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UNIVERSIDAD NACIONAL DEL LITORAL

2013

Castro, Hugo Guillermo      - 2014 -



iv

Castro, Hugo Guillermo      - 2014 -



A mi esposa Vanesa.

A mis abuelas Elba y Milagros.

Castro, Hugo Guillermo      - 2014 -



Acknowledgements

During the development of this dissertation at Centro Internacional de

Métodos Computacionales en Ingenieŕıa (CIMEC) I have received help and
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Abstract

The Large Eddy Simulation (LES) method has become practically a stan-

dard approach for the resolution of the Navier-Stokes (NS) equations when

the simulation of a turbulent flow is required. This is not only due to the

high accuracy and feasibility of LES but also to the growing computational

power and affordability that have taken place in recent years.

However, there are a number of issues that are still being intensively stud-

ied: mesh generation strategies, inlet and boundary conditions, subgrid-

scale (SGS) models, among others, in order to extend the set of problems

that can be solved by LES or to reduce the computational cost involved.

This scenario is further complicated if the fluid-structure interaction (FSI)

problem is added: coupling algorithm and mesh moving strategy must be

defined for every problem.

A particular field where the Computational Fluid Dynamics (CFD) and

FSI meet is in the road vehicle aerodynamics study. Until recently (and

even at present days) it has been preferred the experimental rather than

numerical simulation of such problems due to the reliability gained by wind

tunnels. Nevertheless, this experimental tool has also shortcomings that

can be corrected and even strengths that can be improved by the use of

numerical simulation.

It is the aim of this thesis to study the applicability of LES on road vehicle

aerodynamics including inlet turbulence generation and fluid-structure in-

teraction. In order to do that, a turbulent flow over a simplified car model

known as Ahmed’s body is simulated. The results obtained in this work

lead to the conclusion that it is possible to analyze the aerodynamic prop-

erties of road vehicle models in a complementary way with experimental

and computational tools.
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Introduction

Motivation

Aerodynamics is the study of a solid body moving through the air and the interaction

between the body surface and the surrounding fluid with different relative velocities and

directions. Road vehicle aerodynamics add another source of complexity given that the

existence of the atmospheric boundary layer (ABL). The wind in the ABL generates a

turbulent flow environment, impacting on the mean velocity experienced by the moving

vehicle. Furthermore, this turbulence along with the vehicle wake unsteadiness can

affect unsteady aerodynamic forces acting on it. If the frequency of these forces matches

the natural frequency of the body, it can induce noise and vibrations which could

seriously affect the comfort of the driver. The complexity associated with time-varying

flows causes that the vast part of the investigations has been limited to the time-

averaged behaviour.

Computational Fluid Dynamics (CFD) enable us to perform studies on road vehicle

aerodynamics by means of the numerical simulation of the governing equations of the

physical system. Owing to the large spread in length and time scales included in the

problems mentioned above, it is generally required a high degree of refinement in the

finite element (or finite volume) mesh, resulting in a very large computational resource

requirement. Newer technologies and even faster and powerful (super-)computers make

now possible to solve numerically this kind of complex problems.

In the study of road vehicle aerodynamics it is often assumed that the vehicle is

rigid, i.e., its natural frequency being several times greater than the frequency of the

more energetic gusts of the flow. However, that is not the case of real vehicles on the

xv
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0. INTRODUCTION

road. They interact with the incident wind, which change of intensity and direction in

an unpredictable way and also with bumps and surface imperfections of the road. The

interaction between wind and vehicle can be numerically modeled as a fluid-structure

interaction (FSI) problem while the road imperfections as an stochastic input force in

the system.

In FSI problems, fluid and structure dynamics influence each other: the structure

deforms under the effect of the fluid forces and the fluid follows the structure displace-

ment. This interaction means not only that the fluid velocity equals the structure at

the interface, but that the domain changes as a consequence of the structure motion.

Even at present days, with huge increases in computing power, the experimental

simulation is preferred to the numerical simulation in the study of vehicle aerodynamics

and even in the analysis of fluid-structure interaction problems due to the reliability

gained by wind tunnels. Nevertheless, this experimental tool has also shortcomings

that can be corrected and even strengths that can be improved by using numerical

simulation.

The aim of this thesis is to investigate the feasibility of using a computational code

to reproduce the experimental conditions in a wind tunnel test section. This study is

focused not only on the aerodynamics of a fixed body but also on its dynamic interaction

with an incident wind flow.

The overall objective is to demonstrate that the computational codes developed in

this work can be used not to replace wind tunnel tests but as complementary tools.

This observation is based in the fact that a wind tunnel enables the measurement and

not the estimation of aerodynamic forces, provided that the physics of the fluid flow in

the wind tunnel is correct. Also, the wind tunnel has shown a notable correlation with

road tests and is a fast, cost-effective and reliable tool (Cooper, 2004). On the other

hand, CFD provides the possibility to execute the following tasks:

• to perform a detailed analysis of the problem, isolating any aspect of the body

geometry if required,

• to further understand the physics of the problem, by means of powerful visual-

ization tools,

xvi
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• to modify the test conditions in a time and cost efficient manner.

All these characteristics suggests that, if used with experimental tests complementarily,

it would accelerate the development cycle of road vehicles.

Objectives

Two general objectives in this work are pursued. First of all is to propose a synthetic

turbulence generator that can be used to provide a physically realistic velocity fluctu-

ating field for LES. Secondly is to numerically simulate the fluid-structure interaction

between the air flow and a simplified road vehicle model during an experimental test

in a wind tunnel.

