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Abstract

Multidisciplinary and Multiphysics coupled problems represent nowadays a

challenging field when studying even more complex phenomena that appear in

nature and in new technologies (e.g. Magneto-Hydrodynamics, Micro-Electro-

Mechanics, Thermo-Mechanics, Fluid-Structure Interaction, etc.). Particularly,

when dealing with Fluid-Structure Interaction problems several questions arise,

namely the coupling algorithm, the mesh moving strategy, the Galilean Invari-

ance of the scheme, the compliance with the Discrete Geometric Conservation

Law (DGCL), etc. Therefore, the aim of this thesis is the development and

implementation of a coupling algorithm for existing modules or subsystems,

in order to carry out FSI simulations with the focus on distributed memory

parallel platforms. Regarding the coupling techniques, some results on the

convergence of the strong coupling Gauss-Seidel iteration are presented. Also,

the precision of different predictor schemes for the structural system and the

influence of the partitioned coupling on stability are discussed. Another key

point when solving FSI problems is the use of the ‘‘Arbitrary Lagrangian

Eulerian formulation’’ (ALE), which allows the use of moving meshes. As

the ALE contributions affect the advective terms, some modifications on the

stabilizing and the shock-capturing terms, are needed. Also, the movements of

the fluid mesh produces a volume change in time of the elements, which adds

to the fluid formulation an extra conservation law to be satisfied. The law is

known as the Discrete Geometric Conservation Law (DGCL). In this thesis a

new and original methodology for developing DGCL compliant formulations

based on an Averaged ALE Jacobians Formulation (AJF) is presented.
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Chapter 1

Introduction

This chapter is intended to provide an introduction to the Fluid-Structure

Interaction (FSI) analyses, as well as the techniques, methodologies and al-

gorithms used to perform the corresponding numerical simulations. Also, the

motivations that acted as driving force for the execution of this research work

are exposed, together with the scope and objectives of this thesis. Finally, the

state of the art is reviewed and some related work are mentioned, to help the

reader to understand the context of the present proposal.

1.1 Motivation

The interaction of a fluid with some movable or deformable structure has a

historical and practical importance, and it has to be considered in the design

of many engineering systems. In aeronautical or aerospace engineering, a high

velocity and high pressure fluid flow can cause deformation of the structure, as

can be seen in the sequence of images showed in Fig.(1.1), which were taken by

NASA in 2010 during the liftoff of Space Shuttle. But, when the FSI is strong

enough can produce the instability system, which is known as flutter and it

can result in the failure of the structure or the system. In civil engineering the

wind induced vibrations can cause the collapse of the construction, being the

most studied example the Tacoma Narrows Bridge, which collapsed under 64

[km/h] wind conditions in November 7, 1940.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Space Shuttle Main Engine during start-up (NASA 2010).

Other important areas in which FSI plays a fundamental role are, for

instance, in biomedical engineering, where the pulsating blood flow can cause

the rupture of an abdominal aortic (AAA) or cerebral aneurysm, implying a

great risk for the patient.

In the above mentioned cases it is very difficult to determine a priori the

effects of the fluid over the structure, being these detected during the testing

or use period. When the interaction is known to be strong enough to produce

important deformation on the structure, intensives experimental tests are

carried out. The setup process for an experimental test are time consuming

due to the fact that it has to reproduce the flight conditions in the case of the

wing flutter or the environmental condition in the case of a bridge and some

cases are impossible to reproduce in a wind tunnel.

Figure 1.2: Collapse of the Tacoma Narrows Bridge (1940).

In this context is where the possibility to perform a numerical simulation of

the whole system has a significant importance, allowing to test a wide number
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of design parameters and having as result a detailed description of the fluid

(velocities, pressure, turbulence intensity, etc.) and the structure (stress, strain,

displacements, etc.). But, previous to perform any numerical simulation, a set

of governing equations are needed. These equations describes the underlying

physics and are generally expressed in terms of partial differential equations.

On one hand there are the equations for the fluid, in general the Navier-Stokes

(NS) equations (Batchelor, 1967; Acheson, 1990), and on the other hand there

are the equations for the structure, derived from the general theory of elasticity

(Timoshenko, 1970; Atkin and Fox, 2005). In some cases these equations are

simplified with the use of models (e.g., turbulence models, wall functions, linear

elastic material etc.) or hypothesis (e.g., incompressible fluid, inviscid fluid,

small strain, etc.) in order to reduce the complexity of the equations to be

solved.

These equations must be both spatially and temporally discretized using

methods like as Finite Element (FEM), Finite Volume (FVM) or Finite Differ-

ence (FDM) and hence obtain a system of discrete equations to be solved in a

computer or computer cluster. The numerical treatment of the fluid mechanics

and elasticity equations are known as Computational Fluid Dynamics (CFD)

and Computational Structural Dynamics (CSD), respectively. Both areas have

evolved enough in the last decades to address the resolution of coupled problems,

like FSI problems. But, this kind of problems brings new complications and

complexities to be considered, such as the coupling techniques, the dynamic

interaction, the different length and time scales of the subsystems, making the

resolution of FSI problems much more difficult than the computation of the

fluid and the structure separately. With this in mind, and due to the challenge

that it represents, the contributions to this area are growing at a great rate

nowadays, being in the objective of this thesis to contribute to the expansion

of knowledge of this specific area.

1.2 Scope and objectives

In recent years, a substantial effort has been put into solving this kind of

multiphysics systems, because it presents a great challenge to be tackled. So,
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one of the objectives of this thesis is the development and implementation of a

coupling algorithm for existing modules or subsystems, in order to carry out

FSI simulations with the focus on distributed memory parallel platforms.

An important consideration to be taken into account when simulating FSI

problems, is the choice of the kinematical description of the flow field in order

to allow for the presence of mobile or deforming boundaries. In general, in

fluid flow problems solved on fixed meshes an Eulerian description is used for

its description. This facilitates the treatments of large distortion in the fluid

motion and the simulation of turbulent flows, but its drawback is the difficult

to follow an interface between different media (e.g., fluid-solid interfaces). An

alternative is to use a Lagrangian description, in which each node of the mesh

follows an associated material particle during the motion. This description

allows the tracking of interfaces between different media, but the weakness is

the treatment of large distortions of the computational mesh. An alternate

choice is the Arbitrary Lagrangian Eulerian (ALE) description of the fluid

field, which can handle problems with large distortions in presence of mobile

boundaries. The idea behind the ALE formulation is the introduction of a

computational mesh which moves with a velocity independent of the velocity

of the material particles. The ALE formulation together with the governing

equations are presented in Chapter (2) and the coupling of the sub-systems is

presented in Chapter (3).

When an ALE formulation is used, additional terms related to the mesh

velocity and position, are introduced. Also, the movements of the fluid mesh

cause a volume change in time of the elements, which adds to the fluid

formulation an extra conservation law to be satisfied. The law is known as the

Discrete Geometric Conservation Law (DGCL). There is an extensive literature

devoted to the impact of DGCL compliance on the stability of the numerical

scheme and the precision of time integration methods. In those articles it has

been proved that satisfying the DGCL is a necessary and sufficient condition

for any ALE scheme to maintain on moving grids the nonlinear stability

properties of its fixed-grid counterpart. However, only very few works propose

a methodology for obtaining a DGCL compliant scheme, without changing the

time integration method.
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In this thesis a new and original methodology for developing DGCL com-

pliant formulations based on an Averaged ALE Jacobians Formulation (AJF)

is presented in Chapter (4) . It is carried out in the context of the FEM for

general advective-diffusive systems on moving domains using an ALE scheme

and a θ-family time integration scheme. The methodology is extended to the

three point Backward Differential Formula (BDF), giving a wide range of

possible applications.

In Chapter (5) are performed a set of numerical test in order to validate

the numerical solvers and the coupling algorithm. Finally, the interaction

between the fluid and the structure during the start-up process of a rocket

engine nozzle is carried out. In Chapter (6) an alternative use of the FSI

code developed in previous sections is shown. The simulation of FSI problems

assuming incompressible viscous flows opens a wide range of problems that can

be addressed. Finally, the original contributions and the research activities

carried out during the course of this thesis are presented in Chapter (7). Also,

a brief discussion about the performed simulations and its results are exposed.

The implementations are carried out in PETSc-FEM (Storti et al., 2010),

which is a general purpose, parallel, multiphysics FEM program for CFD

applications based on PETSc (Balay et al., 2011). It is written in the C++

language with an OOP (Object Oriented Programming) philosophy, keeping in

mind the scope of efficiency. PETSc-FEM can run in parallel using the Message

Passing Interface (MPI) standard, allowing the solution of large systems of

non-linear equations.

1.3 Related work

Multiphysics coupled problems represent nowadays a paradigm when analyzing

even more complex phenomena that appear in nature and in new technologies.

There exists a great number of problems where different physical processes (or

models) converge, interacting in a strong or weak fashion. In the FSI area,

the dynamic interaction between an elastic structure and a compressible or

incompressible fluid has been subject of intensive investigations in the last

years. In civil engineering, wind flow may lead to aeroelastic instabilities due
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to the structural motion on long-span bridges, high-rise buildings, light-weight

roof structures and flexible silos, these problems have been addressed in works

like, Koh et al. (1998) and Dooms (2009). In biomechanical applications, the

blood flow interacts with thin vascular walls, so it is important to know the

hemodynamics and wall shear stress to understand the mechanisms leading

to various complications in cardiovascular function, like aneurysms; these

problems have been addressed in works like, Nobile (2001); Hron and Turek

(2006); Tezduyar et al. (2009). In aeronautical engineering (Piperno and Farhat,

2001; Gnesin and Rzadkowski, 2005) it is essential to understand the interaction

between a high Mach number fluid with an elastic structure, like the aircraft

wing, to predict the flutter velocity and avoid this flight condition. Other

processes like the start up of a rocket engine (Lefrancois et al., 1999; Ludeke

et al., 2006; Garelli et al., 2008, 2010) has been widely studied considering the

interaction between the fluid and the nozzle.

In general, when solving FSI problems, the characteristic time and space

scales vary widely, so the simulations tend to be arduous in the coupling process

and time-consuming in the solution process, because the whole coupled problem

is characterized by the smaller time scale to simulate. However, there exists a

great interest in solving coupled multiphysics problems, with the aim to obtain

reliable predictions of the system behavior. This interest has been accompanied

by the increase in computer power in terms of CPU and memory, allowing to

obtain results in reasonable time.

Nowadays, the methodologies and techniques behind each discipline involved

in FSI problems (e.g., CFD, CSD, etc.) have been developed enough to allow

the reliable simulation of a great variety of problems. These advances in the

numerical simulation have been implemented in specialized codes. Therefore,

an option is to couple these specialized codes with the objective of solving FSI

problems, but in this case new questions arise, such as the coupling techniques,

addressed in Cebral (1996); Lohner et al. (1998); Felippa C.A. Park (1999);

Park and Felippa (2000); Piperno and Farhat (2001); Storti et al. (2009) and the

motion of the fluid mesh addressed in López et al. (2007). Another possibility

for solving FSI problems is to combine in a single formulation the fluid and

the structural governing equations as it was done in the works of Michler
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et al. (2004) and Idelsohn et al. (2006), but this monolithic scheme may be

mathematically unmanageable or its implementation can be a laborious task.

Furthermore, the monolithic coupled formulation would change significantly if

different fluid and/or structure models were considered.

This thesis has the focus on using specialized existing codes in order to obtain

reliable predictions in FSI problems, considering a staggered fluid-structure

coupling algorithm. In this approach, we have to solve a large system of

non-linear equations, having the possibility of using (iterative) specifics solvers

for each subsystem. Usually, this is done with Block-Jacobi, Block-Gauss-Seidel

or related relaxation methods (Codina and Cervera, 1995; Artlich and Mackens,

1995). When a partitioned coupling technique is used, like in this thesis, a

three-field system is involved in the analysis: the structure, the fluid and

the moving mesh solver. The governing equations of the fluid are written, in

general, in an Eulerian framework so it must be rewritten to allow the motion

of the mesh using an ALE formulation. The ALE method was first proposed

by Noh (1964); Hirt et al. (1974) in the context of finite differences, then it

was extended to Finite Elements (Hughes et al., 1978; Donea, 1983) and to

Finite Volumes (Trepanier et al., 1991). Also, the movement of the fluid mesh

produces a volume change of the elements in time, being in this context where

the DGCL arises, as was mentioned previously. This law was first introduced

in (Thomas and Lombard, 1979) and it is a consistency criterion in which the

numerical method must be able to reproduce exactly a constant solution on a

moving domain (Boffi and Gastaldi, 2004; Étienne et al., 2009; Garelli et al.,

2009). The impact of the DGCL on the stability and precision of the numerical

methods is still unclear, but there is a general consensus in the development of

schemes that satisfy the DGCL, in particular for FSI problems as mentioned

in (Lesoinne and Farhat, 1996; Nobile, 2001; Farhat et al., 2001; Mavriplis and

Yang, 2005; Ahn and Kallinderis, 2006).

Regarding the mesh movement, it can be performed using strategies like

re-meshing or using a nodal relocation, maintaining the topology unchanged.

To perform the nodal relocation of the mesh there exist several strategies, some

of them use a tension or torsion spring system (Yang and Mavriplis, 2005)

to propagate the boundary motion into the volume mesh and others solve a
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linear elastic or pseudo-elastic problem (Johnson and Tezduyar, 1994; Xu and

Accorsi, 2004; Stein et al., 2004) to deform the mesh. A more sophisticated

strategy to produce the mesh motion is solving an optimization problem. This

strategy may be classified as a particular case of an elastic problem where the

material constitutive law is defined in terms of the minimization of certain

energy functional that takes into account the degree of element distortion

(López et al., 2007, 2008).



Chapter 2

Governing equations and solvers

In this chapter the governing equations for the fluid dynamics, the struc-

tural dynamics and the mesh dynamics are presented. These equations are

implemented in PETSc-FEM and the objective of this chapter is to give an

introduction to these modules and to the underlying physics. For the fluid

dynamics equations a detailed description about the transformation from an

Eulerian reference frame to an ALE reference frame is presented. Also, the

used strategy to perform the mesh movement and some variants are presented.

2.1 Fluid dynamics

The dynamic behavior of a fluid flow is governed by the Navier-Stokes equations,

which are set of coupled conservation laws. It can be enumerated as

• Conservation of mass,

• Conservation of momentum,

• Conservation of energy.

Another conservation law must be added to these conservation laws if an ALE

framework is considered.

• Geometric Conservation Law.

9
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The Navier-Stokes equations can also be simplified in order to reproduce

some particular kind of flows, as example if the viscosity is assumed to be zero,

the fluid is treated as inviscid (e.g., supersonic flows over an airfoil or inside

of a rocket nozzle) and is treated as incompressible if the density variations

with respect to the reference density is negligible (e.g., water flow in a pipe

or duct). These approximations are made based on the characteristics of the

flow (very thin boundary layer) or based on the properties of the fluid (high

water’s bulk modulus). In this thesis a compressible, viscous flow is considered

and is described as a general advective-diffusive system in order to simplify its

interpretation.

2.1.1 General advective-diffusive system

Let us start with the derivation of the ALE formulation for a general advective-

diffusive system (Donea, 1983; Lesoinne and Farhat, 1996; Donea and Huerta,

2003), which can represent from a simple linear 1D advective-diffusive problem

to a 3D compressible Navier-Stokes problem.

The governing equation to be expressed in an ALE framework can be written

in a compact form as

R(U) ≡ ∂Uj
∂t

+
(
F cjk(U)−Fdjk(U,∇U)

)
,k

= 0, in Ωt ∀t ∈ (0, T ) (2.1)

where 1 ≤ k ≤ nd, nd is the number of spatial dimensions, 1 ≤ j ≤ m, m

is the dimension of the state vector (e.g. m = nd + 2 for compressible flow),

t is time, ( ),k denotes derivative with respect to the k-th spatial dimension,

U = (ρ, ρu, ρe)t ∈ IRnd is the unknown state vector expressed in conservative

variable. Where ρ , u and e represents the density, the velocity vector and

the specific total energy respectively, and F c,djk ∈ IRm×nd are the convective

and diffusive fluxes. Appropriate Dirichlet and Neumann conditions at the

boundary and initial conditions must be imposed.

The differential equation (2.1) can be written in an integral form
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∂

∂t

∫
Ω

 ρ

ρu

ρE

 dΩ +

∫
Ω

 ρu

ρu⊗ u + p ¯̄I − ¯̄τ

ρuH − ¯̄τ ·u− κ∇T


,k

dΩ = 0, (2.2)

where H is the total specific enthalpy

H = e+ p/ρ+ 1/2|u|2 = E + p/ρ (2.3)

defined in terms of the specific internal energy (h = e + p/ρ) and the specific

kinetic energy, respectively.

This set of equations are closed by an equation of state, being for a polytropic

gas

p = (γ − 1)[ρe− 1

2
ρ||u||2], (2.4a)

T = Cv[e−
1

2
ρ||u||2], (2.4b)

where γ is ratio of specific heats and Cv is the specific heat at constant volume.

In viscous fluxes, the stress tensor ¯̄τ is defined for Newtonian flows as

τij = 2µεij(u) + λ(∇ ·u)δij, (2.5)

where the Stoke’s hypothesis is

λ = −2

3
µ, (2.6)

and the strain rate tensor is

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.7)

Finally, the dynamic viscosity is assumed to be given by the Sutherland’s

law, which gives for an ideal gas the viscosity as function of the temperature,
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µ = µ0

(
T

T0

)3/2
T0 + 110

T + 110
, (2.8)

where µ0 is the viscosity at the reference temperature T0.

In order to write the semi-discrete form of the compressible Navier-Stokes

equations, it is convenient to write (2.1) in a quasi-linear form as described in

Hughes (1987b); Tezduyar (2001); Donea and Huerta (2003).

∂U

∂t
+ Ak

∂U

∂xk
− ∂

∂xk

(
Kki

∂U

∂xi

)
= 0, in Ωt ∀t ∈ (0, T ) (2.9)

where

∂F c

∂xk
=
∂F c

∂U

∂U

∂xk
= Ak

∂U

∂xk
, (2.10a)

∂Fd

∂xk
=
∂Fd

∂U

∂U

∂xk
= Kki

∂U

∂xk
, (2.10b)

and Ak are the Jacobians of advective fluxes and Kki are the Jacobians of

diffusive fluxes.

2.1.2 Variational Formulation and ALE mapping

Previous to addressing the variational formulation of the governing equation,

it is necessary to define the mapping process to solve problems in an ALE

framework. As the problem is posed in a time-dependent domain Ωt, it can

not be solved with standard fixed-domain methods, so that it is assumed that

there is an inversible and continuously differentiable map x = χ(ξ, t) between

the current domain Ωt and a reference domain Ωξ, which may be for instance

the initial domain Ωξ = Ωt=0, and ξ is the coordinate in the reference domain.

The Jacobian of the transformation is

J =

∣∣∣∣∂xj∂ξk

∣∣∣∣ , (2.11)
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and satisfies the following volume balance equation

∂J

∂t

∣∣∣∣
ξ

= J
∂v∗k
∂xk

, (2.12)

where

v∗k =
∂xk
∂t

∣∣∣∣
ξ

, (2.13)

are the components of the mesh velocity, which are then used in the variational

formulation to obtain the ALE form of the governing equations.

Now, the variational formulation of the general advective-diffusive system

(2.1) using FEM is obtained. Multiplying equation (2.1) with a weighting

function w(x, t) = w(χ(x, t)) and integrating over the current domain Ωt, we

obtain ∫
Ωt
w
∂Uj
∂t

dΩt +

∫
Ωt

[
F cjk −Fdjk

]
,k
w dΩt = 0. (2.14)

The integrals are brought to the reference domain Ωξ

∫
Ωξ
w
∂Uj
∂t

J dΩξ +

∫
Ωξ

[
F cjk −Fdjk

]
,k
wJ dΩξ = 0, (2.15)

and the temporal derivative term can be converted to the reference mesh by

noting that the partial derivative of Uj is in fact a partial derivative at x =

constant, and then can be converted to a partial derivative at ξ = constant

with the relation
∂Uj
∂t

∣∣∣∣
x

=
∂Uj
∂t

∣∣∣∣
ξ

− v∗k
∂Uj
∂xk

. (2.16)

So the temporal derivative term in (2.15) can be transformed, using (2.12),

as follows

J
∂Uj
∂t

∣∣∣∣
x

= J
∂Uj
∂t

∣∣∣∣
ξ

− Jv∗k
∂Uj
∂xk

,

=
∂(JUj)

∂t

∣∣∣∣
ξ

− JUj
∂v∗k
∂xk
− Jv∗k

∂Uj
∂xk

,

=
∂(JUj)

∂t

∣∣∣∣
ξ

− J ∂(Ujv
∗
k)

∂xk
.

