes con fenómenos de deflación y regresiones, podríamos delinear un cuadro paleoclimático de la región chaco-pampeana. Este quedaría caracterizado por periodos glaciares fríos y secos (con acciones de erosión / sedimentación loésica generadas en los englazamientos patagónicos) e interglaciales cálidos y moderadamente húmedos, con predominio de acciones fluviales y lagunares.

El análisis paleoclimático nos lleva directamente al tema de la cronología cuaternaria, tema polémico que debe ser replanteado en base a la integración de enfoques estratigráficos, geomórficos sedimentológicos, paleoecológicos, etc., de validez local. Evitando la pulverización de formaciones y la extrapolación desmedida, a través de aproximaciones sucesivas, se permitirá definir el cuadro general.

En base a tales criterios se elaboró un cuadro morfocronológico tentativo (cuadro 1), circunscrito a la provincia del Chaco, en el que se intenta una interpretación de la evolución del relieve a la luz de los eventos paleoclimáticos conocidos y datados, en relación con la génesis y desarrollo de las formas y los suelos.