These objectives must be implemented in one efficient, robust and accurate com-

putational tool that use finite element technology to solve the problem under study.

In order to do that, the PETSc-FEM code (http://www.cimec.org.ar/petscfem) is

used. This code is a general purpose, parallel, multiphysics finite element program that

has been used in many applications including analysis of petroleum refinery processes,

aerospace industry, environmental impact assessment and siderurgical processes (Storti

et al., 2002; Paz et al., 2006).

The particular objectives are:

• To review the state of the art for inlet turbulence boundary condition generation

and fluid-structure interaction analysis.

• To develop a new methodology for the generation of synthetic turbulence in order

to impose inlet boundary conditions in Large Eddy Simulation.

• To numerically simulate the wind tunnel test conditions including wind turbulence

and fluid-structure interaction.

xvii
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0. INTRODUCTION

Outline

This thesis work is organized as follows:

Chapter 1. As the computational simulations are performed using the Large Eddy

Simulation (LES) method, an analysis of this model of the Navier-Stokes equations is

made in this Chapter. Furthermore, a review of the different inlet turbulence generation

methods is performed.

Chapter 2. In this chapter a synthesized turbulence method based in previous

methodologies is developed. A detailed discussion of the method along with several

test cases are presented.

Chapter 3. This chapter deals with the basic equations to solve fluid-structure in-

teraction in incompressible flow problems. The coupling strategies for FSI problems

are explained. The finite element formulation described in Chapter 1 is extended to

account for moving fluid domains by means of the arbitrary Lagrangian-Eulerian for-

mulation. A description of the algorithm for the weak and strong coupling used in

this work is made. Finally, an example problem is presented to illustrate the coupling

between the structure, fluid and mesh problems.

Chapter 4. In this chapter the study of road vehicle aerodinamics by means of LES

is made. All the previously analyzed computational tools, i.e. turbulence synthesis and

fluid-structure interaction are applied.

Chapter 5. Here the conclusions and achievements of this work are presented.

xviii
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Chapter 1

Large Eddy Simulation of

Turbulent Flows

1.1 Introduction

Turbulence is a complex phenomenon that it is often found in many natural processes

and, as a consequence, has been the subject of study for more than a hundred years.

Nowadays, the prediction and manipulation of turbulent flows is of extreme importance

due to their implication in many technological applications that goes from transporta-

tion systems (cars, buses, aircraft and ships) to geophysical systems (weather predic-

tion, pollutant dispersion). One of the key points for the development of more accurate

design and performance of these applications is the need for suitable models of turbulent

flows.

Numerical solution of problems that involve turbulent flows can be accomplished

by different methodologies, with diverse levels of approximation, yielding more or less

detailed descriptions of the state of the flow (Piomelli and Chasnov, 1996). A first

approximation to a mathematical description of any turbulent flow can be made by

time averaging the equations of motion by means of the well-known Reynolds’ averaging

process. This results in the Reynolds-averaged Navier-Stokes equations (RANS) which

describe the evolution of the mean quantities in the flow. The effects of turbulent

fluctuations are included in the Reynolds stress tensor, which introduces additional

1
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1. LARGE EDDY SIMULATION OF TURBULENT FLOWS

unknowns to the governing equations that require to be modeled in order to close the

system. However, the most commonly used turbulence models for the RANS equations

lack generality, since the constants inherent to each model are set according to known

theoretical solutions or well-documented experiments. Thus, if such a model is used

in flows that are very different from the ones used for calibration, the constants may

have to be adjusted in order to yield accurate predictions. This lack of generality in

RANS turbulence models is related to the fact that the models must describe the eddies

behavior in a very wide range of scales. The small scales of the flow depend mainly

on the viscosity and therefore their character is more universal than the large ones,

which are influenced very strongly by the boundary conditions. These facts lead to the

conclusion that it is not possible to model the effect of large scales in the same way in

very different flows.

The most accurate method of solving turbulence in fluids is the direct numerical

simulation (DNS) of turbulence in which the domain is discretized in elements that are

small enough to resolve even the smallest scales of motion. By this method one can

obtain an accurate three-dimensional, time-dependent solution of the Navier-Stokes

equations without introducing any modeling assumptions. The DNS approach has

been used in the past years for the study of fluid flows with simple boundaries which

become turbulent and at present it is feasible only at low or moderate Reynolds numbers

(Re). These usage limitations respond to two main subjects. Firstly, it is necessary

to use highly accurate, high-order schemes (like spectral methods) to limit dispersion

and dissipation errors which tend to have problems in handling complex geometries

and general boundary conditions. Secondly, in order to resolve all scales of motion,

it is required a number of nodes N ∼ L/η, where L is the computational domain

characteristic dimension and η is the smallest scale of motion, known as Kolmogorov

length scale. Due to this ratio is proportional to Re3/4, the number of nodes required

by a DNS in three dimensions is N3 ∼ Re9/4 (Lesieur, 2008, Sec. 6.6, pp. 205-206).