(2.17)
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Replacing (2.17) in (2.15), we get∫
Ωξ
w(ξ)

∂

∂t
(JUj)

∣∣∣∣
ξ

dΩξ +

∫
Ωξ

(
F cjk − v∗kUj −Fdjk

)
,k
w(ξ)J dΩξ = 0. (2.18)

The temporal derivative can be commuted with the integral and the weight-

ing function since both do not depend on time, so that

d

dt

(∫
Ωξ
w JUj dΩξ

)
+

∫
Ωξ

(
F cjk − v∗kUj −Fdjk

)
,k
wJ dΩξ = 0, (2.19)

and the integrals can be brought back to the Ωt domain

d

dt

(∫
Ωt
wUj dΩt

)
+

∫
Ωt

(
F cjk − v∗kUj −Fdjk

)
,k
w dΩt = 0. (2.20)

The variational formulation can be obtained by integrating by parts, so

that
d

dt
(H(w,U)) + F (w,U) = 0, (2.21)

where

H(w,U) =

∫
Ωt
wUj dΩt,

F (w,U) = A(w,U) +B(w,U),

A(w,U) = −
∫

Ωt

(
F cjk − v∗kUj −Fdjk

)
w,k dΩt,

B(w,U) =

∫
Γt

(
F cjk − v∗kUj −Fdjk

)
nkw dΓt.

(2.22)

Γt is the boundary of Ωt, and nk is its unit normal vector pointing to the

exterior of Ωt.

A consistent stabilization term S(w,U), like proposed in references Brooks

and Hughes (1982); Franca et al. (1992); Aliabadi and Tezduyar (1993); Aliabadi

et al. (1993); Tezduyar and Senga (2006), is included to Eq.(2.22) in order to

avoid numerical oscillations in advection dominated problems.

S(w,U) =

∫
Ωt
P(w) ·R(U) dΩt. (2.23)
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This term includes a Streamline Upwind Petrov-Galerkin (SUPG) operator and

a Shock Capturing (SC) operator. When an ALE formulation is used, some

extra consideration must be taken into account in order to add the correct

amount of stabilization, due to mesh movement.

The stabilization of the compressible Navier-Stokes equations in Eulerian

reference frames, is carried out by weighting the residual with the following

perturbation function

P(w) = τSUPG ·A · ∇w, (2.24)

but, when an ALE reference frame is used, the advective jacobians must be

transformed to

P̃(w) = τSUPG · [A− v∗I] · ∇w. (2.25)

where A is the Jacobians of advective fluxes defined in (2.9).

With this transformation we ensure that discrete formulation is ‘‘ALE

invariant’’, in other words, for a given problem the same solution is obtained

regardless of the mesh velocity, as stated in Storti et al. (2006); Garelli et al.

(2011).

Having the variational formulation of the governing equations (2.1) in

an ALE framework, the discretization using the FEM is carried out. The

domain Ωt is discretized into Ωt
k non-overlapping elements, with K = 1, ..., nel.

We define an appropriate finite-dimensional space function, with Sh and Vh

corresponding to the trial solutions and weighting functions, respectively. So,

the finite element formulation in a quasi-linear form of (2.22) is written as
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follows

d

dt

∫
Ωt
wh Uh

j dΩt −
∫

Ωt

(
Ah
kU

h
j − v∗k

hUh
j −Kh

ki

∂Uh

∂xi

)
wh,k dΩt

+

∫
Γt

(
Ah
kU

h
j − v∗k

hUh
j −Kh

ki

∂Uh

∂xi

)
nhkw

h dΓt

+
nel∑
e=1

∫
Ωte

τSUPG wh,i · [Ah
i − v∗iI]

[
∂Uh

j

∂t
+ Ah

k

∂Uh
j

∂xk
− ∂

∂xk

(
Kh
ki

∂Uh
j

∂xi

)]
dΩt

+
nel∑
e=1

∫
Ωte

δSC wh,i ·
∂Uh

j

∂xk
dΩt

(2.26)

In equation (2.26) the first three integrals correspond to the Galerkin formu-

lation of equation (2.22). The two series of element level integrals correspond

to the SUPG stabilization and shock capturing, respectively. These terms are

added in order to prevent spatial oscillation in advective dominant problems

and suppress overshoot and undershoot effects in the region of discontinuity

(e.g., shock waves, etc).

There exist several ways to compute the stabilization parameter τSUPG and

shock capturing term δSC . Only in simple cases (1D), optimal definitions of the

coefficient matrix τSUPG can be found, which should be symmetric, positive

definite, have dimensions of time and scale linearly with the mesh size. In

multiple dimension problems, the numerical dissipation should be only added

in the characteristic direction and not in the transverse one, i.e. it must be the

‘‘streamline’’. This is not trivial, because the advective jacobian matrices for

compressible flow are not simultaneously diagonalizable in multidimensional

equations.

In this thesis the standard SUPG formulation presented in Aliabadi et al.

(1993) is adopted. The τSUPG matrix is defined as

τSUPG = max[0, τa − τd − τδ], (2.27)

where τa,τd,τδ are the stabilization matrix due to the advection and diffusion

terms and the matrix subtracted due to the presence of the shock-capturing



2.1. FLUID DYNAMICS 17

term, respectively. These matrices are defines as

τa =
h

2(c+ |u− v∗|)
I, (2.28a)

τd =

∑nd
j=1 β

2
j diag(Kjj)

(c+ |u− v∗|)2
I, (2.28b)

τδ =
δSC

(c+ |u− v∗|)2
I, (2.28c)

where c is the speed of sound, and h = 2(
∑nen

a=1 |u · ∇w|)−1 is the element size

projected in the direction of the streamline, and β is compute as

β =
∇||U||2∗
||∇||U||2∗||

, (2.29)

and

|| · ||∗ = || · ||2. (2.30)

The shock capturing operator used here is that proposed by Tezduyar and

Senga (2004). To define the operator an unit vector oriented with the density

gradient j = ∇ρh/|∇ρh| and a characteristic length hj = 2(
∑nen

a=1 |j · ∇wa|)−1

are needed. Thereby, the isotropic shock capturing factor is defined as

δSC =
hj
2

(|u− v∗|+ c)

(
|∇ρh|hj
ρref

)
, (2.31)

Finally, the semi-discrete system (2.26) is discretized in time with the

trapezoidal rule, where

H(w,Un+1)−H(w,Un) = −
∫ tn+1

tn
F (w,Ut′) dt′,

≈ −∆t F (w,Un+θ).

(2.32)

with 0 ≤ θ ≤ 1 and being Un+θ defined as

Un+θ = (1− θ)Un + θUn+1. (2.33)

And during the time step it is assumed that the nodal points move with constant
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velocity, i.e.

v∗k(ξ) =
xk(ξ, t

n+1)− xk(ξ, tn)

∆t
,

xk(ξ, t) = xk(ξ, t
n) + (t− tn)v∗k(ξ),

 , for tn ≤ t ≤ tn+1. (2.34)

This assumption is directly related with the DGCL, as will see in Chapter

4.

2.2 Structural dynamics

In this section an introduction to the structural continuum equations and its

discretization in space and time are given. The focus of this work is on FSI, thus

the structural part is briefly covered in this section. More detailed explanations

about structural continuum equations can be found in works like Marsden

and Hughes (1983); Landau et al. (1986) and about numerical approximations

of theses equations can be found in Hughes (1987a); Zienkiewicz and Taylor

(2005).

The structural dynamics is governed by the conservation of linear mo-

mentum, a constitutive equation which relates stress with strain and some

kinematic relations. As one of the goals of this thesis is to solve a wide variety

of FSI problems, therefore a model that admits large structural deformations is

needed, thus a geometrically nonlinear description of the kinematics is required.

However, a linear elastic constitutive law for the material is assumed. The

latter can be changed without a great effort, enabling the code to simulate

another material behavior.

The structure is described by the displacement vector z, the material velocity

field vs = dz
dt

, the density of the material ρs, the specific structural body force

b and the Cauchy stress tensor ¯̄σs, written in a Lagrangian description, with

respect to the initial state Ω0
s, so we have

ρs
d2z

dt2
−∇ · ¯̄P = ρsb in Ω0

s ∀ t ∈ (0, T ), (2.35)
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where the tensor
¯̄P = J ¯̄σs

¯̄F−T , (2.36)

is called the first Piola-Kirchhoff tensor and

¯̄F = ¯̄I +∇z, (2.37)

is the deformation gradient tensor and J is the Jacobian determinant.

For a convenient specification of the constitutive equation, the second

Piola-Kirchhoff stress tensor ¯̄S is introduced and it is related to the first Piola-

Kirchhoff stress tensor by ¯̄S = ¯̄F−1 ¯̄P . For an isotropic linear-elastic material,

the constitutive equation can be stated as

¯̄S = λs(tr
¯̄E )̄̄I + 2µs

¯̄E , (2.38)

which relates the second Piola-Kirchhoff stress tensor with the Green-Lagrange

strain tensor ¯̄E by means of the Lamé constants λs and µs. The Green-Lagrange

strain tensor is defined as

¯̄E =
1

2

(
∇z +∇zT +∇z · ∇zT

)
(2.39)

which also can be written as

¯̄E =
1

2

(
¯̄F T ¯̄F − ¯̄I

)
(2.40)

These set of equations are complemented with the displacement and velocity

field at t = 0 which represent the initial conditions

zt=0 = z0,
dz

dt

∣∣∣∣
t=0

= ż0 in Ω0
s (2.41)

and to complete the description of the initial boundary value problem for the

structure, a displacement field on Dirichlet boundaries is prescribed

zt = z̃ in ΓD
s , (2.42)
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and traction field on Neumann boundaries

f̃t = J ¯̄σs
¯̄F−T · ñ, in ΓN

s (2.43)

In FSI problems a portion of the Neumann boundary is the interface with

the fluid, which transfers the pressure of the fluid to a load in the structure.

2.2.1 Variational Formulation

Having derived the governing equations for the structure, the next step is

to obtain the variational formulation (weak form). Using the principle of

virtual work, where a virtual displacement δz is applied to equation (2.35) and

integrating the result over the domain Ω0
s gives∫

Ω0
s

δz

(
ρs

d2z

dt2
−∇ · ¯̄P − ρsb

)
dΩ0

s = 0. (2.44)

As the stress depends on strains which are derivatives of displacements, the

equation (2.44) requires the computation of second derivatives of the displace-

ment. But, this second derivatives can be reduced by performing an integration

by parts of equation (2.44), obtaining the following weak form∫
Ω0
s

δzT ρs z̈ dΩ0
s +

∫
Ω0

s

δεT ¯̄S dΩ0
s−
∫

Ω0
s

δzT b dΩ0
s−
∫

Γ0
s

δzT f̃ dΓ0
s = 0, (2.45)

where δε represents the variation of the strain tensor ¯̄E due to a variation δz of

the displacement field. Now, the discretization in space of the weak form (2.45)

is carried out by means of FEM, obtaining a semi-discrete system. The domain

Ωs is discretized into Ωsk non-overlapping elements, with Ks = 1, ..., nel and

the continuous unknown displacement field z is approximated by

zh = wz, δzh = wδz, z̈h = wz̈. (2.46)

where w is the matrix of shape functions.

Substituting the above approximations into the weak form (2.45) gives, for
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a single element

δ(zh)T

[∫
Ω0
sk

wTρsw dΩ0
sk z̈h +

∫
Ω0

sk

BT ¯̄S dΩ0
sk −

∫
Ω0

sk

wTbdΩ0
sk −

∫
Γ0

sk

wT f̃ dΓ0
sk

]
(2.47)

Noting that the virtual displacements are arbitrary, the sum over all elements

is performed obtaining the following semi discrete system.

Mz̈h + Fint(ż
h, zh) = Fext, (2.48)

where

M =
∑
k

Mk =
∑
k

∫
Ω0
sk

wTρsw dΩ0
sk,

Fint(z
h) =

∑
k

Fint(z
h)k =

∑
k

∫
Ω0
sk

BT ¯̄S dΩ0
sk,

Fext =
∑
k

Fextk =
∑
k

∫
Ω0
sk

wTb dΩ0
sk +

∑
k

∫
Γ0

sk

wT f̃ dΓ0
sk.

(2.49)

Finally, the semi discrete system (2.48) is discretized in time using the

Newmark-β scheme proposed by Newmark (1959). This method is widely used

in numerical evaluation of the dynamic response of structures and a general

overview about this scheme and other can be found in Hughes (1987a).

The discrete position zh = ds and velocity żh = vs are written in terms of

the accelerations z̈h = as, wherewith

Man+1
s + Fint(v

n+1
s ,dn+1

s ) = Fn+1
ext ,

vn+1
s = vns + ∆t((1− γn)ans + γna

n+1
s ),

dn+1
s = dns + ∆tvns +

1

2
∆t2((1− 2βn)ans + 2βna

n+1
s ).

(2.50)

is obtained a displacement based formulation.

Both parameters γn and βn determine the stability and accuracy charac-

teristics of the scheme. Several works have been carried out to determine

these properties for different value of γn and βn, which are summarized in the

Table (2.1). The stability is based upon the undamped case and a second order
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Table 2.1: Numerical properties of some Newmark-β schemes.

Method βn γn Stability Order of accuracy
Average Acceleration 1/4 1/2 Unconditional 2
Linear Acceleration 1/6 1/2 Conditional 2

Fox-Goodwing 1/12 1/2 Conditional 2

of accuracy is achieved if and only if (γn = 1/2), otherwise if (γn > 1/2) a

numerical damping proportional to (γn− 1/2) is introduced. The unconditional

stability is achieved for (2βn ≥ γn ≥ 1/2). So, the average acceleration method

is one of the most widely used in structural dynamics due to it is unconditionally

stable without the introduction of numerical damping.

2.3 Mesh dynamics

In this section a brief introduction to the moving mesh techniques is given. As

was mentioned in previous sections, in FSI problems the fluid interacts with

a structure which deforms due to the forces exerted by the fluid, producing

a change in the fluid domain, since the fluid-structure interface follows the

structure displacement. In the discrete fluid flow problem, the change of the

domain must be followed by a change in the discretization. The discretization

of the new domain can be obtained through a re-meshing process or through a

nodal relocation process.

In general, the re-meshing process is undesirable because of the need of a

projection of the flow field from the old to the new mesh, with the consequent

loss of conservativity, possible addition of numerical diffusion and additional

computational cost. In this work, a relocation technique is used to update the

nodal coordinates of the fluid mesh in response to the domain deformation,

while keeping the topology unchanged.

There exists several techniques to produce the nodal relocation and the

choice of one of these depends on how important is the deformation of the

structure and its impact on the fluid domain. The simplest one is the Laplacian

method which consists in solving the Laplace equation to update the node
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positions. Also, some modifications have been proposed to the Laplacian

operators (Löhner and Yang, 1996; Longatte et al., 2003) for special treatment

of near wall regions. Other technique is the spring analogy, where the mesh

nodes are connected through tension springs, where the stiffness is related to

the length of the edge. This approach tends to produce highly deformed meshes

with collapsed or negative volume and is incapable of reproducing solid body

rotation. The tension spring model has been improved by Murayama et al.

(2002) attaching torsion springs to each vertex where the stiffness is related to

the angle. In the work of Farhat et al. (1998) tension and torsion spring to

produce the mesh movement are used, with good results.

A more robust alternative is the linear elasticity approach, where fluid

mesh obey the linear elasticity equation (Stein et al., 2004) to obtain a smooth

displacement field, setting as boundary condition the displacement of the

interface. The equations describing the elastic medium under the hypothesis of

small deformations without external forces are

∇ · ¯̄σ = 0, (2.51a)

¯̄σ = λs(tr
¯̄E)̄̄I + 2µs

¯̄E, (2.51b)

¯̄E =
1

2

(
∇x +∇xT

)
, (2.51c)

where x is the displacement field and for constants λs and µs can be written as

µs∇2x + (λs + µs)∇(∇ ·x) = 0. (2.52)

In this approach the Lamé constants depend on the Young’s modulus and

Poisson ratio, so a variable Young’s modulus can be used in order to avoid

severe mesh deformation in critical regions, like boundary layers, trailing-edge

airfoil, relegating the mesh deformation to areas where the mesh is coarse. Exist

other alternatives, like employing a distribution which is inversely proportional

to the element volume, in order to deal with severe fluid mesh deformations.

These strategies, together with others are mentioned in Löhner (2008) and can

be used to admit large mesh movement while maintaining good mesh qualities.
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This method with a variable modulus of elasticity is used in most of the

numerical examples of this thesis. But additionally, the moving mesh module

of PETSc-FEM has implemented a robust method proposed by Lopez et al.

(2007), where the mesh motion strategy is defined as an optimization problem.

By its definition this strategy may be classified as a particular case of an

elastostatic problem where the material constitutive law is defined in terms

of the minimization of certain energy functional that takes into account the

degree of element distortion. Some advantages of this strategy is its natural

tendency to high quality meshes and its robustness. This strategy is used in

the problem presented in (5.5.1)

With the aim of showing the robustness of the different alternatives im-

plemented in PETSc-FEM, a very simple test is carried out. A NACA-0012

airfoil is forced to rotate as a rigid solid around its quarter chord from 0◦ to

30◦ of angle of attack. The nodes at the external boundary are fixed, while the

nodes on the airfoil are moved as a rigid solid. The computational domain and

the dimensions are shown in Figure(2.1).

Figure 2.1: Dimensions of the computational domain.

The domain is discretized with 2057 linear triangular elements and has the

histogram of element quality showed in Fig.(2.2). In the following tests the

Scaled Jacobian metric defined in the work of Knupp (2000) is used as element

quality indicator, where the quality range goes from 1 to -1 (best element, worst
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element). This metric is independent of the element volume and rotation.

Figure 2.2: Triangular mesh and histogram of the Scaled Jacobian quality.

From the histogram can be determined that over the 98% of the elements

has a quality greater than 0.7. Now the airfoil is gradually rotated to an angle

of attack of 30◦. In the first test, the mesh is deformed according to the linear

elasticity approach, using an uniform Young’s modulus of 1 and a Poisson’s

ratio of 0.4. With this strategy we only can reach a maximum angle of attack

of 14◦ before some elements are inverted in the region of the trailing edge, as

can be seen in Figures (2.3) and (2.4)

In the next test, the same strategy is used with the difference that in the

region near the airfoil the Young’s modulus is increased 1000 times, reaching the

desired 30◦ of angle of attack, but the overall quality of the mesh is deteriorated

mainly in the transition region,as can be seen in Figure (2.5).

This technique of mesh movement is cheaper from the computational point

of view, but the user is responsible for the specification of the Young’s modulus

variations in the different regions of the domain.

The last test is carried out using the strategy proposed in Lopez et al.

(2007); López et al. (2008), where the mesh motion is defined as an optimization

problem. This is more expensive in computational terms, but maintains 98%

of the elements with a quality above 0.7, like in the original mesh. This

approach must be used in cases with severe deformations of the structure,
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Figure 2.3: Linear elasticity approach with uniform Young’s modulus.

Figure 2.4: Trailing edge region.

while maintaining a good quality of the mesh. Additionally, in the work

of Mavriplis and Yang (2005) a detailed analysis comparing different mesh

movement strategies is carried out.

These examples show that PETSc-FEM has several alternatives in order

to produce the mesh movement. The method to be selected by the user will

depend on the problem to be solved and how important is the distortion of the

mesh. Also, the computational cost will differ from one method to another.
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Figure 2.5: Linear elasticity approach with variable Young’s modulus.

Figure 2.6: Optimization approach.





Chapter 3

Coupling strategies for FSI

In this chapter the strategy used to couple the structural dynamics and the

mesh dynamics problems the fluid dynamics is described and analyzed. To

carry out this task, different alternatives can be chosen , each with its pros

and cons. Also, the arguments for choosing a partitioned treatment will be

exposed in this chapter.