The ratio of the integral time-scale of the flow to the Kolmogorov time scale is also

proportional to Re3/4, meaning that the number of time-steps required to advance the

computation a given fixed period has the same dependence on Re. Assuming that the

CPU time required by a computational code is proportional to the number of nodes

N , the cost of the simulation will depend on the number of nodes times the number of

time-steps, that is, to Re3. This means that if it is required to double the Reynolds

number the computational cost will increase by (at least) a factor of 8.
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The intermediate technique between RANS and DNS is known as large-eddy sim-

ulation (LES) method. In LES, only the large, energy-carrying structures are fully

resolved while the effect of the small scale motions is modeled. Because of the large

scale unsteady motions are represented explicitly, LES can be expected to be more

accurate and reliable than RANS models for flows in which large-scale unsteadiness

is significant, such as the flow over bluff bodies, which involves unsteady separation

and vortex shedding (Pope, 2003). LES and DNS provide a three-dimensional, time

dependent solution of the Navier-Stokes but the former can be used at much higher

Reynolds numbers than DNS. In the following sections several aspects of the theory

and application of LES will be discussed.

1.2 Incompressible Navier-Stokes Equations

A number of important phenomena in fluid mechanics are well represented by the

Navier-Stokes equations. These equations are a statement of the dynamical effect of

the externally applied forces and the internal forces of a fluid which, for the scope of

this work, it will assume to be Newtonian.

Let’s consider a bounded flow region Ω ∈ Rnsd , where nsd is the number of space

dimensions, and a temporal domain (0, t+]. The boundary Γ = ∂Ω is assumed to be

Lipschitz continuous (a closed and sufficiently regular surface). Thus, the incompress-

ible version of these equations is

ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · σ − ρg = 0 in Ω× (0, t+] (1.1)

∇ · u = 0 in Ω× (0, t+], (1.2)

Equation (1.1) represents the conservation of momentum for Newtonian fluids of

density ρ and dynamic viscosity µ, under the action of a gravitational field of accel-

eration g. Also, σ = −pI + µ(∇u + ∇uT ) is the stress tensor due to pressure p and

viscous forces while I represents the identity tensor. Equation (1.2) expresses the mass

conservation of incompressible fluids.
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1. LARGE EDDY SIMULATION OF TURBULENT FLOWS

The boundary and initial conditions are

u = uD on ΓD

n · σ = h on ΓN ,

u(t = 0) = u0 ∀x ∈ Ω

p(t = 0) = p0 ∀x ∈ Ω,

(1.3)

where ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively, such that

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅
(1.4)

1.2.1 Finite element formulation

The incompressible Navier-Stokes equations present two important difficulties for its

solution with a finite element method (Paz, 2006). First, the character of the equation

becomes highly advective dominant when the Reynolds number increases. Stabiliza-

tion techniques, such as Streamline-upwind Petrov-Galerkin (SUPG), Galerkin/Least-

Squares (GLS), Sub-Grid Scale (SGS) or Least-Squares (LS) must be used to provide

meaningful finite element solutions at high Reynolds numbers (Donea and Huerta, 2003,

Sec. 2.4, pp. 59-70).

In addition, the incompressibility condition does not represent an evolution equa-

tion but a constraint on the velocity field which must be divergence free. In this way,

the role of the pressure variable in the momentum equation (1.1) is to adjust itself

instantaneously in order to satisfy the condition of divergence-free velocity. This is

a drawback because only some combination of interpolation spaces for velocity and

pressure can be used with the Galerkin formulation, namely those ones that satisfy the

so-called Ladyzhenskaya-Brezzi-Babuška (LBB) condition. In the formulation of Tez-

duyar et al. (1992) advection is stabilized with the well known SUPG stabilization term

(Hughes and Brooks, 1979; Brooks and Hughes, 1982), and a similar stabilization term,

called pressure-stabilizing/Petrov-Galerkin (PSPG) (Tezduyar et al., 1986) is included

in order to stabilize incompressibility. In this way, it is possible to use stable equal
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order interpolations, i.e. to use equal-order functions without generating oscillations in

the pressure field. Once these equations are discretized in space, the resulting system

of ODE’s is discretized in time with the standard trapezoidal rule (backward Euler and

Crank-Nicolson schemes are allowed to be used). The resulting non-linear system of

equations is solved iteratively at every time step.

Spatial Discretization. The spatial discretization of the equations (1.1) and (1.2)

has equal order for the pressure and velocity and is stabilized through the addition of

two operators. Advection at high Reynolds numbers is stabilized with the well known

SUPG operator, while the PSPG operator stabilizes the incompressibility condition,

which is responsible of the checkerboard pressure modes.

The computational domain Ω is divided in nel finite elements Ωe, e = 1, . . . , nel; E

is the set of these elements, and H1h the finite dimensional space defined by

H1h =
{
φh | φh ∈ C0(Ω) : φh|Ωe ∈ P 1, ∀Ωe ∈ E

}
, (1.5)

with P 1 representing first-degree polynomials. The functional spaces for the interpola-

tion and test functions are defined as

Shu = { uh | uh ∈ (H1h)nsd , uh=̇ uhD on ΓD }

V h
u = { wh | wh ∈ (H1h)nsd , wh=̇ 0 on ΓD }

Shp = { q | q ∈ H1h }.

(1.6)

where nsd is the number of space dimensions.

The SUPG-PSPG scheme is then written as follows: Find uh ∈ Shu and ph ∈ Shp
such that
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∫
Ω

wh · ρ
(∂uh
∂t

+ uh · ∇uh
)
dΩ +

∫
Ω
∇wh : σh dΩ −

∫
Ω

wh · ρg dΩ +

+

nel∑
e=1

∫
Ω
τSUPG(uh · ∇)wh ·

[
ρ
(∂uh
∂t

+ uh · ∇uh
)
−∇ · σh − ρg

]
dΩ︸ ︷︷ ︸

(SUPG term)

+

+

nel∑
e=1

∫
Ω
τPSPG

1

ρ
∇qh ·

[
ρ
(∂uh
∂t

+ uh · ∇uh
)
−∇ · σh − ρg

]
dΩ︸ ︷︷ ︸

(PSPG term)

+

+

∫
Ω
qh∇ · uh dΩ =

∫
Γh

wh · hh dΓ, ∀ wh ∈ V h
u , ∀ qh ∈ Shp ,

(1.7)

where the stabilization parameters are defined as (Tezduyar and Sathe, 2003):

τSUPG = τPSPG =

(
1

τ2
1

+
1

τ2
2

+
1

τ2
3

)− 1
2

,

τ1 =
hSUPG

2 ||uh||
,

τ2 =
∆tNS

2
,

τ3 = ρ
h2

SUPG

12 µ
.

(1.8)

Here, ∆tNS is the time step size corresponding to a time discretization employing the

midpoint rule and the characteristic element length scale along the streamline hSUPG

is computed as

hSUPG = 2 ||uh||

(
nen∑
a=1

|uh · ∇Na|

)−1

, (1.9)

being nen the number of nodes in the element and Na is the shape function associated

with node a. Note that the SUPG and the PSPG terms are defined on different func-

tional spaces. These stabilizations terms act, at the linear system level, adding nonzero

values on the diagonal entries associated with the pressure equations.
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1.2.2 Filtered Navier-Stokes equations

As was mentioned in Sec. 1.1, LES can be viewed as a hybrid approach that performs

partial simulation (large eddies) and partial modeling (small eddies). The idea is based

on the fact that the large eddies are very dependent on the geometry of the flow, they

are anisotropic and have a long lifetime, and therefore their structure will vary from

one type of flow to another. On the contrary, the small eddies produced from inertial

transfer tend to be more homogeneous and universal.

To separate the large from the small scales, LES is based on the definition of a

filtering operation: a filtered (or resolved, large scale) variable, denoted by an overbar,

defined as

f(x) =

∫
Ω
f(x′) G(x,x′)dx′ (1.10)

where G is the filter function. The filter function determines the size and structure of

the small scales. The most commonly-used filter functions are the sharp Fourier cutoff

filter, the Gaussian filter and the tophat filter (Piomelli and Chasnov, 1996).

If the filtering operation (1.10) is applied to the governing equations, one obtains

the filtered equations of motion, which are solved in large-eddy simulations. For an

incompressible flow of a Newtonian fluid, they take the following form, e.g. see Lesieur

(2008, Sec. 12.2.1, pp. 420-422):

∂ui
∂xi

= 0 (1.11)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
∂Tij
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj
(2νSij + Tij) (1.12)

where Sij is the large-scale strain-rate tensor,
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1. LARGE EDDY SIMULATION OF TURBULENT FLOWS

Sij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(1.13)

and the effect of the small scales appears through a subgrid-scale (SGS) stress term,

Tij = uiuj − uiuj (1.14)

that must be modeled. The filtered Navier-Stokes equations written above, govern the

evolution of the large, energy-carrying, scales of motion.

By analogy with what is done in the framework of RANS equations, the subgrid-

scale tensor is usually expressed in terms of eddy viscosity in the form (Lesieur, 2008,

Sec. 12.2.4, pp. 424-425)

Tij = 2νt(x, t)Sij +
1

3
Tkkδij (1.15)

then the equation (1.12) can be written as

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂P

∂xi
+

∂

∂xj

[
(ν + νt)

(∂ui
∂xj

+
∂uj
∂xi

)]
(1.16)

where

P = p− 1

3
ρTkk (1.17)

is a modified pressure (macropressure), which can be determined with the aid of the

filtered continuity equation (Lesieur, 2008, Sec. 12.2.4, pp. 424-425).

Smagorinsky’s model. The most widely used eddy-viscosity model is the one pro-

posed by Smagorinsky. In his work, an eddy viscosity was introduced in order to take

into account subgrid-scale dissipation through a Kolmogorov k−5/3 cascade. In fact,

8
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Smagorinsky’s model is an adaptation of Prandtl’s mixing-length theory to subgrid-

scale modeling. In the mixing-length theory the eddy viscosity arising in RANS equa-

tions is proportional to a turbulence characteristic length scale multiplied by a turbu-

lence characteristic velocity. Analogously, in the Smagorinsky’s model the LES eddy

viscosity is proportional to the subgrid-scale characteristic length ∆ and to a charac-

teristic subgrid-scale velocity

v = ∆|S| (1.18)

based on the second invariant of the filtered-field strain rate tensor

|S| =
√

2SijSij (1.19)

which leads to the definition of the subgrid-scale eddy viscosity

νt = (CS∆)2|S| (1.20)

Different optimized values for the Smagorinsky coefficient CS had been proposed

depending on the flow characteristics. A theoretical value of this parameter can be

derived by considering that the spectrum is a Kolmogorov spectrum,

E(k) = CKε
2/3k−5/3 (1.21)

with k ≈ 1.4 and that the filter is a sharp cutoff filter, yielding CS ≈ 0.18 (Lilly, 1967).

Lower values should be used for shear flows, 0.1 for channel flow for example (Wagner

et al., 2007).