3.1 Partitioned and monolithic coupling

strategies

With the increase of multi-physics problems to be solved, both in industry and

research, a wide variety of coupling strategies has been proposed, which can be

found in different books like, Bungartz et al. (2006); Ohayon and Kvamsdal

(2006); Galdi and Rannacher (2010); Bazilevs et al. (2011) and classified in the

following groups (See Figure (3.1)).

In the monolithic treatment the equations governing the fluid flow and

the displacement of the structure are solved simultaneously, with a single

solver (Michler et al., 2004; Idelsohn et al., 2009; Ryzhakov et al., 2010). The

advantage of this treatment is its accuracy and robustness since all components

are advanced simultaneously in time and ensure energy conservation, but

the numerical solution of the discrete system requires sophisticated solvers of

nonlinear systems and fast solvers for very large linear systems, as mentioned

29
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Figure 3.1: Coupling strategies.

in Hron and Turek (2006). Also, the inability to couple existing fluid and

structural solver is an important drawback, because it requires the development

and implementation of the overall code.

In the partitioned treatment two independent solvers are used to deal

with each problem (fluid and structure). The interaction process is carried

out trough the exchange of information at the fluid/structure interface in a

staggered way. The structural solver establishes the position and velocity of

the interface, while the fluid solver establishes the pressure and shear stresses

on the interface. The principal advantage of the partitioned treatment, an

the reason because it became so popular is that existing optimized solvers

can be reused and coupled. The systems to be solved are smaller and better

conditioned than in the monolithic case. However the disadvantage of this

approach is that it requires a careful implementation in order to avoid serious

degradation of the stability and accuracy. From this basic approach a weak

(Explicit) scheme can be developed, with either synchronous or asynchronous

time coupling, or either a strong (Implicit) time coupling scheme. Each one of

these schemes will be described and analyzed in next section.

3.2 Weak and Strong coupling strategies

In this section the possible temporal algorithms that performs the coupling

between the structure and the fluid codes are described. In its general form,

the time coupling scheme can be viewed as a fixed point iteration scheme over

the variables of both fluid and structure systems. During the iterative process
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three codes CFD (Computational Fluid Dynamics), CSD (Computational

Structure Dynamics) and CMD (Computational Mesh Dynamics) are running

simultaneously. For simplicity, the basic algorithm can be described as if there

were no concurrence between the codes, i.e. at a given time only one of them

is running.

The basic scheme proceeds as follows:

i) Transfer the motion of the wet boundary (interface) of the solid to the fluid

problem.

ii) Update the position of the fluid boundary and the bulk fluid mesh accord-

ingly.

iii) Advance the fluid system and compute new pressures.

iv) Convert the new fluid pressure (and stress field) into a structural load.

v) Advance the structural system under the flow loads.

From this basic description two different coupling schemes can be derived

depending on how the prediction of the structural displacement for updating the

position of the fluid boundary and compute new pressures is made. In all cases,

both fluid and structure partitions are integrated with the trapezoidal algorithm

(with trapezoidal parameter 0 < θ ≤ 1 ) but another integration scheme

could be used, such as linear multisteps methods, depending on the particular

application (Mavriplis and Yang, 2005). To proceed with the description of

the scheme we define wn to be the fluid state vector (ρ,v, p), zn to be the

displacement vector (structure state vector), żn the structure velocities and xn

the fluid mesh node positions at time tn.

In the weak (explicit) synchronous coupling (See Figure (3.2)) the fluid is

first advanced using the previously computed structure state zn and a current

estimated value zn+1
p . In this way, a new estimation for the fluid state wn+1

is computed. Next the structure is updated using the forces of the fluid from

states wn and wn+1. The estimated state zn+1
p is predicted using a second or

higher order approximation (3.1), were α0 and α1 are two real constants. The

predictor (3.1) is trivial if α0 = α1 = 0, first-order time-accurate if α0 = 1 and



32 CHAPTER 3. COUPLING STRATEGIES FOR FSI

Figure 3.2: Weak synchronous coupling scheme.

second-order time-accurate if α0 = 1 and α1 = 1/2. This coupling scheme has

been proposed in Farhat et al. (1995); Piperno (1997), with good results in

the resolution of aeroelastic problems. Also, Piperno and Farhat (2001) gives

a description about the use of the predictor (3.1) on FSI problems and the

energy transfer between the fluid and the structure.

z(n+1)
p = zn + α0∆tżn + α1∆t(żn − żn−1). (3.1)

Once the coordinates of the structure are known, the coordinates of the fluid

mesh nodes are computed by a CMD code, which is symbolized as:

xn+1 = CMD(zn+1). (3.2)

In Longatte et al. (2009) the advantage of using this coupling algorithm is

highlighted, but also the difficulty of satisfying the geometric conservation law

is mentioned. Therefore, in this thesis a new methodology in order to satisfy

the geometric conservation law is proposed in Chapter 4 in order to avoid the

introduction of a numerical error due to mesh movement.

For the case of weak (explicit) asynchronous coupling, which will not be

addressed in this thesis, fluid and structure problems are not solved at the same

time, in general the fluid computations are expressed at time tn+1/2, while the
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structure computations are expressed at tn+1, obtaining a first-order accurate

coupling scheme which is a disadvantage from the point of view of stability,

but this scheme has an improvement in terms of parallelism, as mentioned in

Farhat et al. (1995).

Finally, the third scheme is the strong (implicit) synchronous coupling,

which have benefits is term of stability and is comparable with a monolithic

coupling. It was proved (Michler et al., 2004) that monolithic schemes and

strongly-coupled staggered schemes conserves energy transfer at the fluid-

structure interface boundary, whereas weak coupled algorithms introduce after

a certain amount of time t an artificial energy E = O(∆tp), where p will depend

on the order of the prediction and the time integration methods used in the

fluid and structure solver, as mentioned in Farhat et al. (2006).

In the strong synchronous coupling algorithm, the time step loop is equipped

with an inner loop called ‘‘stage’’, so if the ‘‘stage loop’’ converges, then a

‘‘strongly coupled’’ algorithm is obtained. A schematic diagram is shown in

Figure (3.3). With this coupling strategy the computational cost increases

Figure 3.3: Strong synchronous coupling scheme.

proportionally to the number of stages needed to achieve the desired error, but

also it allows to use large time steps.

At the beginning of each fluid stage there is a computation of skin normals

and velocities. This is necessary due to the time dependent slip boundary
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condition for the inviscid case, ((v|Γ − ż|Γ) · n̂ = 0) and also when using a

non-slip boundary condition, where the fluid interface has the velocity of the

moving solid wall, i.e., v|Γ = ż|Γ.

3.3 Energy conservation of the coupled sys-

tem

When FSI problems are solved using a partitioned coupling scheme, some addi-

tional issues must be taken into account in order to obtain reliable simulations.

One of these issues is the energy transfer through the interface from one system

to the other. The firsts research work carried out to solve aeroelastic problems,

used the simplest partitioning scheme (Borland and Rizzetta, 1982; Shankar

and Ide, 1988), where the structure is deformed under the pressure load, then

the mesh fluid is updated under the new structure configuration and finally

the new pressure distribution over the structure is computed. Then, with the

aim to improve the accuracy and stability of this scheme the use of a predictor

was introduced, specially when the fluid governing equations are nonlinear

and solved implicitly. As shown by Farhat et al. (1995), the loss in accuracy

and stability of the partitioned treatment arises from a violation of the energy

conservation at the interface, wherewith the coupling scheme only satisfies

the energy conservation in an asymptotic way, i.e., reducing the time step

and mesh. In general, the energy of the system increases, turning the system

numerically unstable (Piperno and Farhat, 2001; Michler et al., 2004).

With the aim to perform a simplified analysis of the energy transfer we

consider the one-dimensional inviscid case, where the interface is represented

with a single node of unit area, defined as Γf/s (See Figure 3.4). So, viewed

from the fluid the energy transferred through the interface during a time step

can be expressed with the following equation

∆En+1
f = −

∫ tn+1

tn

p(t)ẋ(t) dt = −F n+1T

f (xn+1 − xn), (3.3)

where F n+1
f is the force applied by the fluid on Γf/s and it depends on the time
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Figure 3.4: Sketch of 1D fluid-structure coupling.

integrator used in the flow solver to compute the fluxes across Γf/s. As stated

in Eq.(2.32), the semi-discrete flow equations are discretized in time using the

trapezoidal rule, obtaining the following values of F n+1
f as a function of θ.

• θ = 0 (Forward-Euler) → F n+1
f = F n,

• θ = 0.5 (Crank-Nicolson) → F n+1
f = (F n + F n+1)/2,

• θ = 1 (Backward-Euler) → F n+1
f = F n+1.

Now, the energy transfer through the interface is viewed from the structure.

The structural dynamics can be modeled using the following equation for

displacement

Mz̈n+1 + Dżn+1 + Kzn+1 = Fn+1
ext , (3.4)

where M,D,K are the mass, damping and stiffness matrices respectively and

z̈,ż,z are the acceleration, velocity and displacement vectors respectively. Fext

is the external force applied to the structure, in this case only the force exerted

by the fluid on the structure is considered. The velocities and displacements

are estimated using a midpoint integration rule

żn+1 = żn + ∆t(z̈n+1 + z̈n)/2,

zn+1 = zn + ∆t(żn+1 + żn)/2.
(3.5)

The energy of the structure is composed of the kinetic and potential energies

Es =
1

2
żTMż +

1

2
zTKz, (3.6)
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thus the structural energy variation during a time step due to the energy

transferred from the fluid to the structure (code coupling) is given by

∆En+1
s =

1

2
(F n+1

s + F n
s )T (zn+1 − zn). (3.7)

At this point we can state that a partitioned FSI coupling conserves energy

if an only if it satisfies the following relation

∆En+1
s =

1

2
(F n+1

s + F n
s )T (zn+1 − zn) = −F n+1T

f (xn+1 − xn) = ∆En+1
f , (3.8)

but it is important to note that xn+1, which represents the fluid mesh displace-

ment at tn+1 is not known when the fluid state is advanced from wn to wn+1,

as can be viewed in Figure (3.2) and F n+1
f will depend on the adopted value for

the θ parameter, wherewith wn+1 and F n+1
f must be chosen so as to minimize

the energy imbalance.

In the case of weak coupling without structural predictor, the structural

displacement zn+1 is inferred from the fluid force F n
f and the mesh displacement

xn. In this thesis the structural predictor described in Eq.(3.1) proposed by

Piperno and Farhat (2001) is used in order to improve the energy conservation

and hence the stability of the system without increasing the computational

costs. When a first order predictor, setting on Eq.(3.1) α0 = 1 and α1 = 0 and

a second order flow solver is used, the coupling algorithm become second order

energy accurate. Another alternative is to use a second order predictor, setting

on Eq.(3.1) α0 = 1 and α1 = 1/2 where the coupling algorithm become third

order energy accurate.

But in some particular cases, like the flutter of a flat plate or finding the

instability velocity of a wing, the introduction of artificial energy in the system

can lead to an erroneous result. In those cases a strong coupling algorithm is

needed, where k stages are performed until the error becomes lower than a

critical value
|(F n+1

f )k+1 − (F n+1
f )k|

|(F n+1
f )0|

< ε, (3.9)

and them the system is advanced in time.



Chapter 4

Geometric Conservation Law

In this section a new methodology for developing DGCL (Discrete Geometric

Conservation Law) compliant formulations is presented. It is carried out in the

context of the FEM for general advective-diffusive systems (2.1) on moving

domains using an Arbitrary Lagrangian Eulerian (ALE) scheme given in (2.20).

There is an extensive literature about the impact of DGCL compliance on the

stability and precision of time integration methods. In those articles it has been

proved that satisfying the DGCL is a necessary and sufficient condition for any

ALE scheme to maintain on moving grids the nonlinear stability properties of

its fixed-grid counterpart. However, only a few works propose a methodology

for obtaining a compliant scheme (Storti et al., 2011). In this thesis, a DGCL

compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is

obtained. This new formulation is applied to the θ-family of time integration

methods. In addition, an extension to the three-point Backward Difference

Formula (BDF) is given.

4.1 The role of GCL

When dealing with partial differential equations that need to be solved on

moving domains, like in FSI (Lefrancois et al., 1999; Tezduyar et al., 2008;

Storti et al., 2009; Garelli et al., 2010), one of the most used technique is

transform the equations in a ALE framework, as in this thesis. When an ALE

37
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formulation is used, the governing equations are written in a moving domain

and additional terms related to the mesh velocity and position, are introduced.

The reformulated equations must be integrated in time. The common way to

proceed is to use a classical time advancing scheme like the θ-family or the

BDF’s family. In this context the DGCL arises and it is directly related to the

evolution of the mesh velocity and the elements volume change. This law was

introduced by Thomas and Lombard (1979) and it is a consistency criterion

in which the numerical method must be able to reproduce exactly a constant

solution on a moving domain. As noted by Étienne et al. (2009) the effect

of the DGCL on the stability of ALE schemes is still unclear and somewhat

contradictory. In the work by Guillard and Farhat (2000), it has been observed

that the movement of the domain can degrade the accuracy and stability of

the numerical scheme with respect to their counterpart on fixed domains. In

this direction, many researchers have been working with the aim of linking the

accuracy and the stability of numerical schemes on an ALE framework with

the discrete version of the Geometric Conservation Law (Guillard and Farhat,

2000; Boffi and Gastaldi, 2004; Formaggia and Nobile, 2004; Étienne et al.,

2009). In the article of Geuzaine et al. (2003) it has been shown that satisfying

the DGCL is neither necessary nor sufficient condition for an ALE scheme to

preserve on moving grids its time-accuracy established on fixed grids. In the

work presented by Farhat et al. (2001) it was proved that for nonlinear scalar

problems the DGCL requirement is a necessary and sufficient condition for an

ALE time-integrator to preserve the nonlinear stability properties of its fixed-

grid counterpart. Meanwhile, Boffi and Gastaldi (2004) and Formaggia and

Nobile (2004) have shown that it is neither necessary nor sufficient condition

for stability, except for the Backward Euler scheme. While the impact of

the DGCL on the stability and precision of the time integration methods

is controversial, there is a general consensus in the development of schemes

that satisfy the DGCL, in particular for FSI problems (Lesoinne and Farhat,

1996; Nobile, 2001; Mavriplis and Yang, 2005; Ahn and Kallinderis, 2006).

A straightforward way to satisfy the DGCL is to use a time integration rule

with degree of precision nd · s − 1, where nd is the spatial dimension and s

is the order of the polynomial used to represent the time evolution of the
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nodal displacement within each time step (See Eq.(2.34)). For example, in 3D

problems with a linear in time reconstruction a rule with degree of precision

2 should be used. Alternatively, the methodology proposed by Farhat and

Geuzaine (2004) to obtain an ALE extension for a given time-integrator in

fixed meshes, could be used. In this work a new methodology, which is based

on averaged ALE Jacobians is proposed to obtain DGCL compliant FEM

formulations. It is applied to the θ-family of time integration methods in

general nonlinear advective-diffusive problems. In addition, an extension to

the three-point BDF is given. In a previous work (Farhat and Geuzaine, 2004)

averaged coefficients are obtained by starting with a general integration scheme

with a series of unknown parameters, which are then adjusted in order to

preserve DGCL compliance, and the temporal accuracy of the fixed mesh

counterpart. In contrast, in this work the geometric coefficients are obtained

by averaging them over the time step, so that precision is preserved and the

DGCL is satisfied in a natural way.

To validate the AJF a set of numerical tests are performed. This includes

2D/3D diffusion problems on moving meshes and 2D compressible Navier-Stokes

equations.

4.2 Average Jacobian Formulation

A discrete formulation is said to satisfy the DGCL condition if it solves exactly

a constant state regime, i.e. not depending on space or time, for a general

mesh movement x(ξ, t). As was mentioned in §4.1 the effect of the DGCL in

the precision and numerical stability of the scheme is an open discussion, but

in several works (Guillard and Farhat, 2000; Formaggia and Nobile, 2004) it is

recommended to employ numerical schemes that satisfy the DGCL. This may

help in improve the precision and the stability.

By replacing Uj = constant in Eq.(2.26) and after some manipulations it

can be shown that the DGCL is satisfied if∫
Ωn+1

w dΩ−
∫

Ωn
w dΩ = ∆t

∫
Ωn+θ

v∗k w,k dΩ. (4.1)
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A similar restriction holds for the boundary term. The stabilization term

S(w,U) normally satisfies automatically the DGCL since it involves gradients

of the state, and then it is null for a constant state.

Note that this previous equation holds if the right hand side is evaluated

as an integral instead of being evaluated at tn+θ, i.e. the DGCL error comes

from the approximation that was made in (2.32), i.e. it is always true that

∫
Ωn+1

w dΩ−
∫

Ωn
w dΩ =

∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt. (4.2)

Consider the integrand in the right hand side. Transforming to the reference

domain Ωξ we obtain∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt =

∫ tn+1

tn

{∫
Ωξ
v∗k
∂w

∂ξl

∂ξl
∂xk

J dΩξ

}
dt,

=

∫
Ωξ
v∗k
∂w

∂ξl

∫ tn+1

tn

(
∂ξl
∂xk

J

)t
dt dΩξ,

=

∫
Ωξ
v∗kg

n+θ
k Jn+θ dΩξ,

=

∫
Ωn+θ

v∗kg
n+θ
k dΩ,

(4.3)

where gk is an averaged interpolation function gradient and θ is the parameter

of the trapezoidal time integrator.

gn+θ
k = (Jn+θ)−1Q̄

n+1/2
lk

∂w

∂ξl
,

Q̄
n+1/2
lk =

∫ tn+1

tn
Qt
lk dt,

Qt
lk =

(
J
∂ξl
∂xk

)t
.

(4.4)

The proposed scheme is then to replace the A(w,Un+θ) operator in (2.22) by

AGCL(w,Un+θ) = −
∫

Ωn+θ

[
F cjk − v∗kUj −Fdjk

]∣∣
tn+θ g

n+θ
k dΩ, (4.5)
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A similar modification must be introduced in the boundary term B(w,U),

this will be explained later in Section §4.2.2 . It is easy to check that with this

modification the scheme is DGCL compliant for all θ.

4.2.1 Evaluation of the average interpolation function

gradient

Due to (2.34) each component xk is a linear function of time inside the time

step, then the spatial derivatives (∂xk/∂ξl) are also linear functions, and the

determinant J is a polynomial of degree nd. Also, the components of the

inverse transformation ξ → x can be determined from the inverse of the direct

transformation x→ ξ as

∂ξl
∂xk

=

(
∂x

∂ξ

)−1

lk

,

J
∂ξl
∂xk

= (−1)k+l minor

(
∂x

∂ξ

)
kl

,

(4.6)

where minor(A)ij is the determinant of the submatrix of A when row i and

column j have been eliminated. Then, the minors are polynomials of order

nd − 1 and so are the entries of J ∂ξl
∂xk

that are the integrands in (4.4).

As a check, well known results about the compliance of the DGCL with

the trapezoidal rule will be verified. The DGCL is satisfied if the integration

rule used to approximate the time integral in (4.4) is exact, for instance θ = 1/2

satisfies the DGCL in 2D, since the integrand is linear and the trapezoidal rule

reduces to the midpoint rule. In addition, DGCL is satisfied in 1D for any

0 ≤ θ ≤ 1, and for none in 3D. The point is that using θ = 1/2 (Crank-Nicolson)

is restrictive, and there is no θ that satisfies the DGCL in 3D. To overcome

these inconveniences a high order time integration methodology is proposed

for (4.4), hence the DGCL is satisfied for an arbitrary θ in any dimension.

The method can be extended easily to other temporal integration schemes (see

Section §4.3).

For instance, the Gauss integration method can be used. Normally the

Jacobians and determinants are known at tn and tn+1 since they are needed for
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the computation of the temporal term (the right hand side in (2.32)), so perhaps

it is better to use the Gauss-Lobatto version which includes the extremes of

the interval. The Gauss-Lobatto method integrates exactly polynomials of up

to degree 2n− 3 where n is the number of integration points, so that it suffices

to use the extreme points for simplices in nd = 2 and to add a point at the

center of the interval for nd = 3, i.e.

gn+θ
k =


∆t

2Jn+θ

[
Qn
lk +Qn+1

lk

] ∂w
∂ξl

, in 2D,

∆t

6Jn+θ

[
Qn
lk + 4Q

n+1/2
lk +Qn+1

lk

] ∂w

∂ξl
, in 3D,

(4.7)

being Qt
lk defined in (4.4).