Wall bounded flows. Near walls, boundary layers introduce dissipation in the flow,

preventing the formation of eddies. In order to account for this effect, the Smagorinsky

constant must be reduced to 0 as the boundary is approached. This can be accomplished

by the introduction of the van Driest scaling (Berselli et al., 2006, Sec. 3.3.1, p. 78):
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fν = 1− exp(−y+/A+) (1.22)

where y+ = y/yw is the nondimensional distance from the nearest wall expressed in

wall units yw = ν/u∗, where u∗ = (τw/ρ)1/2 is the local friction speed, τw is the local

wall shear stress and A+ = 25 is the van Driest constant. The van Driest near-wall

damping factor fν reduces the “turbulent” kinematic viscosity close to the solid walls

but it introduces a non-local effect in the sense that νt inside an element also depends on

the state of the fluid at the closest wall. It is a near-wall modification of the Prandtl’s

mixing length turbulence model and was found to be useful in attached flows. It is

written in terms of y+ so that in regions with significant wall friction this factor is

relevant only in a thin layer near the body skin. On the other hand, in regions where

the local friction speed uτ takes a very low o null values (usually in the separation and

reattachement regions) the influence of the damping factor fν is significant at large

distance from the body. In order to prevent this drawback, it is possible to restrict it

to act within a threshold distance, giving a modified scaling f̃ν :

f̃ν = fνH(d− y+) (1.23)

where H(d − y+) is the Heaviside function and d is a certain threshold distance from

the body surface. Finally, the “turbulent” viscosity equipped with the modified van

Driest scaling and ∆ = he being he the element size, is written as:

νt = C2
Sh

2
e f̃ν |S| (1.24)

1.2.3 Inlet turbulence generation

When turbulent flows are simulated by Large-Eddy Simulation, inflow fluctuations

are required to preserve the turbulent characteristics of the upstream flow that is not

simulated. This is an important task since LES could demand a high execution time to

obtain a fully developed turbulence if the inlet conditions are not properly prescribed,

given that the flow behavior within the domain is strongly influenced by the inflow

turbulence energy.
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In view of these facts, several methods are available for the generation of inlet tur-

bulence conditions and they follow different approaches that can be classified into two

general methodologies (Tabor and Baba-Ahmadi, 2010): precursor simulation methods

and synthesis methods. Both approaches present advantages and drawbacks and can

be implemented in many different ways.

Precursor simulation methods involve the generation of turbulence by running a pre-

computation of the simulated flow in order to generate a ‘library’ or database, before or

in concurrency with LES. Then, the generated fluctuations are introduced at the inlet

boundary of the computational domain. The relation precomputation/main-calculation

can be linked in different ways. If the domain is quite large, the computational im-

plementation through LES may become a difficult task, as it is in the case of a fully

developed flow in a pipe. A possible solution is to reintroduce the flow out of a smaller

domain into the inlet by mapping the velocity components at the nodes. These cyclic

domains methods allow to use a short section of the computational domain for the

study of fully developed flows and have been used in the Direct Numerical Simulation

of a turbulent channel flow (Kim et al., 1987) and in the LES of spatially developing

boundary layers by modification of the Spalart method (Lund et al., 1998). Another

possibility is to generate a pre-prepared library by sampling the data at specific loca-

tions of an auxiliary domain (where turbulence precomputation takes place) and storing

them for a later introduction into the LES domain as an inlet condition. In particu-

lar, Lund et al. (1998) applied their modified Spalart method, in a concurrent library

generation fashion, sampling the data as the simulation proceeded. An improvement

of this methodology has been presented by Liu and Pletcher (2006).

All the precursor methodologies can be integrated into the main domain, sampling

the turbulence in a downstream section and then mapping it back into the inlet (Baba-

Ahmadi and Tabor, 2009). Thus, precursor simulation methods set the conditions for

the LES implementation from a ‘real’ simulation of turbulence, hence, it is expected

that the velocity fluctuation field could possess many of the required statistical char-

acteristics, including energy spectrum, temporal and spatial correlation.

Another widely used methodology is the so called synthesized turbulence method.

In this approach a pseudo-random coherent field of fluctuating velocities with spatial

and time scales is superimposed on a predefined mean flow. The random perturbations

can be generated in several different ways, such as the Fourier techniques (with its

variants), the digital filter based method and the proper orthogonal decomposition
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(POD) analysis (Tabor and Baba-Ahmadi, 2010). Fourier techniques are frequently

implemented for the stochastic generation of turbulent velocities in a computationally

efficient way in order to obtain time dependent turbulent fields satisfying statistical

features. Basically, it consists of the generation of fluctuating time velocity series

with random Fourier modes which are generally obtained by a Monte Carlo simulation

with a specific target spectrum (Kondo et al., 1997; Lee et al., 1992; Kraichnan, 1970;

Smirnov et al., 2001; Huang et al., 2010). The digital filter method is a signal modeling

through the use of linear non-recursive filters which is basically an implementation

via digital filters of a Gaussian stochastic process (di Mare et al., 2006; Klein et al.,

2003). Xie and Castro (2008) proposed a modified form of this method, based on

exponential (rather than Gaussian) velocity correlation functions for the simulation of

street-scale flows. The third category is based on the use of POD to interpolate and

extrapolate experimental data onto the domain inlet and to model the temporal and

spatial characteristics of the flow (Druault et al., 2004). This is probably the least

expensive approach (computationally speaking) but with the requirement of a suitable

experimental database from hot-wire, Laser Doppler Anemometry (LDA) or Particle

Image Velocimetry (PIV) measurements (Perret et al., 2006).
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Chapter 2

Synthesized Turbulence Flow

2.1 Introduction

A well known synthetic turbulence generator that employs Fourier techniques is the

random flow generation (RFG) method proposed by Smirnov et al. (2001). Developed

on the basis of the work of Kraichnan (1970), this methodology involves scaling and or-

thogonal transformations where a transient flow field is generated in a three-dimensional

domain as a superposition of harmonic functions with random coefficients. The method

can generate an isotropic divergence-free fluctuating velocity field satisfying the Gaus-

sian’s spectral model as well as an inhomogeneous and anisotropic turbulence flow,

provided that an anisotropic velocity correlation tensor is given. Smirnov et al. (2001)

used their approach to set inlet boundary conditions to LES methods in the simulation

of turbulent fluctuations in a ship wake as well as initial boundary conditions in the

simulation of turbulent flow around a ship-hull. Another application successfully tested

by the authors was the particle dynamics modeling (Smirnov et al., 2005). It should

be noted that the RFG method has been included in the computational fluid dynamics

(CFD) software FLUENT and was called Spectral Synthesizer (Fluent Inc., 2010).

All the features described above were taken into account in the method of Huang

et al. (2010), with the advantage that the spatially correlated turbulent flow field can

satisfy any arbitrary model spectrum. This property is particularly useful in computa-

tional wind engineering applications where the von Kármán model is widely adopted as
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a target spectrum and the energy content of the inertial subrange cannot be discarded.

Another remarkable feature of this method is its highly parallelizable algorithmic im-

plementation since the generation of the fluctuating velocity series is independent for

each node in the inlet plane of the computational domain; to the point that the pro-

cedure can be done in an embarrassingly parallel way. As this methodology implies

discretizing and synthesizing procedures for the generation of the inlet turbulence the

authors called this approach as discretizing and synthesizing random flow generation

(DSRFG) method.

The results obtained by the application of the DSRFG method were compared

with those of the RFG approach in the simulation of the atmospheric boundary layer

flow over a prismatic building model (Huang et al., 2010). The authors concluded

that the DSRFG method proved to be able to enhance the accuracy of the turbulent

flow simulation and wind-induced forces on the building since a more realistic vortices

production in the inlet turbulence flow is performed. Nevertheless, only a few comments

about the statistical characteristics of the synthesized turbulence were made while there

was no discussion about time correlation.

The aim of this Chapter is to propose a synthesized turbulence methodology that

is essentially a modification of the DSRFG method. We shall focus on the derivation of

the mathematical equations used to generate fluctuating velocity series and the statis-

tical implications of its parameters. In contrast to the DSRFG method, the proposed

methodology makes possible to simulate velocity series with an energy content that

matches the target values of the physical problem with a desired degree of accuracy.

Furthermore, the inclusion of a time scale parameter in the formulation shows that a

time scale range of variation can be obtained.

The organization of this Chapter is as follows. Section §2.2 is devoted to the descrip-

tion of the basic mathematical models used for the implementation of inlet turbulence

flow conditions, such as spectra, spatial and temporal scales. A review of the DSRFG

method is presented in Section §2.3. Then, a detailed derivation of the proposed mod-

ifications is performed introducing time and spatial correlations in the mathematical

formulation of the velocity fluctuation series. The new approach is then validated in

a test case representing an inhomogeneous anisotropic turbulent flow (Section §2.4).

Finally, the simulation of a turbulent flow over a simplified model vehicle in a wind

tunnel is performed in Section §2.5 using the proposed method to generate the inlet

boundary conditions. An extensive analysis and discussion of the obtained results is
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made.

2.2 Basic mathematical models

2.2.1 Spectra

One of the characteristics of a turbulent flow is that the velocity field changes in a

random fashion in the three space directions and time. The spatial two-point velocity

correlation tensor Rij , that is essential to any statistical representation of the turbulence

behavior, is defined by

Rij(x, t) = ui(x, t)uj(x+ r, t), (2.1)

where ui is the i−th fluctuating velocity component and the over-bar indicates the

expected value. If the turbulence is homogeneous, the correlation tensor is a function

of the vector separation r only, i.e. Rij(r). The energy spectrum tensor Φij is defined

as the Fourier transform of the correlation tensor (Tennekes and Lumley, 1972, Sec.

8.1, pp. 250-251),

Φij(k) =
1

(2π)3

+∞y

−∞
exp(−ik · r)Rij(r)dr,

Rij(r) =

+∞y

−∞
exp(ik · r)Φij(k)dk,

(2.2)

where k is the wave vector. In particular, it can be seen that when |r| = 0,

Rij(0) = ui(x, t)uj(x, t) =

+∞y

−∞
Φij(k)dk, (2.3)

showing that Φij(k) represents a density function, in the wave-number space, of con-

tributions to ui(x, t)uj(x, t) ≡ uiuj . In order to establish the amount of energy (per
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unit mass of the fluid) associated with any component of the fluctuating velocity it is

necessary and sufficient to determine all components of the tensor uiuj . Thus Φij(k)

describes a distribution of energy in k-space (Batchelor, 1982) and the sum of the diag-

onal components of Φij represents the kinetic energy at a given wave-number which is

related to equation (2.1) and (2.2) considering r = 0 (Einstein summation convention

is assumed),

Rii(0) = uiui = u2
1 + u2

2 + u2
3 =

+∞y

−∞
Φii(k)dk. (2.4)

Three-dimensional Fourier transforms are suitable for functions of vector arguments

but, generally, measurements are made only with respect to one space coordinate.