The implementation of the AJF only involves a few changes at the elemental

routine level and the added cost is negligible. This is a key point in the presented

methodology.

4.2.2 The boundary term

The boundary term in (2.22) can be brought to the reference domain as follows

B(w,U) =

∫
∂Γt

[
F cjk − v∗kUj −Fdjk

]
wnk dΓ,

=

∫
∂Γξ

[
F cjk − v∗kUj −Fdjk

]
wnkJΓ dΓξ,

(4.8)

where JΓ is the Jacobian of the transformation between a surface element in Γt

and Γξ. The DGCL is satisfied if the averaged normal vector is used, i.e.

BGCL(w,U) =

∫
∂Γt

[
F cjk − v∗kUj −Fdjk

]
wn̄k dΓ,

n̄k =
1

JθΓ
ηk,

ηk =
1

∆t

∫ tn+1

tn
nkJΓ dt.

(4.9)

Regarding the evaluation of the integral for computing ηk, the considerations
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are very similar to those given in §4.2.1. The components of nkJΓ are also

polynomials of degree nd − 1 in time. For instance in 3D, if x1,x2,x3 are the

nodes at the vertices of a triangle element (ordered counter-clockwise when

viewed from the exterior of the fluid) on the surface Γt, then

nJΓ =
(x2 − x1)× (x3 − x1)

2|Γξ|
, (4.10)

where × denotes the vector cross product and |Γξ| is the area of the triangle in

the reference coordinates. As the coordinates of the nodes are linear in time

and |Γξ| is constant, the components of nkJΓ are quadratic polynomials.

Then, the considerations about the number of points for the Gauss-Lobatto

integration are the same as discussed before, i.e. two integration points are

enough to compute the integral in (4.9), and three are needed in 3D.

4.3 Application to the Backward difference

formula

The Backward Differentiation Formula is another popular method for the

integration of the system of ordinary differential equations (Boffi and Gastaldi,

2004; Formaggia and Nobile, 2004; Ascher, 2008). Applied to (2.21) gives

1

∆t

(
3/2H

n+1 − 2Hn + 1/2H
n−1
)

= F (w,Un+1). (4.11)

In order to apply the Averaged Jacobian Formulation, the right hand side

of (4.11) must be rewritten as an integral over time. For this, note that, for

any differentiable function X(t) we have

3/2X
n+1 − 2Xn + 1/2X

n−1 = 3/2(X
n+1 −Xn)− 1/2(X

n −Xn−1),

= 3/2

∫ tn+1

tn
Ẋ dt− 1/2

∫ tn

tn−1

Ẋ dt.
(4.12)

If this relation is applied with the semidiscrete equations (2.21) with X = H
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and Ẋ = −F , then the following relation is obtained

3/2H
n+1 − 2Hn + 1/2H

n−1 = −3/2

∫ tn+1

tn
F (w,U t′) dt′ + 1/2

∫ tn

tn−1

F (w,U t′) dt′.

(4.13)

The BDF integration method is obtained if the right hand side in (4.13) is

replaced by the value of the integrand at tn+1. The proposed method in order

to satisfy the DGCL is to assume that the state in (4.13) remains constant

(U(t) = Un+1) but the geometric quantities v∗k and w,k not, therefore these

quantities must be averaged over time and some additional terms must be

computed, so that

3/2H
n+1 − 2Hn + 1/2H

n−1 = −∆tFBDF(w,Un+1), (4.14)

where

FBDF(w,Un+1) = ABDF(w,Un+1) +BBDF(w,Un+1) + S(w,Un+1),

ABDF(w,Un+1) = −
∫

Ωn+1

[
(F cjk −Fdjk)n+1gn+1

k − Un+1
j rn+1

]
dΩ,

BBDF(w,Un+1) =

∫
∂Γt

[
(F cjk −Fdjk)βn+1

k − Un+1
j sn+1

]
w dΓ,

(4.15)

and gk, r, βk, and s are time averaged geometric quantities given by

gn+1
k =

1

Jn+1

(
3/2Q

n+1/2
lk − 1/2Q

n−1/2
lk

) ∂w
∂ξl

,

rn+1 =
1

Jn+1

(
3/2Q

n+1/2
lk v∗k

n+1/2 − 1/2Q
n−1/2
lk v∗k

n−1/2
) ∂w
∂ξl

,

βn+1
k =

1

Jn+1
Γ

(3/2η
n+1/2
k − 1/2η

n−1/2
k ),

sn+1 =
1

Jn+1
Γ

(3/2η
n+1/2
k v∗k

n+1/2 − 1/2η
n−1/2
k v∗k

n−1/2),

η
n+1/2
k =

1

∆t

∫ tn+1

tn
nkJΓ dt,

(4.16)

and v∗k
n+1/2 is the (constant) velocity in time step [tn, tn+1]. Regarding the

computation of the averaged Jacobians Q
n+1/2
lk and η

n+1/2
k the rules are the same
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as before ((4.4),(4.9)), since their entries are polynomials of degree nd−1 within

the time interval.





Chapter 5

Numerical simulations

The aim of this chapter is to expose the FSI simulations that have been carried

out using the partitioned coupling algorithm implemented in PETSc-FEM, with

the AJF formulation presented in the previous chapter. But, first are performed

a set of validation tests for the fluid solver and the structural solver, which are

the foundations of the partitioned algorithm. Then, and in order to check the

coupling algorithm, a problem named the piston problem is solved, where the

energy conservation and the convergence of the stage loop are analyzed. Also,

a set of numerical tests in 2D and 3D are performed in order to establish the

introduced error when the ALE formulation is not DGCL compliant. Finally,

the interaction between the fluid and the structure during the start-up process

of a rocket engine nozzle is carried out.

5.1 Fluid solver test

The compressible Navier-Stokes solver implemented in PETSc-FEM has been

widely used and validated in the following works Paz (2006); Langhi (2007);

Ŕıos Rodriguez (2009). In this section the solver is tested with the solution of

a NACA0012 airfoil in a transonic flow. This test case has been widely used

in the validation of numerical method (Tang and Hafez, 2001; Dadone and

Grossman, 2003; Nejat and Ollivier-Gooch, 2008), because it presents a shock

wave in the upper surface testing in particular the effect of the stabilization

47
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techniques.

The domain is shown in Figure (5.1) and is discretized using an unstructured

mesh of 17800 triangular elements, setting the airfoil to 4◦ of angle of attack.

The fluid is assumed inviscid with a specific heat ratio γ = 1.4, a thermodynamic

constant R = 287 [J/kgK] and the following reference conditions, ρ∞ =

1.225 [kg/m3], p∞ = 101325 [Pa] and M∞ = 0.75.

Figure 5.1: Domain and boudanry conditions.

In order to avoid numerical instabilities in the region of the shock wave

the SUPG and SC stabilization techniques are used. The results obtained

with PETSc-FEM are compared with that obtained by Romanelli and Serioli

(2008); Romanelli et al. (2008) using OpenFOAM (OpenFOAM, 2011) and

FLUENT R©. In Figure (5.2) the pressure coefficient (Cp), which is computed

as

Cp =
2

γM2
∞

(
p

p∞
− 1

)
, (5.1)

is plotted together with data from the above references. As can be seen, a

good correlation between the solvers is found. The use of SUPG and SC avoids

numerical instabilities in the shock wave region, achieving a good resolution of

this feature.

In Figure (5.3) colormaps of pressure and Mach distribution around the

airfoil is shown.
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Figure 5.2: Pressure coefficient of the upper and lower surface of the NACA
0012.

Figure 5.3: Colormaps of pressure and Mach distributions.

Having performed a test for the fluid, the next step is to validate the

structural solver for both, dynamic and static cases.
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5.2 Structural solver test

In this section is carried out the validation of the structural solver, using both

static and dynamic cases. The static case consists on the large amplitude

deflection of a 3D cantilevered beam and the dynamic case consists on solving

the large amplitude vibration of the beam. These test cases has been used also

by Tuković and Jasak (2007) in order to validate a Finite Volume solver for

large deformation. The beam is clamped at z = 0 and subjected to an applied

traction force t at z = 2. The beam has the dimensions shown in Figure (5.4)

and is discretized with a structured tetrahedral mesh.

Figure 5.4: Dimensions of the 3D cantilever beam.

The density ρs and the modulus of elasticity E are selected in such a way

to obtain the first natural frequency of the beam equal to f1 = 1 [Hz]

f1 =
1.8752

2π

√
EI

ρsAL4
. (5.2)

The physical and geometrical properties of the beam are listed in Table (5.1).

For the static case, the equilibrium shape of the beam is obtained for

different traction forces t = ( |t|√
2
; |t|√

2
; 0)[N/m2], which is represented by the
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Table 5.1: Physical and Geometrical properties of the beam

E ρs ν A I
15.293 [MPa] 1000 [kg/m3] 0.3 0.4[m2] 0.0001333[m4]

following dimensionless parameter

T =
|t|AL2

EI
. (5.3)

The computed displacements of the point Q

dQ =
√
u2
x + u2

y. (5.4)

are compared with the results of Mattiasson (1981), where exact deflections

dexact of the point Q are computed by means of the numerical evaluation of

elliptic integrals. The problem is solved for three different meshes ( 4× 4×
20; 8× 8× 40; 16× 16× 80), each one having a element mesh size of a half of

the previous one.

Table 5.2: Deflection for different loads and meshes

T dQ,4×20 dQ,8×40 dQ,16×80 dexact Converg (p)
0.2 0.099 0.121 0.129 0.133 1.91
0.4 0.196 0.239 0.254 0.262 1.95
0.8 0.376 0.455 0.481 0.499 2.01
1.6 0.678 0.787 0.833 0.859 1.76

In Table (5.2) are listed the displacements of the point Q for different loads

and meshes. Also, it is shown the reference value and a mesh convergence

analysis which gives a second-order mesh convergence.
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As example, the convergence for the first cases is shown. It is compute as

p =
log(e1/e2)

log(h1/h2)

=
log
(

0.129−0.099
0.129

/0.129−0.121
0.129

)
log( 0.075

0.0375
)

= 1.91

(5.5)

In the next test, the dynamic response of the 3D cantilever beam to a

suddenly applied traction force is analyzed. In the numerical model no damping

effect exists, so it can be considered as an elastic system, expecting an undamped

vibration of the beam about its static equilibrium. The transient simulation is

performed on the intermediate computational mesh (8× 8× 40) and time step

size is 0.002 [s] corresponding to a maximum Courant number Co around 10,

where Co = cs∆t/h and h is the minimum element dimension, and cs =
√

E/ρs

is the solid wave speed. The Newmark-β time integration method described in

section §2.2 is used, setting βn = 1/4 and γn = 1/2. As solution is reported

the deflection of the Q point as function of time and are compared with the

results obtained by Tuković and Jasak (2007).

We note in Figure (5.6) that the amplitude of the vibration is well preserved

while maintaining a vibration frequency close to the first natural frequency.

Also as expected, the frequency increases with the amplitude of the vibrations

due to a nonlinear geometric stiffness. The convergence history if the L2 norm

of the residual for the Newton iteration is shown in Figure (5.7).
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Figure 5.5: Deflection of the 3D cantilever beam for different traction forces.

5.3 Coupling test problem

As mentioned in previous sections, the solution of FSI problems using specialized

existing codes involves the implementation of a coupling algorithm. The
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Figure 5.6: Displacement of the Q point.

Figure 5.7: Norm L2 of the Newton iteration residual.
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coupling scheme has its particularities and it is important to have a good

understanding about the algorithm to carry out reliable simulations.

As was stated in section §3.3, a disadvantage of the partitioned coupling is

its inherent loss of the conservative properties of the continuum fluid-structure

system and only satisfies conservation in an asymptotic way. This loss of the

conservative properties can be improved using predictors or stages and if the

staged loop converges, it does to the monolithic solution.

In order to prove the accuracy of the implemented coupling scheme an

example problem known as the piston problem will be solved. This test problem

has been used is several works, like in Piperno (1995) and Michler et al. (2003,

2004). It is a very simple problem from the computational point of view and

it allows to evaluate all the characteristics of the coupling algorithm. In the

continuum problem the unique source of energy dissipation is the damping of

the structure, so if the structural damping is negligible, the system is stable

and the global energy must be conserved. This is one of the key points to be

analyzed because it is directly related with the coupling scheme and the time

integration methods used in the discrete problem.

In Figure (5.8) we can see a sketch of the problem, being the fluid inside

the chamber described by the one-dimensional Euler equations (ν = 0) for a

compressible flow. This set of equations are closed by the state equation for a

perfect gas and the compression process is assumed to be adiabatic, there are

no exchanges between the fluid and its external environment. The chamber has

a fixed wall and a movable wall of unitary area. In this problem the structure

is described by a mass-spring system of one degree of freedom and the fluid

and the structure exchange information trough a common interface.

Some conditions must be fulfilled at the interface of the discrete fluid-

structure system, one dynamic and the other two kinematic. The dynamic

condition states that the pressure at either side of the interface are the same.

pf = ps. (5.6)

One of the kinematic condition states that the position of the moving wall is

equal to its reference position plus the structural displacement and the other
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Figure 5.8: Sketch of the piston problem.

kinematic condition states equal velocity at the interface.

l(t) = l0 + z(t),

u(t) = ẋ(t) = ż(t).
(5.7)

The fulfillment of these conditions are required in order to conserve mass,

momentum and energy at the interface due to the fluxes must be the same at

either side of the interface, and it can be expressed as:

ρ(u− ż) = 0,

ρu(u− ż) + pf = ps,

ρe(u− ż) + u pf = ż ps.

(5.8)

Now, some characteristics of the subsystems will be evaluated. The struc-

tural part is a mass-spring system which can be represented by the following

equation

mz̈ + kz = (ps − p0) ·A, (5.9)

where m and k are the mass and stiffness of the system and ps is the pressure

exerted by the fluid and p0 is a constant reference pressure and A is an unitary

area of reference. The undamped angular frequency and characteristic time

scale for this system are

ws =

√
k

m
,

Ts =
2π

ws
.

(5.10)
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In the case of the fluid subsystem the characteristic time scale is given by

Tf =
2l0
c
,

c =

√
γp0

ρ0

,
(5.11)

and the relation between Ts/Tf determine how important are the transient

effects on the fluid behavior. If Ts � Tf the fluid can be considered as

quasi-steady. Also, is important the mass ratio between the fluid and the

structure

ζ =
ρ0l0
m

. (5.12)

If ζ � 1 the fluid mass can be neglected and only the structural mass is

considered into the dynamic coupled system, but if ζ ≈ O(1) the fluid and

structure masses has the same contribution to the dynamic coupled system.

The physical parameters used in the piston problem are listed in Table (5.3)

and the ratio of characteristic times scale and masses are

Table 5.3: Parameters of the piston problem

m k Ts ρ0 p0 Tf
0.8[kg] 7911[N/m] 0.063[s] 1.3[kg/m3] 105[Pa] 0.0061[s]

Ts
Tf
≈ 10, ζ ≈ 1.63. (5.13)

wherewith the fluid can be considered quasi-steady and its mass will impact on

the oscillation frequency of the coupled system.

In order to estimate the oscillation frequency of the coupled system, we

assume that the fluid behaves as a mass-spring system, adding a mass and

stiffness to the structure system

(m+mfld)z̈ + (k + kfld)z = 0, (5.14)

where mfld and kfld are the mass and the stiffness added by the fluid. In
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order to determine these parameters we use the hypotheses of quasi-steady

flow, wherewith the fluid compression can be modeled as isentropic, where the

volume of the chamber is proportional to the piston displacement

p = p0

(
V0

V

)γ
= p0

(
l0

l0 + z

)γ
, (5.15)

where γ is the ratio of specific heats. Eq.(5.15) can be linearized around z0 = 0

for z � l0

p = p0 − p0γ

(
l0

l0 + z

)γ−1
l0

(l0 + z)2

∣∣∣∣∣
z=0

(z − z0) +O(∆z2),

p = p0(1− γ

l0
z) +O(∆z2),

p ≈ p0(1− γ

l0
z).

(5.16)

Eq.(5.16) gives the variation of the chamber pressure due to a change in

the length of the chamber. To obtain the stiffness added by the fluid kfld, first

the force is computed

F = pA = p0(1− γ

l0
z)A, (5.17)

and then it is derived with respect to the displacement

kfld =
dF

dz
= −p0γ

l0
A. (5.18)

The added mass term mfld is computed as

mfld =

∫ l0

0

ρ0

(
z

l0

)2

Adz,

mfld =
1

3
ρ0l0A.

(5.19)

Thus the approximated oscillating frequency of the coupled system can be

computed as

wfs =

√
k + kfld
m+mfld

, (5.20)
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and replacing with the corresponding values in the above equation the following

values are obtained

wfs = 346, 3[rad/s] , Tfs = 0, 0181[s]. (5.21)

In the work of Michler et al. (2003) a coupled frequency of wfs = 342 [rad/s]

is obtained for the same parameters, which is in concordance with the frequency

obtained in this work. Previously to carry out the analysis of the coupling

algorithm, the structural solver is verified by comparing the oscillation frequency.

This is done by imposing an initial displacement z(t=0) = 0.05 and checking

that the natural frequency matches with that computed using Eq.(5.10), which

value is in Table (5.3). The problem was solved using two different time

steps, in Case 1 ∆t1 = 3.05 · 10−4[s] and in Case 2 ∆t2 = 2.43 · 10−3[s] and the

Newmark-β parameter are βn = 1/4 and γn = 1/2.

Figure 5.9: Structural displacement.

Having verified the structural solver, the coupled problem is solved using

different values of α0 and α1 for the structural predictor and different Courant

numbers. In these problems the structure initial conditions are z(t=0) = 0.05
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and ż(t=0) = 0, and for the fluid the reference conditions stated in Table (5.3)

are used to compute the initial conditions with a compression of x(t=0) = 0.05.

In the first numerical test, the coupled problem is solved for Courant

numbers in the range of Co = {0.5; 1; 2; 4} without using structural predictors

and for Co = 1 an oscillation period of the coupled problem is solved using

120 time steps. For the structure the Newmark-β parameter are βn = 1/4

and γn = 1/2 and the fluid is solved using the Crank-Nicolson (θ = 0.5) time

integration method. This test allows to prove the issues corresponding to

energy conservation treated in section §3.3.

Figure 5.10: Structural displacement without predictor for Co = {0.5; 1; 2; 4}.

In Figure (5.10) it can be seen that the amplitude of the oscillation grows

in time; this is because the energy of the system increases in time. In Figure

(5.11) the structural total energy (Potential + Kinetic) is plotted versus time

ET =
1

2
mż2 +

1

2
kz2. (5.22)
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Figure 5.11: Structure total energy without predictor for Co = {0.5; 1; 2; 4}.

As an alternative, in order to avoid or decrease the fictitious energy added,

the coupling algorithm can be supplied of an structural predictor, as that

described by Eq.(3.1). Using α0 = 1 and α1 = 0.5 on Eq.(3.1) a second order

predictor is obtained

z(n+1)
p = zn + α0∆tżn + α1∆t(żn − żn−1),

z(n+1)
p = zn + ∆tżn +

1

2
∆t(żn − żn−1).

(5.23)

The displacements obtained using a second order predictor are shown in

Figure (5.12). The artificial energy added is significantly reduced and for

Co = 1 and Co = 0.5 the solutions are very close to each other.

The total energy for the structure for different Courant numbers is shown

in Figure (5.12) and it can be seen that the energy does not grow indefinitely

as in the previous case.

Now, with the aim to improve the stability of the scheme, an inner loop is

added to the algorithm, known as a ‘‘stage’’ loop. If the stage loop converges,

then a strongly coupled algorithm is obtained (See Figure (3.3)). The stage
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Figure 5.12: Structural displacement with second order predictor for Co =
{0.5; 1; 2; 4}.

loop increases the computational costs almost proportional to the number of

stages, but in cases of strong coupling between fluid and structure, the use

of predictors are not enough to obtain a stable system. In Figure (5.14) the

mass displacement for Co = 2 without structural predictor is plotted. With

nstage = 1 the displacement grows in time due to an energy increase in the

system as it can be observed in Figure (5.11), but when nstage > 1 the system

becames stable.

If the stage loop is also used with the structural predictor, the number of

stages needed to reach a residual error are less than if no structural predictor

is used. The stage loop can be viewed as a fixed point iteration scheme over

the variables of both fluid and structure systems, so if the sequence converges,

the rate of convergence of the stage loop is only linear. In Figure (5.16) the

scaled convergence of fluid state on the stage loop are plotted (i.e ||Un+1,i+1 −
Un+1,i||/||U0,1 −U0,0||) with and without the use of structural predictor. As

was previously mentioned, the stage loop shows a linear convergence and better

final convergence is obtained when using a structural predictor.
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Figure 5.13: Structure total energy with second order predictor for Co =
{0.5; 1; 2; 4}.

Figure 5.14: Structural displacement without predictor for Co = 2 using stages.
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Figure 5.15: Structure total energy without predictor for Co = 2 using stages.

Figure 5.16: Fluid state convergence for Co = 2 using nstage = 4.
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In the same way, in Figure (5.17) the scaled convergence of structure state

on the stage loop (i.e ||zn+1,i+1 − zn+1,i||/||z0,1 − z0,0||) with and without the

use of structural predictor are plotted.

Figure 5.17: Structure state convergence for Co = 2 using nstage = 4.



66 CHAPTER 5. NUMERICAL SIMULATIONS

5.4 Validation of the Averaged Jacobian For-

mulation

In this section a set of numerical tests are performed in order to validate the

Averaged Jacobian Formulation (AJF) proposed in section §4.2 in order to

satisfy the DGCL. These tests consist in imposing the movement of the nodes

by some law, in both 2D and 3D, and verifying that it satisfies the DGCL,

which states that the numerical method must be able to reproduce a constant

solution on a moving domain (See section §4.1).

5.4.1 Validation for 2D scalar diffusion problem with

internal node movement

For the sake of clarity, let us consider, the scalar diffusion version of equa-

tion (2.1).
∂u

∂t
− µ∆u = 0 for x ∈ Ωt, t ∈ (0,T]

u = u0 for x ∈ Ω0, t = 0

u = uΓ for x ∈ Γt, t ∈ [0,T]

(5.24)

where µ is the constant diffusivity or conductivity and ∆ is the Laplacian

operator.

To carry out the DGCL compliance test, the problem (5.24) is solved on

an unit square domain with µ = 0.01, so that

ut − 0.01∆u = 0 for x ∈ Ωt, t ∈ (0,T],

u0 = 1 for x ∈ Ω0, t = 0,

u = 1 for x ∈ Γt, t ∈ [0,T],

(5.25)

being the mesh deformed according to the following rule

χ1(ξ, t) = x = ξ + 0.125 sin(π t) sin(2π ξ).

χ2(η, t) = y = η + 0.125 sin(π t) sin(2π η).
(5.26)

As was mentioned in §4.1 a discrete formulation is said to satisfy the DGCL
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condition if it solves exactly a constant state regime, i.e. not depending on

space or time, for a general mesh movement x(ξ, t).

Figure (5.18) shows the reference domain and the deformed mesh for

t = 0.5 [s] where the maximum deformation occurs.

The problem is solved using piecewise linear triangles for the spatial discretiza-

Figure 5.18: Reference and deformed mesh.

tion, a piecewise linear interpolation of the mesh movement and for the time

integration the Backward Euler (BE, θ = 1), Crank-Nicolson (CN, θ = 0.5)

and Galerkin (GA, θ = 2/3) schemes are considered with ∆t ={0.15, 0.1,

0.05, 0.025}. Figure (5.19) reports the error ||uh − u||L2(Ωt) for three periods

of oscillation, using the time integration methods and time steps mentioned

above. The error must be null to machine precision over time for a DGCL

compliant scheme.

A numerical error is introduced when using the Backward Euler or Garlerkin

scheme due to lack in DGCL compliance for 2D problems. In Figure (5.20)

the solution for times t = {0.1, 2.4, 5.4} [s] is shown for the three different

integration schemes. The error related to the constant solution is located in

the zones of the domain where the element deformation is higher, as in the

center and the corners.

Now, if the Averaged Jacobian Formulation (AJF) is used, all these three

time integration schemes are DGCL compliant, so the error remains null to

machine precision (see Figure (5.21)).
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Figure 5.19: ||uh − u||L2(Ωt) for Garlerkin (GA) and Backward Euler (BE)
schemes compared with Crank-Nicolson (CN).
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Figure 5.20: Solution for the Backward Euler (BE), Galerkin (GA) and
Crank-Nicolson (CN) schemes.

5.4.2 Validation for 2D scalar diffusion problem with a

periodic expansion and contraction of the domain

In this test case the problem (5.24) is solved in an unit square domain with

µ = 0.1, so that

ut − 0.1∆u = 0 for x ∈ Ωt, t ∈ (0,T],

u0 = 1 for x ∈ Ω0, t = 0,

u = 1 for x ∈ Γt, t ∈ [0,T],

(5.27)

being the domain deformed according to the following rule

χ(ξ, t) = (2− cos(20πt))ξ. (5.28)

This deformation rule represents a periodic expansion and contraction of the
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Figure 5.21: Errors using the Averaged Jacobian Formulation (AJF) and
No-Averaged Jacobian Formulation for ∆t = 0.1[s].

Figure 5.22: Deformed domain.

domain as it is shown in Figure (5.22) for t = {0, 0.03, 0.05} [s].

As in the previous case a numerical error is introduced when using the

Backward Euler or Garlerkin scheme due to lack in DGCL compliance for 2D

problems, but when the Averaged Jacobian Formulation (AJF) is used all the

time integration schemes are DGCL compliant.

In Figure (5.23) the error ||uh − u||L2(Ωt) in the solution is reported for four
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periods of oscillation.

Figure 5.23: ||uh − u||L2(Ωt) for Backward Euler (BE), Galerkin (GA) and
Crank-Nicolson (CN) schemes for ∆t = 0.005 [s].

5.4.3 Validation for 3D scalar diffusion problem with a

periodic expansion and contraction of the domain

In this section the Averaged Jacobian Formulation is validated for 3D problems.

The initial test is the extension to 3D of the problem (5.27) and the mesh

moving rule (5.28). It is solved using piecewise linear tetrahedral for the spatial

discretization, a piecewise linear interpolation of the mesh movement and for

the time integration the Backward Euler (θ = 1), Crank-Nicolson (θ = 0.5)

and Garlerkin (θ = 2/3) schemes.

Figure (5.24) shows the deformed domain for t = {0, 0.03, 0.05} [s] and

Figure (5.25) reports the error ||uh − u||L2(Ωt) for four periods of oscillation.

When the AJF is used the error remains null to machine precision, due to the

scheme is DGCL compliant.
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Figure 5.24: Deformed domain.

5.4.4 DGCL validation for 3D scalar diffusion problem

with internal node movement

This test is the extension to 3D of the problem (5.25) and the deformation

rule (5.26). It is solved using piecewise linear tetrahedral for the spatial

discretization, a piecewise linear interpolation of the mesh movement and for

the time integration the Backward Euler (θ = 1), Crank-Nicolson (θ = 0.5)

and Garlerkin (θ = 2/3) schemes.

Figure (5.26) shows the deformed mesh for t = {0, 0.5, 1.5} [s] and Fig-

ure (5.27) reports the error ||uh − u||L2(Ωt). A numerical error is introduced

when using any of the θ-family scheme in 3D problems due to lack in GCL

compliance. In Figure (5.28) the solution for times t = {0.1, 2.4, 5.4} [s] is

shown for the Backward Euler scheme. The error with respect to the constant

solution are localized in the zones of the domain where the element deformation

is higher, as in the center. But, when the AJF is used the error remains null to

machine precision, due to the scheme is DGCL compliant.
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Figure 5.25: Errors for Averaged Jacobian Formulation (AJF) and No-Averaged
Jacobian Formulation for ∆t = 0.005 [s].

5.4.5 Moving an internal cylinder

This example consists of an external cylinder of radius R2, which contains an

internal smaller cylinder of radius R1 and performs an harmonic motion of

amplitude d0 with an angular frequency ω, i.e. the instantaneous displacement

of the center of the internal cylinder d is

d(t) = d0 sin(ωt) (5.29)
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Figure 5.26: Deformed mesh.

In this example, an orthogonal mapping can be found between the reference

domain where the two cylinders are concentric, and the general case where

they are eccentric. The transformation between the current domain and the

reference domain can be described as the composition of two conformal mappings

(z → w → v) and a third orthogonal (but non-conformal) mapping (v → u).

Here u, v, w, and z are complex variables. The z-plane (see Figure 5.29(a)) is

the physical plane with the current position (eccentric) of the inner cylinder.

The region in the z-plane is

Ωz(t) = {z ∈ C/|z| < R2 and |z − d(t)| > R1} (5.30)

The key transformation is the inversion

z =
1

w + dw
+ z0 (5.31)

which transforms the circular annulus

Ωw = {w ∈ C / Rw2 ≤ |w| ≤ Rw1} (5.32)
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Figure 5.27: ||uh − u||L2(Ωt) for Backward Euler (BE), Galerkin (GA) and
Crank-Nicolson (CN) schemes for ∆t = 0.005 [s].

in the w-plane onto Ωz. As it is an inversion transformation, it maps lines

and circles onto lines and circles. The real parameters of the transformation

Rw1, Rw2, dw, z0 are unknown, but they can be easily found by adjusting the

points A, B, C, and D, so that the radiuses in the z-plane are R1 and R2, as
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Figure 5.28: Solution for the Backward Euler (BE) scheme.

required. The coordinates of these points in the w-plane are

wA = Rw2,

wB = −Rw2,

wC = Rw1,

wD = −Rw1.

(5.33)

and then, using the transformation (5.31), their z-coordinates are

zA =
1

dw +Rw2

+ z0,

zB =
1

dw −Rw2

+ z0,

zC =
1

dw +Rw1

+ z0,

zD =
1

dw −Rw1

+ z0.

(5.34)
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Then we arrive to the following equations

zA − zB = 2R2,

zC − zD = 2R1,

zc1 − zc2 =
zC + zD

2
− zA + zB

2
= d.

(5.35)

The last equation comes from the requirement that the center zc1 of the internal

cylinder must be shifted a distance d from the center zc2 of the external cylinder.

Replacing withe the expressions for the z-coordinates given in (5.34) we arrive

to the equations

1

dw +Rw2

− 1

dw −Rw2

= 2R2,

1

dw +Rw1

− 1

dw −Rw1

= 2R1,

1

dw +Rw2

+
1

dw −Rw2

− 1

dw +Rw1

− 1

dw −Rw1

= 2d.

(5.36)

which is a system of three nonlinear equations that can be solved for Rw1,

Rw2, and dw in terms of R1, R2, and d. The system can be solved with the

Newton-Raphson method, for instance. Note that the fourth parameter z0 does

not enter in the equations. Once these three parameters are found z0 can be

easily found from the requirement that the external cylinder must be centered

at Re {z} = 0, i.e.

zc2 =
zA + zB

2
+ z0 = 0, (5.37)

from where

z0 = −zA + zB
2

. (5.38)

Once the z − w transformation is known, the other two are easily found.

Note that, due to the inversion, the internal radius in the Ωw domain is mapped

onto the external radius in the Ωz domain, and viceversa. Then, a second

inversion is performed

w =
1

v
, (5.39)
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and the resulting Ωv domain is a circular annulus

Ωv = {v ∈ C2 / Rv1 ≤ |v| ≤ Rv2}}. (5.40)

with Rv1 = 1/Rw1, and Rv2 = 1/Rw2. Finally, the transformation u − v is

orthogonal (but non-conformal), that maps linearly the radius so as to map

the Ωv domain onto the reference domain

Ωu = Ωz(d = 0) = {u ∈ C2 / R1 ≤ |u| ≤ R2}}. (5.41)

The transformation is better described in terms of polar coordinates v = |v|eiφv ,

u = |u|eiφu as follows

φv = φu,

|v| = Rv1 +
|u| −R1

R2 −R1

(Rv2 −Rv1).
(5.42)

Computationally, the process is as follows. At a certain time t the nodes position

must be determined, first the parameters of the transformation are determined

from (5.35). Then, given the coordinates of the node in the reference domain

u, the successive transformations (5.42), (5.39), and (5.31), are applied, and

the coordinates of the node in the actual position of the mesh z are obtained.

(a) z-plane (b) w-plane
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(c) v-plane (d) u-plane

In this test the parameters used were R2 = 2, R1 = 1, ω = 1.047 and

d0 = 0.7. The domain was discretized with 10 elements in the radial direction

and 96 elements in the perimeter using linear triangular elements (see Figure

(5.29)). The dimensionless equations of a viscous compressible flow were solved

in the interior of the domain using the Backward Euler time integration scheme,

varying the Courant number between 2 and 0.025.

Figure 5.29: Initial mesh and maximum displacement mesh.

In order to analyze the numerical error introduced due to lack in DGGL
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compliance, the density on a fixed spatial point with coordinates x = (1.8, 0.2)

was plotted in Figures (5.30) to (5.32) for 4 periods of oscillation.

Figure 5.30: Density using the Averaged Jacobian Formulation (AJF) and
No-Averaged Jacobian Formulation for Co = 2.

Figure 5.31: Density with and without the Averaged Jacobian Formulation
(AJF) for Co = 1.

As the time step is reduced, the differences between the solutions obtained

with and without the AJF decreases, as was stated in the previous examples.

In the results corresponding to Co = 2, the difference between both solutions
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Figure 5.32: Density with and without the Averaged Jacobian Formulation
(AJF) for Co = 0.25

are significative while in the results corresponding to Co = 0.25 are negligible.

In Figure (5.33) the pressure distribution in the domain for different positions

of the inner cylinder is shown. The domain was discretized with 35 elements in

the radial direction and 342 elements in the perimeter using triangular elements.

The pressure increase in the compressed region induces a fluid motion toward

the opposite side as shown by the velocity vectors of the figure.

5.5 Numerical simulations of FSI problems

In this section the numerical simulation of the start-up process of a rocket engine

using the partitioned algorithm presented in chapter §3 and the methodologies

presented in chapter §4 is carried out. The start-up process of a rocket engine

is simulated and the shifting of two modes due to the coupling with the fluid

are analyzed. The resolution of this problem was a great challenge, because

the consulted references on the area solve the problem as two-dimensional.

Moreover, the shifting of the natural frequencies can be studied only by solving

the problem in 3D.
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(a) (b)

(c) (d)

Figure 5.33: Pressure at different positions of the inner cylinder.

5.5.1 Simulation of a rocket nozzle ignition

The algorithm described and validated in previous sections will be used to

obtain the deformation in the nozzle of a rocket engine during the ignition. This

problem has been under study by many researchers over the years, carrying

both numerical (Lefrancois et al., 1999; Taro Shimizu and Tsuboi, 2008; Wang,

2004; Lefrancois, 2005) and experimental (Shashi Bhushan Verma Ralf Stark,

2006; Moŕıñigo and Salvá, 2008) analysis.

Nozzles with high area ratio are used in the main space launchers (Space

Shuttle Main Engine, Ariane 5). These engines must work in conditions ranging

from sea level to orbital altitude but an efficient operation is reached only at

high altitude. The nozzles contour is often designed according to the theory

proposed by Rao Rao (1996) that results in TOP (Thrust Optimized Parabolic

or Parabolic Bell Nozzle) nozzle, which has some advantages compared to the

traditional conical shapes. These advantages are the smaller length, lower

weight, as well as the reduction in energy losses in the expansion of gases (Sutton

and Biblarz, 2001; Oates, 1997; Mattingly and Ohain, 2006; Tuner, 2006).
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During the start-up phase the structure is deformed due to the advance of

a shock wave that is highly detrimental to the integrity and service life cycle of

the rocket engine. Many problems have been encountered in the Space Shuttle

Main Engine, European Vulcain (Ariane) and in the Japanese LE-7, all these

were related to the ignition stage and side loads phenomena.

The nozzle under study has a bell-shape geometry which is generated by

rotating a contour line around the x axis. In this way the 3D geometry is

obtained (see Figure (5.34)).

Figure 5.34: Contour line and 3D model.

The most relevant geometrical data are detailed below:

• Overall length: l = 1810 [mm].

• Throat diameter: Dt = 304 [mm].

• Exit diameter: De = 1396 [mm].

• Area ratio: ε = 21.1.

5.5.2 Numerical Model

Starting from the three-dimensional model two independent meshes are gener-

ated, one for the fluid domain discretization and the other for the structure

domain discretization. A mesh with 334700 tetrahedral elements is generated

for the fluid with a linear interpolation of the variables. The structural mesh is
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composed of 59600 wedge (triangular base prismatic) elements. Detailed view

of grid zones of both meshes is shown in Figure (5.35).

In FSI problems there is an information transfer in the fluid-structure

interface. Using conforming meshes (node to node coincident) on the interface,

the transmission is direct and does not need an algorithm to do a surface

tracking, state interpolation and load projection, but the major drawback of

this method is that refinement in the structure mesh will cause an increase in

the fluid mesh and therefore in the overall problem size.

Figure 5.35: Spatial discretization for the fluid and for the structure.

The structural problem is solved using the theory of constitutive linear elastic

material and geometrically nonlinear, as shown in section §2.2. For the fluid, the

gasdynamics Euler equations are solved and SUPG stabilization is used together

with the shock-capturing method (see section §2.1). Using the Euler equations

the CPU and memory costs can be significantly reduced comparatively to the

viscous case. Furthermore, from previous works (Prodromou and Hillier, 1992;

Igra et al., 1998) it can be concluded that this equations correctly predict the

main flow features.

The strategy adopted in this work to solve an aeroelastic problem would

be useful when analyzing the stability of nozzles, and it will be considered

in a future work. In the early 1990’s simplified techniques for analyzing the

stability were proposed by Pekkari (1993, 1994), where the parietal pressure

due to the wall deformation is given by an analytical expression. A recent work

carried out by Östlund (2004) made an improvement in the technique. But
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Table 5.4: Solid Properties

Young’s modulus Poisson’s coeff. Density Thickness
2.07 · 1010 [N/m2] 0.28 8400 [kg/m3] 0.015 [m]

Table 5.5: Fluid Properties

R γ ρ∞ T∞ p∞
287 [J/kg K] 1.40 1.225 [kg/m3] 288 [K] 101253 [Pa]

these methods solve the aeroelastic problem in a decoupled fashion.

In order to solve the aeroelastic problem the material properties for the

nozzle and fluid are summarized in Tables 5.4 and 5.5. In this work the nozzle

is modeled with an homogeneous material, but more complex structural models

can be similarly used.

5.5.3 Boundary and Initial Conditions for the Nozzle

Ignition Problem

The FSI problem requires initial and boundary conditions for both, the struc-

tural and the fluid problem, separately. The nozzle is clamped (all displacements

null) at the junction with the combustion chamber and the rest is left free.

In the fluid flow problem a slip condition is applied to the wall of the nozzle,

which is mathematically represented by the following equation.

(v− vstr)· n̂ = (v− u̇)· n̂ = 0. (5.43)

As mentioned above the slip condition must be applied dynamically because

the normal to the wall and the structure velocity change during the simulation.

For the fluid, (p0, T0) are imposed at the inlet. These conditions are taken from

the stagnation condition of the combustion chamber (p0, T0), and then ρ0 is

computed from the state equation (see Table 5.6).
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Table 5.6: Stagnation values used for the combustion chamber

p0 ρ0 T0

26 [MPa] 306.25 [kg/m3] 299 [K]

The modeling of the ignition of a rocket exhaust nozzle is challenging from

several points of view. One of these points is the imposition of non-reflective

boundary conditions at the outlet (Paz et al., 2010). Moreover, in such case,

the number of boundary conditions at the outlet change from rest (i.e., subsonic

flow) to supersonic flow as a shock wave appears at the throat and propagates

toward the boundary. So, the condition must be capable of handling the dynam-

ical change of the Jacobians matrix profile. During the flow computation inside

the nozzle the number of incoming/outgoing characteristics, and therefore the

number of Dirichlet conditions to be imposed, will change. Having a boundary

condition that can automatically adapt itself to this change is essentially useful

in such a problem. In addition, the computational domain can be limited to the

nozzle interior up to the exit plane, with a significant reduction in CPU time

and memory use. Imposing absorbent/dynamic boundary conditions is based

on the analysis of the projection of the Jacobians of advective flux functions

onto normal directions to fictitious surfaces. The advantage of the method is

that it is very easy to implement and that it is based on imposing non-linear

constraints via Lagrange Multipliers or Penalty Methods (see Reference Storti

et al. (2008) for a more detailed description).