In such conditions a one-dimensional spectrum function Θij(k1) is obtained (i.e., a

Fourier transform of the corresponding unidirectional velocity correlation function)

which can be derived by integrating the spectrum tensor Φij over the lateral wave vector

components. This spectrum function is generally called “longitudinal” spectrum if the

direction coincides with x1 coordinate direction or “lateral” spectrum if it corresponds

to the x2 or x3 coordinate direction. As an example, the equation for a one-dimensional

longitudinal spectrum is

Θ11(k1) =
1

2π

+∞∫
−∞

R11(r1, 0, 0) exp(−ik1r1) dr1,

=

+∞x

−∞
Φ11(k1, k2, k3) dk2 dk3.

(2.5)

If we integrate Rij(r) and Φij(k) over spherical shells of radius r = |r| and k = |k|,
respectively,

Sij(r) =
1

4πr2

{
Rij(r) dσ(r),

Ψij(k) =
{

Φij(k) dσ(k),
(2.6)

where dσ is the surface element of the shell, we obtain functions of the position vec-

tor magnitude r and the wave vector magnitude k (i.e., the wave number). In the
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equations (2.6), Sij(r) represents an average correlation tensor and Ψij(k) the energy

contribution from wave numbers between k and k + dk to the energy tensor uiuj .

Particularly, integrating Φii(k) over a spherical shell, i.e.,

E(k) =
1

2
Ψii(k) =

1

2

{
Φii(k)dσ, (2.7)

the total energy at a wave number k is obtained. That is, the integral of the energy

spectrum function E(k) is equal to the kinetic energy per unit mass of fluid:

∫ ∞
0

E(k)dk =
1

2

∫ ∞
0

[{
Φii(k)dσ

]
=

1

2

∞y

−∞
Φii(k) dk =

1

2
uiui. (2.8)

In isotropic turbulence the energy spectrum function E(k) is somewhat different

to the one-dimensional spectrum Θ11(k1), which has its maximum value at k1 = 0,

while the spherically averaged spectrum approaches to zero as k → 0 (Durbin and

Pettersson-Reif, 2001), see figure (2.1).

10 -1 10 0 10 1 10 2
10 -4

10 -3

10 -2

10 -1

10 0

k

E
(k

),
 Θ

(k
) 

1D spectrum

3D spectrum

Figure 2.1: Comparison between one-dimensional and three-dimensional von Kármán
spectra (Durbin and Pettersson-Reif, 2001).

The importance of defining a one-dimensional spectrum lies in its application to the

experimental field since it can be measured as a frequency spectrum at a fixed point

and then transformed to a spatial spectrum according to Taylor’s hypothesis (frozen

turbulence approximation).
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2. SYNTHESIZED TURBULENCE FLOW

2.2.2 Integral length scale

Integral scales of turbulence can be considered as measures of the average size of the

eddies present in the turbulent flow. For an isotropic and homogeneous turbulent

velocity field the integral length scales based on the two point correlations along the

direction j are defined as

Lik,j(x) =

∫ ∞
0

ui(x)uk(x+ rej)

ui(x)uk(x)
dr, (2.9)

where ej is the unit vector in the j−direction. When the correlation and velocity

directions are aligned, e.g. for L11,1, a longitudinal integral scale is obtained:

L11,1 =

∫ ∞
0

u1u1(r1)

u2
1

dr1 =
1

u2
1

∫ ∞
0

R11(r1, 0, 0) dr1, (2.10)

where independence of the position x has been introduced. Interestingly, the values of

the one-dimensional spectra at zero wave number determine the integral scales of the

turbulence field, i.e., if in equation (2.5) k1 = 0 then,

Θ11(0) =
1

2π

+∞∫
−∞

R11(r1, 0, 0) dr1 =
u2

1

π
L11,1, (2.11)

having used equation (2.10) and given that R11 is an even function.

2.2.3 Time scale

The spectra defined in Section §2.2.1 are related to velocity correlations taken from

two different points in space at the same time. If a fixed point in space is considered,

a Fourier transform of the correlation function of a varying time delay defines the time

spectra ψij(ω) (Tennekes and Lumley, 1972):

Rij = ui(x, t)uj(x, t+ τ) =

∫ ∞
−∞

exp(iωτ) ψij(ω) dω,
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2.3 A modified method to synthesize inlet turbulence

where

ψij(ω) =
1

2π

∫ ∞
−∞

exp(−iωτ) Rij(τ) dτ.

In homogeneous turbulence, the value of tr(ψij(ω)) at ω = 0 defines the integral

time scale:

ψii(0) =
1

2π

∫ ∞
−∞

Rii(τ) dτ =
T

π
uiui, (2.12)

where T is the Eulerian integral time scale.

2.3 A modified method to synthesize inlet turbulence

Huang et al. (2010) proposed a turbulence synthesis method called “discretizing and

synthesizing random flow generation” (DSRFG) for the implementation of inlet turbu-

lence conditions to perform LES. This method proved to have several advantages with

respect to its predecessor, the random flow generation (RFG) by Smirnov et al. (2001).

Nevertheless, a re-analysis of the DSRFG equations demonstrates that further improve-

ments can be made. According to this, a brief description of the DSRFG method is

performed in this section along with the introduction of the proposed modifications.

For a more detailed discussion about the RFG and DSRFG methods, the reader is

encouraged to refer to the original articles (Smirnov et al., 2001; Huang et al., 2010).