Initial conditions must be established in both domains. The following are

adopted for the fluid

v(x, t0) = 0, (5.44)

p(x, t0) = p∞, (5.45)

ρ(x, t0) = ρ∞, (5.46)
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Table 5.7: Characteristic Dimensions

Nozzle Vulcain S1 S3
Area ratio (ε) 45 20 18.2

Nozzle length (L) [mm] 2065.5 350 528.2
Throat diam. (Dt) [mm] 262.4 67.08 67.08

Nozzle exit diam.(De) [mm] 1760.2 300.0 286.5

and for the structure

u(x, t0) = 0, (5.47)

u̇(x, t0) = 0. (5.48)

5.5.4 Aeroelastic behavior of the nozzle

The proposed numerical problem was carried out on a cluster (Guruswamy

(2007)) machine using 30 processors Intel R© Pentium R©IV Prescott 3GHz with 2

Gb of RAM (DDR2 400 Mhz), interconnected with two switch Gigabit Ethernet

(1 Gbit/sec), 3Com R©Super Stack 3. In the simulation, 2000 time steps with a

∆t = 2 · 10−5 [secs] are computed to obtain a fully developed flow, taking into

account that the shock wave leaves the interior of the nozzle in approximately

8.8 · 10−3 [secs].

Before performing the aeroelastic analysis, the nozzle used in this work is

compared to the Vulcain nozzle and to the sub-scale S1 and S3 nozzles (see

Table 5.7) through a parametric study that was carried out in Östlund (2002).

That is done because the fluid flow field is determined by the shape of the

nozzle and this affects the pressure distribution on the wall from which the

fluid loads are computed.

In the S1 sub-scale nozzle the characteristic length for the scaling was the

nozzle exit radius (re) and in the S3 sub-scale nozzle was the throat radius (rt),

thus different contours are obtained. Therefore to perform an aeroelastic study

of the proposed TOP (Thrust Optimized Parabolic or Parabolic Bell Nozzle)

nozzle the radius and the wall pressure distribution (pw) must be comparable

to the Vulcain, S1 and S3 (see Figure (5.36) and Figure (5.37)).
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Figure 5.36: Radius distribution.

Figure 5.37: Wall pressure distribution.
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Figure (5.36) shows that the TOP nozzle under study has similar radius

distribution than Vulcain, S1 and S3, which makes valid the comparison

between the parietal pressures. Then, the computed wall pressure when the

flow is completely developed is compared, showing a good agreement.

Having verified the pressure distribution when the flow is completely developed,

the next step is to study qualitatively the evolution of the shock wave during

the start-up. Lefrancois (2005) describes the behavior of the structure when a

shock wave moves through the divergent zone of the nozzle and the process is

outlined in Figure (5.38).

During the start-up process the pressure increases linearly from p∞ to p0

in 1 · 10−4 seconds. The formed shock moves rapidly (faster than the speed

of sound for the non-perturbed condition) trough the stagnant low pressure

medium. Also a secondary left running (with respect to the fluid) shock wave

appears and is carried to the right because of the supersonic carrier flow. This

shock wave links the high Mach number, low pressure flow, with the lower

velocity high pressure gas behind the primary shock. The results of the fluid

structure interaction during this stage are shown in Figure (5.39), together

with the pressure at the wall.

Figure 5.38: Schematic deformation of the structure.

Note a large pressure jump across the secondary shock wave (see Fig-

ure (5.39)), which produces significant bending moments in the structure,

changing the outflow pattern and the pressure downstream while the shock

wave propagates towards outlet, making this process totally dynamic.

First of all, a run is performed only considering the fluid problem (hereafter

case name NO-FSI) such that the parietal pressure is computed without the
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Figure 5.39: Structure deformation and pressure distribution for the moving
shock wave.

effect of the wall movement. Then, the coupling is performed (case name FSI)

and the parietal pressures of both cases are compared. The temporal evolution

of the pressure at the nodes (1-5) located at the positions shown in Figure (5.39)

are plotted in Figure (5.40).

As seen in the Figures, the wall displacements (shown in Figure (5.41))

produce oscillations in the fluid pressure which are not considered for the

first case (NO-FSI). As the plot shows, considering the wall displacement to

compute the pressure acting in the nozzle is very important and this is one of

the key points of this work.

In this case the shock wave is expelled from the nozzle but in certain

operating condition, like overexpanded mode, the shock wave do not leave the

nozzle. This kind of shock produces a strong pressure jump and coupled with

the structure deformation can cause an asymmetric pressure distribution as is

mentioned in Östlund (2004). So, this is a first step in order to demonstrate

the relation between the aeroelastic coupling and the acting lateral loads.

The sequence in Figure (5.42) shows the behavior of the structure as the

shock wave moves through the divergent section of the nozzle. Also, the Mach

number on the nozzle centerline is plotted in the right side.
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Figure 5.40: Wall pressures during the start-up. Comparison between NO-FSI
and FSI cases.

Figure 5.41: Displacement of nodes 1-5.
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Figure 5.42: Ignition process of the rocket engine.
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5.5.5 Aeroelastic Frequency Shifting

During the design of a nozzle it is important to predict the response of the

structure under thrust loads, like lateral ones, because in normal operating

conditions, the nozzle is subject to external and internal flows that change

the wall pressure distribution dynamically. There exist several approaches

to perform this analysis, starting from the simplest one, where the nozzle is

characterized only by the mass, the inertia and a torsional spring at the throat,

to more complex FSI models (Tezduyar et al., 2006) as the one studied in this

work.

The following analysis gives some physical insight in how the fluid forces

shift the eigenfrequencies of the system due to the coupling phenomena.

The most studied mode in the nozzle structure problem, is the lowest

frequency bending mode (1) (see Figure (5.43)). In this work, the study is

extended to the lowest frequency axial mode (2). The bending mode is excited

by side loads while the axial mode is excited by fluctuations in the thrust, as

occurs during start-up.

Figure 5.43: Modes of vibration.

For the computation of the eigenfrequencies ωi of the structure two methods

are considered. One is the ”hammer test” where the nozzle is deformed and
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then is free to vibrate, characterizing the modes and frequency via a FFT

(Fast Fourier Transform). The other method is the ‘‘Generalized Eigenvalue

Problem’’ (GEVP) in which the mass and rigidity matrix are needed to solve

the system

(K− ω2
iM) u = 0. (5.49)

The eigenfrequencies obtained with these methods are listed in Table 5.8.

Table 5.8: Eigenfrequencies

- FFT [Hz.] GEVP [Hz.] Diff %
Mode 1 17.2 15.7 9.5
Mode 2 138.5 129.9 6.6

The next step is to compute the eigenfrequencies for the coupled problem.

Therefore to obtain these eigenfrequencies, the structure and the fluid are

started from a fully-developed steady flow condition computed previously,

being the structure deformed with the eigenvector obtained from the GEVP

corresponding to the studied modes. Then, a FFT is performed over the

temporal displacement of the nodes 1-5. The frequencies resulting after carrying

out these numerical simulations are compared in the Figure (5.44).

This analysis shows that the influence of the fluid-structure coupling may

be very important, producing a frequency shift of 47.7% for the bending mode

and 8.7% for the axial mode. In addition, the frequency of the axial mode

increases, while the frequency of the bending mode decreases. It will be shown

with a simple analysis that this change in behavior can be explained by the

sign of the additional stiffness when considering the coupling with the fluid.

The governing equations for the structure are

Mü + Cu̇ + Ku = Faero(u, u̇, ü, ...), (5.50)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix

and Faero is the aerodynamic forcing term which can be expanded in term of a

series in u and its derivatives, from which the terms up to second order are

retained.
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Figure 5.44: Spectrum of the two studied modes.

Faero(u, u̇, ü) ≈ −(Kaero u + Caero u̇ + Maero ü). (5.51)

where Maero, Caero, and Kaero are the mass, damping and stiffness added by

the fluid. The ratio between the fluid and the structure masses is 1/400, so

the mass added by the fluid is negligible and is not taken into account in the

forcing term. In order to justify this assumption, a simple test case with the

fluid at rest was carried out and showed that nozzle eigenfrequencies remain

unchanged compared to the case without coupling. In addition, the added

mass term always tends to reduce the frequency, so that it has no effect on

the shift directions. The damping term has been neglected, being its influence

on frequency of second-order. So, combining the Equations (5.50) and (5.51),

results in

M ü + (K + Kaero) u = 0. (5.52)

We insist that the scope of these crude approximations is merely in order

to have a very simple explanation for the different sign in the frequency shifts.
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An increment in the global stiffness gives a higher eigenfrequency and viceversa.

According to the perturbation theory, the eigenfrequency shift is given by

δω2
i =

ψTi Kaero ψi
ψTi M ψi

, (5.53)

where δω2
i and ψi are the change in the square of the eigenvalue and the

normalized vector of displacements for the mode i. As the denominator is

always positive, only the sign of the numerator has to be determined. It can

be shown that the numerator is the work W done by the fluid on the structure

as it vibrates in the corresponding mode,

ψTi Kaero ψi = −
∫

S

(pi − pref ) (n̂ ψi) dS =W (5.54)

where S and n̂ are the inner surface of the nozzle and its normal pointing to

the inside. The wall pressure distribution on S for the unperturbed problem is

pref and pi is the pressure distribution corresponding to a small perturbation

in the mode i.

Then, if the work done by the fluid is positive, the eigenfrequency is shifted to

a higher value and conversely, if the work done is negative the eigenfrequency

is shifted to a lower value.

Using the Equation (5.54), the work done by the fluid is 1.3 [J] for the bending

mode and it is −53.1 [J] for the axial mode, which explains the sign of the

frequency shifts shown in Figure (5.44).



Chapter 6

Extension to incompressible

flows simulation’s

In this chapter an alternative use of the FSI code developed in previous

sections is shown. The simulation of FSI problems assuming incompressible

viscous flows opens a wide range of problems that can be addressed, including

biomechanics of heart valves, arteries, glaucoma drainage devices or engineered

structures, such as bridges, buildings, membranes, etc. With all these potential

uses in mind, in this chapter a first step in this direction is given. This

initial development has been used in a collaborative work with a nano and

micro medicine group (LabBiomens, 2011) in order to characterize an active

microvalve being developed by the group.

6.1 Characterization of an active microvalve

for glaucoma

The aim of this work is the characterization and simulation of a preliminary de-

sign of a new Glaucoma Drainage Device (GDD) for the treatment of glaucoma.

This device is activated by means of a diaphragm, which produce a change in

the hydraulic resistance, in order to achieve the desired intraocular pressure

(IOP). The device is described in the patent of Guarnieri (2007) and the entire

characterization work can be found in the work of Sassetti et al. (2011).

97
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In Figure (6.1) a schematic diagram and the components that comprise

the active valve are shown. The regulator was designed to control the IOP by

varying its resistance to the flow by means of the deflection of the diaphragm.

The regulator is conceptually a normally closed valve, with a small leakage

flow. The hydraulic resistance of the regulator has a passive component due to

Figure 6.1: Schematic diagram of an active valve for glaucoma treatment.

the effects of fluid pressure on the diaphragm and an active component due to

the change in the geometry, the deformation of the diaphragm, decreasing the

hydraulic resistance between the input and output channels. In Figure (6.2) a

cross section of the geometry of the regulator is shown and the channels (inlet

and outlet) are connected by a deformable chamber.

For the characterization a fully coupled three-dimensional model is used.

The fluid is described by the incompressible Navier-Stokes equations, written in

an arbitrary time dependent coordinate system (ALE), which are implemented

in a PETSc-FEM module. The equations to be solved are, Eq.(6.1) which

express the conservation of mass for incompressible fluids and Eq.(6.2) the

conservation of momentum.

∇ ·u = 0, (6.1)

ρ
∂u

∂t
+ ρ[(u− v∗) · ∇]u = ∇ ·σ (6.2)

where u is the fluid velocity vector, ρ the density, v∗ the velocity of the moving
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Figure 6.2: Geometry of the Regulator.

reference frame and σ stress tensor (pressure and viscous forces). Assuming

that the fluid is Newtonian its constitutive equation is given by

σ = τ − pI with τ = µ[∇u + (∇u)T], (6.3)

where µ the dynamic viscosity and p is the fluid pressure. In order to close the

flow equations a set of boundary conditions are imposed

σ ·n = t̄ on ΓN,

u = ū on ΓD,
(6.4)

where ΓN is a Neummann condition in the form of prescribed surface forces

(traction) and ΓD is a Dirichlet condition where the velocity is imposed. For

the structure a constitutive linear elastic solid assuming large displacements

and rotations is adopted. The description can be viewed in Section §2.2. The

actuator has a thickness of 30 [µm] and is composed mainly of a conjugated

polymer electrochemically deposited on a thin film conductor. The rigidity and

the Poisson’s ratio of the diaphragm are 450 [MPa] and 0.3 respectively.

This methodology allows to simulate both active and passive valves that

have inherently three-dimensional flows. In the case of passive valves the fluid

pressure deforms the diaphragm changing the hydraulic resistance and in the

case of active valves the diaphragm deformation is prescribed as time function,
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changing the hydraulic resistance.

The PETSc-FEM code has been used previously in the resolution of problems

in microfluidics and electrokinetic flows (Kler et al., 2009, 2010). Therefore, in

order to validate the proposed coupling algorithm when solving FSI problems

in microfluidcs, the Ahmed Glaucoma Valve R©(AGV) is simulated with the

geometry and mechanical properties described in Stay et al. (2005). Only half

of the AGV geometry was simulated due to its symmetrical nature, reducing

the size of the discrete problem. The valve is discretized using a structured

mesh with 37500 linear hexahedral elements for the fluid and 15000 linear

hexahedral elements for the structure (see Figure (6.3)). The problem was

solved for several pressure drops through the valve, in order to construct a flow

rate curve.

Figure 6.3: Diagram and Structured mesh in a deformed position of the
AGV R©valve.

Then, the characterization process of the active microvalve is carried out

in two stages, first the passive resistance of the microvalve is obtained. In

the second stage the active resistance of the microvalve is analyzed, i.e. when

the diaphragm is actuated. In this case the diaphragm is deformed and the

hydraulic resistance is decreased due to a change in the geometry of chamber.

To carried out this simulation the microvalve was discretized using a

structured mesh with 147920 linear hexahedral elements for the fluid and

137388 linear hexahedral elements for the structure. Only half of the structure
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mesh is shown in Figure (6.4) in order to obtain a clear view of the fluid mesh.

Figure 6.4: Structured mesh of the proposed microvalve.

To determine the variation in the passive hydraulic resistance of the mi-

crovalve due to fluid pressure over the diaphragm, the flow rates were measured

for different pressure drops. The outlet pressure was set at 8 [mmHg] and the

entry ranged from 15 [mmHg] to 60 [mmHg]. For each case, the flow rate

and the maximum displacement of the diaphragm were obtained. The active

hydraulic resistance was calculated by setting a pressure drop of 7 [mmHg] in

the microvalve, varying the position of the diaphragm due to a deformation of

the conjugate polymer. The numerical problem was carried out on a Beowulf

cluster machine using 30 processors Intel R©Pentium IV R©Prescott 3GHz with

2 Gb of RAM, interconnected with two switch Gigabit Ethernet (1 Gbit/s),

3Com R©Super Stack 3.

6.2 Results

In this section the results of the validation test and the characterization of

the microvalve are shown. First, the passive hydraulic resistance is computed

and then, the active hydraulic resistance. The equivalent circuit model is

constructed using the obtained data from the previous simulations.
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6.2.1 Validation Test

The results of the validation test proposed in the previous section are presented.

Table (6.1) shows the experimental and numerical flow rate obtained by Stay

et al. (2005) and the numerical flow rate obtained by Kara and Kutlar (2010)

for AGV and they are compared with the results of PETSc-FEM. The time

to obtain a steady state solution was around 20 minutes using 30 processors

Intel R©Pentium IV R©Prescott 3GHz. In the range of normal operation of the

valve the flow rate is similar to that obtained by Stay et al. (2005) in their

experiments.

Table 6.1: Hydraulic resistance of Ahmed Glaucoma Valve R©

Experim. Stay et al. Kara et al. PetscFem
Pressure Flow rate Pressure Flow rate Pressure Flow rate Pressure Flow rate
[mmHg] [µl/min] [mmHg] [µl/min] [mmHg] [µl/min] [mmHg] [µl/min]

5.20 1.54 5.80 1.55 5.37 1.6 5.80 1.90
7.40 2.51 6.52 2.51 7.74 2.5 7.01 3.81
8.51 4.95 7.71 4.96 8.51 5 8.00 5.87
9.70 9.97 9.21 9.98 9.25 10 9.00 8.71
10.50 19.95 11.02 19.96 11.29 20 11.00 17.80
10.81 24.91 11.64 24.98 11.82 25 11.50 20.00

The results of Table(6.1) are plotted in Figure (6.5).

6.2.2 Passive hydraulic resistance

In this subsection and the following, the results of the characterization process

of the microvalve are presented. The Table(6.2) shows the flow rates for

different pressure drops and can be concluded that the designed microvalve

does not work as a passive pressure regulator, since the hydraulic resistance

does not decrease with increasing IOP. The time to obtain the equilibrium state

between pressure and elastic forces was around 25 minutes using 30 processors.

In Figure (6.8) the pressure distribution is plotted together with the velocity

field in the center plane of the microvalve for a pressure drop of 52 [mmHg].



6.2. RESULTS 103

Figure 6.5: Flow thought the AGV as function of the pressure drop.

Figure 6.6: Pressure distribution and velocity field in the center plane for a
pressure drop of 5.8 [mmHg].

6.2.3 Active hydraulic resistance

As was mentioned before, the deformation of the diaphragm reduces the

hydraulic resistance of the microvalve by increasing the area of passage between

the input and output channels.
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Figure 6.7: Pressure distribution and velocity field in the center plane for a
pressure drop of 9 [mmHg].

Table 6.2: Passive hydraulic resistance

Intraocular Pressure Displacement Flow Resistance
[mmHg] [µm] [µl/min] [mmHg ·min/µl]
15.00 0.024 0.54 13.08
22.50 0.049 1.12 12.96
30.00 0.074 1.72 12.80
37.50 0.100 2.32 12.72
45.00 0.125 2.94 12.59
52.50 0.151 3.56 12.50
60.00 0.176 4.20 12.38

To characterize the change in the hydraulic resistance, the flow rate through

the valve has been measured for a set of diaphragm deformations, fixing the

pressure drop to 7 [mmHg]. The time to reach the steady state was around 20

minutes using 30 processors.

In Table(6.3) the changes in the hydraulic resistance as a function of

actuator deformation are shown.

The hydraulic resistance of the valve varies from 13.08 [mmHg ·min/µl]

to 0.36 [mmHg ·min/µl] and the displacement of the diaphragm were in the

range of 0 [µm] to 18.90 [µm]. In Figure (6.9) the streamlines for the maximum

displacement of the diaphragm are shown and in Figure (6.10) is plotted the
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Figure 6.8: Pressure distribution and velocity field in the center plane.

Table 6.3: Active hydraulic resistance

Deformation actuator Displacement Aqueous flow Resistance
[%] [µm] [µl/min] [mmHg ·min/µl]
0.00 0.024 0.54 13.08
0.30 2.67 1.34 5.22
0.40 3.57 1.73 4.05
0.50 4.50 2.19 3.20
1.00 9.32 5.80 1.21
2.00 18.90 19.44 0.36

pressure distribution together with the velocity field in the center plane of the

microvalve.

The use of FEM allows the modeling and analysis of fluid structure inter-

action of complex 3D geometries that would be difficult to resolve otherwise,

enabling the improvement of the design before its construction, reducing time

and costs. It also facilitates the calculation of active and passive resistance

of the regulator to incorporate in the equivalent circuit model. The parallel

computation allows to compute efficiently the problem reducing dramatically

the calculus time (from day to minutes).

The coupling algorithm used in this work, in contrast with that used by Kara
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Figure 6.9: Streamlines for the maximum displacement of the diaphragm.

Figure 6.10: Pressure distribution and velocity field in the center plane.

and Kutlar (2010) takes into account the mechanical properties of the elastomer

and the geometric changes of the valve during the deformation process. The

FSI scheme allows to solve the problem using both weak or strong coupling. In

this work, the flow characteristics and the stiffness of the membrane makes it

sufficient to use a weak coupling strategy, without instability problems.



Chapter 7

Conclusion and contribution of

the work

In this chapter, the contributions of the work and the research activities carried

out during the course of this thesis are presented. Also, a brief discussion about

the performed simulations and these results are exposed. Then, the guidelines

about the future work are given in order to continue with development of a

simulation tool for a wide range of FSI problems. Finally, the publications

resulting from the research work carried out during this thesis are listed.

7.1 Conclusion of the work

In recent years, a substantial effort has been put into the numerical simulation

of multiphysics systems. In particular, the interaction of a fluid with some

movable or deformable structure has a historical and practical importance, and it

has to be considered in the design of many engineering systems. Wherewith, the

possibility to perform a numerical simulation of the whole coupled system has

a significant importance, allowing to test a wide number of design parameters

and having as result a detailed description of the fluid and the structure.

So, the general objective of this thesis was to obtain a simulation tool

by means of the development and implementation of a coupling algorithm

for existing PETSc-FEM modules. In order to couple the existing PETSc-

107
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FEM modules, a partitioned algorithm was used (see Chapter 3). With this

approach the systems to be solved are smaller and better conditioned that in the

monolithic case, but requires a careful implementation in order to avoid serious

degradation of the stability and accuracy. These drawbacks were overcome

with the use of a structural predictor, which is sufficient to ensure the numerical

stability in problems with a weak coupling between the fluid and the structure.

In cases where a strong coupling between the systems exist, several stages by

time steps must be used to ensure stability and accuracy of the solution.

The ALE formulation allows to use moving meshes in the numerical simula-

tion, but some modifications are needed, as described in section §2.1. The fluid

governing equations on an ALE reference frame have additional terms related

to the mesh velocity and position, and an extra conservation law known as

the DGCL must be satisfied in order to avoid the introduction of a numerical

error due to the mesh movement. For this particular objective a new and

original methodology for developing DGCL compliant formulations based on

an AJF was implemented (see Chapter 4) and tested (see Section §5.4). This

new methodology is not based on proposing a new temporal integration scheme

and computing a set of unknown numerical coefficients in order to achieve

compliance with the DGCL, but rather by averaging some geometrical quanti-

ties. These averages are computed exactly using the Gauss-Lobatto numerical

quadrature and must be introduced in the volume terms as well as in the

boundary terms. The AJF guarantees compliance with the DGCL criterion

in the context of the ALE solutions of general advective-diffusive systems

using classical temporal integration schemes and simplicial finite elements in

2D and 3D. The added cost is negligible and only involves a few changes at

the elemental routine level. For the stabilization terms (SUPG and SC) the

advective jacobians were transformed to ensure that the discrete formulation

is ‘‘ALE invariant’’, in others words, for a given problem the same solution is

obtained regardless of the mesh velocity.

Having implemented all the referent to the coupling algorithm and the AJF

a set of validations test for the fluid solver and the structural solver, which

are the foundations of the partitioned algorithm were performed. The fluid

solver has been widely used on several previous works, so a steady state case
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was performed. While for the structure, both static and dynamic cases with

large deformations were performed. Then, the piston problem was solved in

order to verify the issue about energy conservation in the coupling algorithm.

This very simple problem from the computational point of view allows to

understand the energy transfer trough the fluid-structure interface and to check

the enhancement of the stability when a structural predictor or a stage loop

are used.

The AJF developed in Chapter 4 was validated by solving a set of numerical

test in 2D and 3D for different kind of problems. Also, the error introduced

when the ALE formulation it is not DGCL compliant was established. Finally,

the aeroelastic process developed during the starting phase of the rocket engine

was analyzed with the developed FSI code using a weak coupling over the fluid

and structure states. A comparative analysis of the parietal pressure of multiple

TOP nozzle was carried out (§5.5.4) with the aim of validating the internal

fluid flow model. The accuracy when computing the wall pressure distribution

is very important because it is used in the aeroelasticity analysis, having a

direct impact in computed eigenfrequencies of the coupled problem. Then, a

modal analysis of the structure was performed via two different methods (FFT,

GEPV) to obtain the eigenfrequencies of characteristic modes of the nozzle.

The behavior of these modes was studied in the coupled case that represents

the normal operation condition. It was verified that the effect of the coupling

on the structure frequencies can not be neglected in this case.

In Chapter 6 a first step in the direction of using incompressible flows on FSI

problems was given. The characterization and simulation of passive and active

microvalves was performed. In the case of passive microvalves, the deformation

of a membrane, due to a pressure gradient, allows the drainage of the fluid.

Moreover, active microvalves varies the hydraulic resistance by means of a

controlled deformation of a membrane allowing to control the IOP in a desired

range. The use of FEM allows the modeling and analysis of fluid structure

interaction of complex 3D geometries that would be difficult to resolve otherwise,

enabling the improvement of the design before its construction, reducing time

and costs. It also facilitates the calculation of active and passive resistance

of the regulator. The parallel computation allows to compute efficiently the
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problem reducing dramatically the computing time (from day to minutes).

7.2 Contributions of the work

A general contribution of this thesis was obtain a simulation tool by means

of the development and implementation of a coupling algorithm for existing

PETSc-FEM modules, with the aim of carry out reliable FSI simulations with

the focus on the numerical stability of the simulations and its performance, using

for this purpose distributed memory parallel platforms. A set of numerical

simulations were performed in order to validate the numerical solvers and

the coupling algorithm. In addition, with this work the following particular

contribution were made

• The developing and implementation of a new methodology for obtain

a DGCL compliant formulations based on Averaged ALE Jacobians

Formulation (AJF), in the context of the FEM for general advective-

diffusive systems on moving domains using an Arbitrary Lagrangian

Eulerian.

• The extension of the AJF to the three point BDF, giving a wide range of

possible applications.

• The numerical simulation of the start-up process of a rocket engine using

the simulation tool developed in this work, analyzing the structural

response under thrust and lateral loads, to obtain the frequency shifting

due to the FSI coupling.

• The use of the FSI code on the simulation of a Glaucoma Drainage Device.

The simulation of FSI problems assuming incompressible viscous flows

opens a wide range of problems that can be addressed.

7.3 Future work

The algorithm and code developed, will be extended to the solution of FSI

problems involving incompressible flows (Bathe et al., 1995; Bathe and Ledezma,
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2007; Nobile, 2001; Förster et al., 2007; Degroote et al., 2008; Tezduyar et al.,

2009) in order to obtain a code that can address the solution of a wide range

of FSI problems. As in the case of compressible flows, incompressible flows

must be stabilized using techniques like, Streamline-Upwind/Petrov-Galerkin

(SUPG) for the advective terms; but in addition Pressure-Stabilizing terms like

PSPG (for Pressure Stabilizing Petrov-Galerkin) must be added for stabilization

of the incompressibility condition (Tezduyar and Sathe, 2003; Tezduyar and

Osawa, 2000).

Also, the added mass effect (Nobile, 2001; Förster et al., 2007) will be

investigated in order to obtain a stable algorithm to perform numerical FSI

simulation with incompressible flows. When using a weak coupling algorithm

the added mass effect can cause the divergence of the method and if a strong

coupling is used, several stages are needed to reach the desired convergence.

This effect becomes important in cases where the density of the fluid and

structure are comparable, regardless of the time step chosen. Therefore is

necessary to identify and understand what are the mathematical operators

involved, in order to avoid numerical instability.

These developments will be implemented in PETSc-FEM (Storti et al.,

2010) and oriented to the solution on distributed memory parallel platforms

of the Beowulf Cluster (GNU/Linux OS) class, with particular emphasis on

performance via parallel processing.

7.4 Publications

During the work on this thesis the following articles have been published or

are going to be published in the following referred journals,
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• Storti, M.; Garelli, L.; Paz, R. R.; A Finite Element Formulation

Satisfying the Discrete Geometric Conservation Law Based on Averaged
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Condition for Nonlinear Hyperbolic Problems with Unknown Riemann
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Appendix A

Resumen extendido en

castellano

A.1 Interacción Fluido-Estructura empleando

una formulación Lagrangiana Euleriana

Arbitraria

A.1.1 Motivación

La interacción de un fluido con una estructura móvil o deformable tiene una

importancia práctica y ha sido motivo de grandes estudios y análisis. A

este fenómeno se lo conoce como FSI (por su siglas en inglés Fluid Structure

Interaction) y su impacto tiene que ser considerado durante el diseño de

diferentes sistemas. En ingenieŕıa aeronáutica o aeroespacial, un fluido a alta

velocidad y presión puede causar la deformación de una estructura, como se

puede observar en la secuencias de imágenes de la Fig.(A.1), la cuales fueron

tomadas por la NASA en 2010 durante el lanzamiento del transbordador. Pero,

si las interacción es lo suficientemente intensa puede ocasionar la inestabilidad

del sistema, lo cual es conocido como ‘‘flutter’’ y puede resultar en la falla del

sistema o la estructura.

En ingenieŕıa civil, las vibraciones inducidas por el viento pueden causar

el colapso de una construcción, siendo uno de los ejemplos más estudiado el

115
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Figure A.1: Motores principales del transbordador durante el encendido (NASA
2010).

puente de Tacoma, el cual colapso con vientos de 64 [km/h], el 7 de Noviembre

de 1940.

Otra área importante donde FSI desarrolla un papel fundamental es, por

ejemplo, la ingenieŕıa biomédica, donde las pulsaciones del flujo sangúıneo

pueden ocasionar la ruptura de una aneurisma aórtica abdominal o cerebral,

implicando un gran riesgo para el paciente.

En los ejemplos mencionados anteriormente es muy dif́ıcil determinar a

priori los efectos del fluido sobre la estructura, siendo éstos detectados durante

los ensayos o utilización del sistema. Cuando se conoce previamente que la

interacción es lo suficientemente fuerte como para producir una deformación

considerable en la estructura, se llevan a cabo una serie de intensivos ensayos

experimentales. El proceso de puesta a punto de estos ensayos demanda

much́ısimo tiempo debido a que tienen que reproducir fielmente las condiciones

de vuelo, en caso del ‘‘flutter’’ de un ala o las condiciones ambientales en el

caso de puentes; y ciertos casos son imposible de reproducir en un túnel de

viento.

Es en este contexto donde la posibilidad de realizar una simulación numérica

de todo el sistema tiene una importancia significativa, permitiendo probar y

analizar una variedad de parámetros de diseño, obteniendo como resultado

una descripción detallada del fluido (p. ej., velocidades, presión, intensidad

de la turbulencia, etc.) y de la estructura (p. ej., tensiones, deformaciones,
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Figure A.2: Colapso del puente Tacoma (1940).

desplazamientos, etc.). Pero previo a realizar cualquier simulación numérica,

son necesarias las ecuaciones que gobiernan al sistema. Estas ecuaciones

describen la f́ısica subyacente y son generalmente expresadas como un conjunto

de ecuaciones diferenciales parciales. Por un lado están las ecuaciones para

el fluido, en general las ecuaciones de Navier-Stokes (NS) (Batchelor, 1967;

Acheson, 1990), y por otro lados están las ecuaciones para la estructura,

derivadas a partir de la teoŕıa de elasticidad (Timoshenko, 1970; Atkin and

Fox, 2005). En algunos casos estas ecuaciones son simplificadas empleado

modelos. (p. ej., modelos de turbulencia, funciones de pared, materiales

elástico lineales, etc. ) o hipótesis (p. ej., fluido incompresible, fluido inviscido,

pequeñas deformaciones, etc. ) con el fin de reducir la complejidad de las

ecuaciones a resolver.

Estas ecuaciones deben ser discretizadas tanto espacialmente como tem-

poralmente, utilizando métodos como Elementos Finitos (MEF), Volúmenes

Finitos (MVF) o Diferencias Finitas (MDF), y aśı obtener un sistema discreto

de ecuaciones a ser resultas en una computadora o en un ‘‘cluster’’ de computa-

doras. El tratamiento numérico de las ecuaciones de la mecánica de fluidos y

elasticidad son conocidas como, Fluido-Dinámica Computacional (CFD, por sus

siglas en inglés) y Dinámica Estructural Computacional (CSD, por sus siglas

en inglés), respectivamente. Ambas áreas han evolucionado lo suficiente en las

últimas décadas como para abordar la resolución de problemas acoplados, como

ser problemas de FSI. Pero este tipo de problemas trae nuevas complicaciones

y complejidades a ser consideradas, como ser la técnica de acoplamiento, la

interacción dinámica, las diferentes escalas de tiempo y longitud de los sub-

sistemas involucrados, lo cual hace que la resolución de problemas de FSI sea
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más dificultosa que la resolución del fluido y la estructura por separado. Con

ésto en mente y debido al desaf́ıo que representa, las contribuciones en el área

están creciendo a gran ritmo, estando en los objetivos de esta tesis contribuir a

la expansión del conocimiento en el área.

A.1.2 Alcances y objetivos

En los últimos años, se ha puesto un esfuerzo sustancial en resolver este tipo de

problema, debido a que representa en śı un gran desaf́ıo. Por lo tanto, uno de

los objetivos de esta tesis es el desarrollo e implementación de un algoritmo de

acople para módulos o códigos existentes, con el objetivo de realizar simulaciones

de FSI haciendo foco en la utilización del cálculo distribuido.

Una importante consideración a ser tenida en cuenta cuando se realizan

simulaciones de FSI, es la elección de la descripción cinemática del fluido a los

fines de permitir la presencia de contornos móviles. En general, en problemas de

flujos de fluido resueltos en mallas fijas es utilizada una descripción Euleriana.

Esto facilita el tratamiento de las ecuaciones, como aśı también la simulación

de flujos turbulentos, pero su principal desventaja es la dificultad en seguir una

interfaz entre diferentes medios (e.g., interfaz fluido-solido). Una alternativa

es emplear una descripción Lagrangiana, en la cual cada nodo de la malla sigue

a una part́ıcula material durante su movimiento. Esta descripción permite el

seguimiento de interfaces entre diferentes medios, pero su debilidad se encuentra

en el tratamiento de mallas con gran distorsión. Una alternativa es utilizar una

descripción Lagrangiana Euleriana Arbitraria (ALE, por sus siglas en inglés),

la cual puede manejar problemas con contornos móviles. La idea detrás de

la formulación ALE es la introducción de una malla que se mueva con una

velocidad independiente de la velocidad de las part́ıculas materiales.

Cuando es empleada una formulación del tipo ALE, términos adicionales

relacionados con la velocidad y posición de la malla son introducidos. Además,

el movimiento de la malla del fluido produce un cambio de volumen de los

elementos en el tiempo, lo cual agrega una ley de conservación extra a satisfacer

a los fines de no introducir errores numéricos. Esta ley es conocida como Ley de

Conservación Geométrica Discreta (DGCL, por sus siglas en inglés) y existe una
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gran cantidad de literatura dedicada al impacto que tienen el cumplimiento de

la DGCL en la estabilidad del esquema numérico y en la precisión del integrador

temporal. En estos art́ıculos se ha probado que satisfacer la ley de conservación

geométrica es una condición necesaria y suficiente para que cualquier esquema

ALE mantenga en mallas móviles las propiedades de estabilidad no-lineales

que tiene en malla. Sin embargo, en muy pocos trabajos se ha propuesto una

metodoloǵıa para obtener un esquema que cumpla con la DGCL, sin cambiar

el integrador temporal.

En esta tesis es presentada una nueva y original metodoloǵıa para desar-

rollar formulaciones que satisfagan la DGCL, basada en el promediado de los

jacobianos (Average Jacobians Formulation (AJF)) sin necesidad de cambiar

el integrador temporal. Este desarrollo en llevado a cabo en el contexto de los

elementos finitos (MEF) para sistemas generales advectivos-difusivos en mallas

móviles usando una formulación del tipo ALE. Esta metodoloǵıa es desarrollada

para integradores temporales de la familia-θ y para BDF (Backward Differential

Formula) de tres puntos, dan un amplio espectro de posibles aplicaciones.

Las implementaciones son realizadas en PETSc-FEM (Storti et al., 2010),

el cual es un código de elementos finitos, multif́ısico, de propósitos generales

, paralelo, basado en PETSc (Balay et al., 2011). Esta escrito en C++ con

programación orientada a objetos, buscando siempre la eficiencia en la progra-

mación. PETSc-FEM puede correr en paralelo usando paso de mensaje (MPI),

lo cual permite la solución de grande sistemas de ecuaciones no-lineales.

A.2 Ecuaciones de gobierno

Las ecuaciones de gobierno para la dinámica de fluidos, la estructura y el

movimiento de malla serán revisadas brevemente en las siguientes secciones.

Éstas ecuaciones son implementadas en PETSc-FEM en módulos especializados.

A.2.1 Dinámica de fluidos

El comportamiento dinámico de un flujo de fluidos esta gobernado por las

ecuaciones de Navier-Stokes, las cuales son un conjunto de leyes de conservación
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acopladas. Estas pueden ser enumeradas como

• Conservación de masa,

• Conservación de momento,

• Conservación de enerǵıa.

Otra ley adicional debe ser agregada, si el problema es resulto en un marco de

referencia móvil y se emplea una formulación del tipo ALE,

• Ley de conservación geométrica.

La ecuaciones de Navier-Stokes pueden ser simplificadas, con el objetivo

de reproducir algún tipo de flujo particular, como ejemplo, si la viscosidad es

considerada nula el fluido es tratado como inviscido. En esta tesis el flujo es

considerado compresible y viscoso, y se describe como un sistema advectivo-

difusivo general, como el fin de simplificar su interpretación.

A.2.2 Sistema Advectivo-Difusivo general

La derivación de las ecuaciones se hace para un sistema advectivo-difusivo

general (Donea, 1983; Lesoinne and Farhat, 1996; Donea and Huerta, 2003).

Estas ecuaciones pueden ser escritas en una forma compacta

∂Uj
∂t

+
(
F cjk(U)−Fdjk(U,∇U)

)
,k

= 0, in Ωt ∀t ∈ (0, T ) (A.1)

donde 1 ≤ k ≤ nd, nd es el número de dimensiones espaciales, 1 ≤ j ≤ m, m

es la dimensión del vector de estado (e.g. m = nd + 2 para flujo compresible),

t is time, ( ),k denota derivada con respecto al k-esima dimensión espacial,

U = (ρ, ρu, ρe)t ∈ IRnd es el vector de estado incógnita expresado en términos

de variables conservativas. Donde ρ , u y e representan la densidad, el vector

velocidad y la enerǵıa espećıfica total respectivamente, y F c,djk ∈ IRm×nd son

los flujos convectivos y difusivos. Condiciones de borde apropiadas, como aśı

también una condición inicial debe ser impuesta.
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Este conjunto de ecuaciones es cerrado por una ecuación de estado, siendo

para un gas politrópico

p = (γ − 1)[ρe− 1

2
ρ||u||2], (A.2a)

T = Cv[e−
1

2
ρ||u||2], (A.2b)

donde γ es la relación de calores espećıficos y Cv es el calor espećıfico a volumen

constante. En flujos viscoso, el tensor de tensiones ¯̄τ es definido para flujos

Newtonianos como

τij = 2µεij(u) + λ(∇ ·u)δij, (A.3)

donde la hipótesis de Stokes es

λ = −2

3
µ, (A.4)

y el tensor de tasa de deformación es

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (A.5)

Finalmente, se asume que la viscosidad dinámica es función de la temper-

atura y viene dada por la ley de Sutherland, la cual da para un gas ideal

µ = µ0

(
T

T0

)3/2
T0 + 110

T + 110
, (A.6)

donde µ0 es la viscosidad a una temperatura de referencia T0.

A.2.3 Dinámica estructural

A continuación se dará una introducción a las ecuaciones que gobiernan la

dinámica estructural. El objetivo de este trabajo está en abordar la resolución

de problemas de FSI, por lo cual la parte estructural será brevemente cubierta.

Explicaciones más detalladas sobre mecánica del continuo se pueden encontrar

en Marsden and Hughes (1983); Landau et al. (1986) y respecto a las aproxima-
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ciones numéricas de esos esquemas en Hughes (1987a); Zienkiewicz and Taylor

(2005).

La dinámica estructural esta gobernada por la conservación de momento

lineal, una ecuación constitutiva que relaciona las tensiones con las deforma-

ciones y algunas relaciones cinemáticas. Uno de los punto claves de esta tesis es

poder resolver una gran variedad de problemas de FSI, por lo cual es necesario

un modelos estructural que admita grandes deformaciones. Sin embargo, es

considerado un modelo elástico lineal para el material.

La estructura se describe por un vector de desplazamientos z, la velocidad

material vs = dz
dt

, la densidad del material ρs y el tensor de tensiones de Cauchy

¯̄σs, formulado en una descripción Langrangiana, con respecto al estado inicial

Ω0
s, tenemos que

ρs
d2z

dt2
−∇ · ¯̄P = ρsb in Ω0

s ∀ t ∈ (0, T ), (A.7)

donde el tensor
¯̄P = J ¯̄σs

¯̄F−T , (A.8)

es conocido como el primer tensor de Piola-Kirchhoff y

¯̄F = ¯̄I +∇z, (A.9)

es el tensor del gradiente de deformación y J es el determinante jacobiano.

Para una conveniente especificación de la ecuación constitutiva, el segundo

tensor de tensiones de Piola-Kirchhoff ¯̄S es introducido y se relaciona con el

primer tensor de tensiones de Piola-Kirchhoff por ¯̄S = ¯̄F−1 ¯̄P .

Para un material elástico-lineal isotrópico, la ecuación constitutiva puede

ser expresada como
¯̄S = λs(tr

¯̄E )̄̄I + 2µs
¯̄E , (A.10)

la cual relaciona el segundo tensor de tensiones de Piola-Kirchhoff con el tensor

de deformaciones de Green-Lagrange ¯̄E por medio de las constantes de Lamé
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λs y µs. EL tensor de deformaciones de Green-Lagrange es definido como

¯̄E =
1

2

(
∇z +∇zT +∇z · ∇zT

)
(A.11)

el cual se puede escribir como

¯̄E =
1

2

(
¯̄F T ¯̄F − ¯̄I

)
(A.12)

A.2.4 Dinámica de mallas

Como fue mencionado en las secciones previas, en problemas de FSI el fluido

interactúa con la estructura, la cual se deforma debido a las fuerzas producidas

por el fluido, produciendo un cambio en el domino de fluido. En el prob-

lema discreto un cambio en el domino debe ser seguido por un cambio en

la discretización. Esta nueva discretización puede ser realizada mediante un

remallado o a través de una reposicionamiento de los nodos.

En ésta tesis se emplea un proceso de reposicionamiento para actualizar las

coordenadas nodales de la malla del fluido, en respuesta a la deformación del

dominio, mientras se mantiene la topoloǵıa sin cambio. Existen varias técnicas

para producir el reposicionamiento y la elección dependerá de cuan importante

es la deformación. Una alternativa robusta es la aproximación elástico lineal,

donde la malla del fluido obedece la ecuación de elasticidad lineal (Stein et al.,

2004) para aśı obtener un campo de desplazamientos suave.

Las ecuaciones que describen un medio elástico bajo la hipótesis de pequeñas

deformaciones y sin fuerzas externas son

∇ · ¯̄σ = 0, (A.13a)

¯̄σ = λs(tr
¯̄E)̄̄I + 2µs

¯̄E, (A.13b)

¯̄E =
1

2

(
∇x +∇xT

)
, (A.13c)

donde x es el campo de desplazamiento y para las constantes λs y µs se puede

escribir

µs∇2x + (λs + µs)∇(∇ ·x) = 0. (A.14)
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En esta aproximación las constantes de Lamé dependen del módulo de

Young y del coeficiente de Poisson, con lo cual se puede definir un módulo

de Young variable a los fines de evitar severas deformaciones de la malla en

regiones cŕıticas. Esta alternativa con un módulo de elasticidad variable es la

más empleada en lo ejemplos realizados en la tesis.

A.3 Estrategia de acople para FSI

A continuación se describirá brevemente las estrategias usadas para realizar

el acople entre el fluido, la estructura y el movimiento de malla. Para llevar

a cabo dicha tarea, se puede elegir entre diferentes estrategias, teniendo cada

una de ellas sus pros y contras.

A.3.1 Estrategias de acople particionado y monoĺıtico

Con el incremento de problemas de multif́ısica a ser resueltos, una gran variedad

de estrategias de acople han sido propuestas, las cuales se pueden encontrar en

diferentes publicaciones y libros Bungartz et al. (2006); Ohayon and Kvamsdal

(2006); Galdi and Rannacher (2010); Bazilevs et al. (2011), pudiéndose clasificar

en los siguiente grupos (Ver Figura (A.3)).

Figure A.3: Estrategia de acople.

En el tratamiento monoĺıtico las ecuaciones que gobiernan el flujo de fluido y

los desplazamientos son resueltas simultáneamente con un solver único (Michler

et al., 2004; Idelsohn et al., 2009; Ryzhakov et al., 2010). Las ventajas de este

tratamiento son la robustez y precisión, debido a que todas las componentes se
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avanzan simultáneamente en el tiempo y aseguran la conservación de enerǵıa del

sistema, pero la solución del sistema de ecuaciones discreto requiere resolvedores

sofisticados para grandes sistemas no lineales, como se menciona en Hron and

Turek (2006). Además, es muy dif́ıcil reutilizar códigos existentes, lo cual hace

necesario el desarrollo de gran parte del código.

En el tratamiento particionado, resolvedores independientes son utilizados

para resolver cada uno de los problemas involucrados (fluido, estructura y

movimiento de malla) . El proceso de interacción es llevado a cabo mediante

del intercambio de información a través de la interfaz fluido/estructura de una

manera escalonada. El solver estructural establece la posición y velocidad de

la interfaz, mientras el solver del fluido establece la presión y las fuerzas de

corte en la interfaz. La principal ventaja del tratamiento particionado, por lo

cual se volvió tan popular, es la existencia de solver optimizados para cada

subproblema, pudiendo ser reutilizados y acoplados. Los sistemas de ecuaciones

a ser resuelto son menores y mejor condicionados, pero no todas son ventajas,

esta aproximación requiere de una cuidadosa implementación con el objetivo

de no tener una seria degradación de la estabilidad y precisión.

A.3.2 Estrategia de acoplamiento particionado

A continuación se describirá el algoritmo temporal que realiza el acople entre

la estructura y el fluido. Durante el proceso iterativo tres códigos CFD

(Computational Fluid Dynamics), CSD (Computational Structure Dynamics) y

CMD (Computational Mesh Dynamics), se están ejecutando simultáneamente.

El esquema básico de acople procede de la siguiente forma:

i) Transferir el movimiento de la interfaz del sólido al fluido.

ii) Actualizar la posición de los nodos del fluido, en base al desplazamiento de

la interfaz.

iii) Avanzar temporalmente el fluido y calcular las nuevas presiones.

iv) Convertir las nuevas presiones en carga estructural.

v) Avanzar temporalmente la estructura bajo las nuevas cargas del fluido.
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A partir de esta descripción básica se puede obtener diferentes esquemas

de acople, en función a como se realice la predicción de los desplazamientos

estructurales.

A.4 Ley de conservación geométrica

En esta sección se describe brevemente una nueva metodoloǵıa para obtener

formulaciones que cumplan con la DGCL, en el contexto de MEF para sistemas

advectivo-difusivos generales en mallas móviles. Existe una gran cantidad de

bibliograf́ıa referida al impacto de la DGCL en la estabilidad y precisión de

los integradores temporales. Sin embargo, muy pocos trabajos proponen una

metodoloǵıa para obtener esquemas que cumplan con la DGCL. En esta tesis

es presentado un esquema que cumple con la DGCL, basado en el promediado

de Jacobianos (AJF). Esta nueva metodoloǵıa es aplicada a la familia θ de

integradores temporales.

A.4.1 Formulación con jacobianos promediados (AJF)

Se dice que una formulación discreta satisface la DGCL si resuelve exactamente

un estado constante para un movimiento de malla general. Como se mencionó

anteriormente, los efectos del cumplimiento de la DGCL es un tema abierto, pero

es recomendado en diversos trabajos (Guillard and Farhat, 2000; Formaggia

and Nobile, 2004) emplear esquemas que cumplan con la DGCL, ya que esto

podŕıa mejorar la estabilidad y precisión.

Reemplazando Uj = por una constante y luego de algunas manipulaciones

se puede mostrar que la DGCL se satisface si∫
Ωn+1

w dΩ−
∫

Ωn
w dΩ = ∆t

∫
Ωn+θ

v∗k w,k dΩ. (A.15)

Una restricción similar se mantiene para los términos de contorno. Los

términos de estabilización normalmente satisfacen la DGCL automáticamente,

ya que involucran derivadas del vector de estados, los cuales son nulos para un

campo constante.
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Notar que en la ecuación previa la igualdad se mantiene si el término derecho

es evaluado como una integral en vez de ser evaluado en tn+θ, p. ej. siempre

se cumple que∫
Ωn+1

w dΩ−
∫

Ωn
w dΩ =

∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt. (A.16)

Transformando el integrando del término derecho al dominio de referencia

Ωξ obtenemos∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt =

∫ tn+1

tn

{∫
Ωξ
v∗k
∂w

∂ξl

∂ξl
∂xk

J dΩξ

}
dt,

=

∫
Ωξ
v∗k
∂w

∂ξl

∫ tn+1

tn

(
∂ξl
∂xk

J

)t
dt dΩξ,

=

∫
Ωξ
v∗kg

n+θ
k Jn+θ dΩξ.

=

∫
Ωn+θ

v∗kg
n+θ
k dΩ,

(A.17)

donde gk es la interpolación promediada de la función gradiente

gn+θ
k = (Jn+θ)−1Q̄

n+1/2
lk

∂w

∂ξl
,

Q̄
n+1/2
lk =

∫ tn+1

tn
Qt
lk dt,

Qt
lk =

(
J
∂ξl
∂xk

)t
.

(A.18)

El esquema propuesto es luego reemplazado en el operador correspondiente

A(w,Un+θ)

AGCL(w,Un+θ) = −
∫

Ωn+θ

[
F cjk − v∗kUj −Fdjk

]∣∣
tn+θ g

n+θ
k dΩ, (A.19)

Una modificación similar debe ser introducida en los términos de contorno

B(w,U).
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A.4.2 Evaluación de la interpolación promediada de la

función gradiente

Cada componente xk es una función lineal del tiempo dentro de cada paso de

tiempo, luego la derivada espacial (∂xk/∂ξl) también son funciones lineales y

los determinantes J son polinomios de grado nd. También, las componentes de

la transformación inversa ξ → x pueden ser determinadas desde la inversa de

la transformación directa x→ ξ como

∂ξl
∂xk

=

(
∂x

∂ξ

)−1

lk

,

J
∂ξl
∂xk

= (−1)k+l minor

(
∂x

∂ξ

)
kl

,

(A.20)

donde minor(A)ij es el determinante de la submatriz A cuando la fila i y la

columna j han sido eliminadas, quedando polinomios de orden nd − 1 .

La metodoloǵıa propuesta utiliza un esquema de integración de mayor orden

para (A.18), de manera que la DGCL se satisface para cualquier valor de θ

en cualquier dimensión. Este método puede ser fácilmente extendido a otro

integradores temporales.

Para la evaluación de gn+θ
k se podŕıa emplear el método de integración de

Gauss, pero normalmente los Jacobianos y determinantes son conocidos en

tn y tn+1 ya que son necesarios para el cálculo del término temporal, por lo

tanto seŕıa mas apropiado el método de integración de Gauss-Lobatto, el cual

involucra solo los extremos del intervalo. Este método integra exactamente

polinomios de hasta grado 2n−3 donde n es el número de puntos de integración.

gn+θ
k =


∆t

2Jn+θ

[
Qn
lk +Qn+1

lk

] ∂w
∂ξl

, in 2D,

∆t

6Jn+θ

[
Qn
lk + 4Q

n+1/2
lk +Qn+1

lk

] ∂w

∂ξl
, in 3D,

(A.21)

siendo Qt
lk definido en (A.18).
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A.5 Discusión

En esta sección se presentarán las contribuciones y actividades de investigación

llevadas a cabo durante el doctorado. Además, se realizará una breve discusión

acerca de las simulaciones realizadas y los resultados obtenidos. Finalmente

se describirán las ĺıneas a seguir en el futuro, como el objetivo de continuar

desarrollando la herramienta y para aśı poder abordar un amplio espectro de

problemas de FSI.

A.5.1 Conclusiones

En los últimos años se ha puesto un gran esfuerzo en la resolución numérica

de problemas multif́ısicos, en particular la interacción de un fluido con alguna

estructura móvil o deformable ha sido de gran importancia práctica y debe ser

considerada durante el diseño de muchos sistemas. Con lo cual, es de gran

importancia poder realizar la simulación numérica de todo el sistema acoplado,

permitiendo aśı probar una gran cantidad de parámetros de diseño y obtener

resultados detallados tanto del fluido como de la estructura.

Por lo tanto, el objetivo general de esta tesis fue generar una herramienta

de simulación numérica por medio del desarrollo e implementación de un

algoritmo de acople que reutilice códigos existentes en PETSc-FEM, con la

intensión de llevar a cabo simulaciones en el área de FSI, teniendo como foco

las estabilidad numérica y un alto desempeño de la herramienta resultante. Los

códigos existentes en PETSc-FEM fueron acoplados utilizando un algoritmo

particionado (Ver sección A.3). Con esta estrategia los sistemas a ser resueltos

son menores y mejor condicionados que en el caso monoĺıtico, pero se requiere

de una cuidadosa implementación a los fines de evitar una seria degradación

de la estabilidad y la precisión. Éstas desventajas fueron superadas con el uso

de un predictor estructural, el cual es suficiente para asegurar la estabilidad

numérica en problemas de acoplamiento débil. En aquellos casos donde exista

un acoplamiento fuerte, se pueden emplear varias etapas por paso de tiempo

para aśı asegurar la estabilidad y precisión de método.

La utilización de una formulación tipo ALE permite el movimiento de

la malla durante la simulación, pero son requeridas algunas modificaciones
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en el código existente. Debido al cambio de volumen de los elementos en

el tiempo se debe satisfacer una ley de conservación extra a los fines de no

introducir errores numéricos provenientes del movimiento de la malla. Esta

ley en conocida como la ley de conservación geométrica discreta DGCL y en

esta tesis se ha desarrollado una nueva y original metodoloǵıa para obtener

esquemas que cumplan con la DGCL sin necesidad de cambiar el integrador

temporal. Esta formulación esta basada en el promediado de los jacobianos

(AJF) (Ver sección A.4) . Esta metodoloǵıa asegura el cumplimiento de

la DGCL en formulaciones ALE para sistemas generales advectivo-difusivo

empleando integradores temporales clásicos y elementos śımplices. Los costos

adicionados debido a esta nueva metodoloǵıa son despreciables, ya que solo

involucra algunos cambios a nivel de la rutina elemental. Con respecto a los

términos de estabilización, los jacobianos advectivos fueron transformados para

asegurar que sean invariantes en formulaciones ALE y aśı obtener la misma

solución para un dado problema, sin importar la velocidad de la malla.

Habiendo implementado todo lo referente al algoritmo de acople y a la

formulación de jacobianos promediados para cumplir con la DGCL, se llevaron

a cabo una serie de validaciones y pruebas sobre los distintos resolvedores,

los cuales son la base de las simulaciones de FSI. El solver del fluido ha sido

ampliamente utilizado en diferentes trabajos, por lo cual sólo se realiza una

validación en estado estacionario. Mientras que para la estructura, se llevan a

cabo tanto pruebas estáticas como dinámicas con grandes deformaciones. Luego

fue resuelto el problema del pistón con el objetivo de verificar las cuestiones

referentes a la conservación de enerǵıa en el algoritmo de acople. Este es

un problema muy simple desde el punto de vista computacional y permite

comprender la transferencia de enerǵıa a través de la interfaz fluido/estructura.

Además permite verificar la mejora en la estabilidad numérica cuando se

emplean predictores estructurales o varias etapas por paso de tiempo.

La metodoloǵıa de AJF desarrollada en la sección A.4 fue validada mediante

la resolución de un conjunto de pruebas numéricas, tanto en 2D como en 3D

para diferentes tipos de problemas. Finalmente, el proceso desarrollado durante

la ignición de un motor cohete fue analizado empleando el código desarrollado.

Se realizó un análisis comparativo de las presiones parietales de varias toberas
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con el objetivo de validar el flujo interno. Realizar un cálculo preciso del flujo

en la tobera es muy importante ya que la distribución de presiones en la pared

tiene un impacto directo en el cómputo de las frecuencias propias del problema

acoplado.

Finalmente se dio un primer paso en la resolución de problemas de FSI con

fluidos incompresibles, llevándose a cabo la caracterización y simulación de una

microvalvula pasiva y de una activa. En el caso de la microvalvula pasiva, la

deformación de la membrana se debe a un gradiente de presión, permitiendo

aśı el drenaje del fluido. En el caso de la microvalvula activa la deformación

es controlada, a los fines de obtener una dada cáıda de presión. El uso de

técnicas de FSI permite modelar y analizar geometŕıas 3D complejas, para aśı

obtener un diseño mejorado previo a la fabricación, reduciendo costos y tiempos.

Además, al emplear el cálculo en paralelo se reducen significativamente los

tiempos de simulación, pasando de d́ıas a minutos.
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Lefrancois, E.: Numerical validation of a stability model for a flexible over-

expanded rocket nozzle. International Journal for Numerical Methods in

Fluids. 49:4, 349--369 (2005)

Lefrancois, E., Dhatt, G., Vandromme, D.: Fluid-structure interaction with

application to rocket engines. International Journal for Numerical Methods

in Fluids 30, 865--895 (1999)

Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with

moving boundaries and deformable meshes, and their impact on aeroelastic

computations. Computer Methods in Applied Mechanics and Engineering

134, 71--90 (1996)

Lohner, R., Yang, C., Cebral, J., Baum, J., Luo, H., Pelessone, D., Charman,

C.: Fluid-structure interaction using a loose coupling algorithm and adaptive

unstructured grids. AIAA paper AIAA-98-2419 (1998)

Longatte, E., Bendjeddou, Z., Souli, M.: Application of arbitrary lagrange

euler formulations to flow-induced vibration problems. Journal of Pressure

Vessel Technology 125, 411--417 (2003)

Longatte, E., Verreman, V., Souli, M.: Time marching for simulation of fluid-

structure interaction problems. Journal of Fluid & Structures 25, 95--111

(2009)

Lopez, E., Nigro, N., Storti, M., Toth, J.: A minimal element distortion strategy

for computational mesh dynamics. International Journal for Numerical

Methods in Engineering. 69:9, 1898--1929 (2007)

Ludeke, H., Calvo, J., Filimon, A.: Fluid structure interaction at the ariane-5

nozzle section by advanced turbulence models. In: Wesseling, P., Onate, E.,

Periaux, J. (eds.) European Conference on Computational Fluid Dynamics

ECCOMAS CFD 2006 (2006)



140 BIBLIOGRAPHY
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Ph.D. thesis, L’ECOLE NATIONALE DES PONTS ET CHAUSSEES (1995)

Piperno, S.: Explicit/implicit fluid/structure staggered procedures with a

structural predictor and fluid subcycling for 2d inviscid aeroelastic simulations.

International Journal for Numerical Methods in Fluids 25(10), 1207--1226

(1997)

Prodromou, P., Hillier, R.: Computation of unsteady nozzle flows. In: Pro-

ceedings of the 18th. ISSW, Sendai, Japan, Vol. II (1992)

Rao, S.: Engineering optimization. Wiley and Sons (1996)

Romanelli, G., Serioli, E.: A ”free” approach to the modern computational

aeroelasticity. Ph.D. thesis, Politecnico di Milano (2008)

Romanelli, G., Serioli, E., Mantegazza, P.: A new accurate compressible

inviscid solver for aerodynamic applications. In: 3rd OpenFOAM Workshop

by Dipartimento di Energetica, Politecnico di Milano. (2008)

Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic lagrangian
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