Following the DSRFG method, a homogeneous and isotropic turbulent flow velocity

field u(x, t) can be synthesized as follows:

ui(x, t) =
M∑
m=1

N∑
n=1

[
pm,ni cos(k̃m,nj x̃j + ωm,nt) + qm,ni sin(k̃m,nj x̃j + ωm,nt)

]
, (2.13)

where
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2. SYNTHESIZED TURBULENCE FLOW

pm,n =
ζ × km,n

|ζ × km,n|

√
a

4E(km)

N
, (2.14)

qm,n =
ξ × km,n

|ξ × km,n|

√
(1− a)

4E(km)

N
, (2.15)

x̃ =
x

Ls
, (2.16)

k̃
m,n

=
km,n

k0
, (2.17)

with ωm,n ∈ N(0, 2πfm), fm = kmUavg, a is a random number uniformly distributed

between 0 and 1, ζ and ξ are the vector form of ζni and ξni , which are random numbers

selected independently from N(0, 1). Here, N(µ, σ) represents a normal distribution

with mean µ and standard deviation σ. In equations (2.16) and (2.17) Ls is a scale

factor related to the length scale of turbulence and k0 is the lowest wavenumber of the

discrete spectrum.

The factors pm,ni and qm,ni define the distribution of the three dimensional energy

spectrum E(km) in each of the spatial coordinate axes which in turn are functions of

the space wave number km,n (|km,n| = km) and normal random vectors ζ and ξ. When

dealing with homogeneous and isotropic turbulence, the distribution of km,n is isotropic

on the surface of a sphere and consequently the energy is uniformly distributed in space.

In such conditions it is evident that the same spectrum will be obtained in the three

principal directions but in the case of inhomogeneous and anisotropic turbulence the

distribution of km,n must change according to the conditions of inhomogeneity and

anisotropy.

To achieve this behavior, pm,ni and qm,ni must be aligned with the energy spectrum

along a principal direction and, then, the distribution of km,n can be remapped on the

surface of the sphere. To summarize, the method is implemented using equation (2.13)

and
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2.3 A modified method to synthesize inlet turbulence

pm,ni = sign(rm,ni )

√
4

N
Ei(km)

(rm,ni )2

1 + (rm,ni )2
, (2.18)

qm,ni = sign(rm,ni )

√
4

N
Ei(km)

1

1 + (rm,ni )2
, (2.19)

km,n · pm,n = 0, (2.20)

km,n · qm,n = 0, (2.21)

|km,n| = km, (2.22)

where rm,ni is a random number, independently selected from a three dimensional Nor-

mal distribution with zero mean (µr = 0) and rms value of one (σr = 1).

In the following, we made some considerations about the statistical implications of

the DSRFG method with the aim to expose the concepts behind the modifications that

are to be introduced later. The mean square value of a random function f(t) is defined

as (Bendat and Piersol, 1967):

f2
rms(t) = lim

T→∞

1

T

∫ T

0
f2(t) dt (2.23)

and regarding equation (2.13), we have in each direction i = 1, 2, 3:

u2
rms,i(x, t) = lim

T→∞

1

T

∫ T

0

{ M∑
m=1

N∑
n=1

[pm,ni cos(k̃m,nj x̃j + ωm,nt)+

qm,ni sin(k̃m,nj x̃j + ωm,nt)]
}2
dt.

(2.24)

Defining,

αm,n = pm,ni cos(k̃m,nj x̃j + ωm,nt)

ϕm,n = qm,ni sin(k̃m,nj x̃j + ωm,nt),
(2.25)
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2. SYNTHESIZED TURBULENCE FLOW

and noting that

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2

=
( M∑
m=1

N∑
n=1

αm,n +

M∑
m=1

N∑
n=1

ϕm,n

)2

=
( M∑
m=1

N∑
n=1

αm,n

)2
+ 2

M∑
m=1

N∑
n=1

M∑
r=1

N∑
s=1

αm,nϕr,s+

+
( M∑
m=1

N∑
n=1

ϕm,n

)2
,

(2.26)

equation (2.24) can be written as

lim
T→∞

1

T

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt = lim

T→∞

1

T

∫ T

0

( M∑
m=1

N∑
n=1

αm,n

)2
dt +

+ lim
T→∞

1

T

∫ T

0

( M∑
m=1

N∑
n=1

ϕm,n

)2
dt,

(2.27)

where the following integration result was used:

lim
T→∞

1

T

∫ T

0
αm,nϕr,s dt

= pm,ni qr,si lim
T→∞

1

T

∫ T

0
cos(k̃m,nj x̃j + ωm,nt) sin(k̃r,sj x̃j + ωr,st) dt

= pm,ni qr,si lim
T→∞

1

2T (ωr,s + ωm,n)

{
− cos

[
(k̃r,sj + k̃m,nj )x̃j + (ωr,s + ωm,n)t

]
−

− cos
[
(k̃r,sj − k̃

m,n
j )x̃j + (ωr,s − ωm,n)t

]}T
0

= 0.

(2.28)

Furthermore, equation (2.27) can be rewritten as
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2.3 A modified method to synthesize inlet turbulence

lim
T→∞

1

T

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt

= lim
T→∞

1

T

∫ T

0

( M∑
m=1

N∑
n=1

α2
m,n +

M∑
m=1

N∑
n=1

M∑
r=1

N∑
s=1

m6=r,n6=s

αm,nαr,s

)
dt+

+ lim
T→∞

1

T

∫ T

0

( M∑
m=1

N∑
n=1

ϕ2
m,n +

M∑
m=1

N∑
n=1

M∑
r=1

N∑
s=1

m6=r,n6=s

ϕm,nϕr,s

)
dt

= lim
T→∞

1

T

M∑
m=1

N∑
n=1

∫ T

0
α2
m,ndt+ lim

T→∞

1

T

M∑
m=1

N∑
n=1

∫ T

0
ϕ2
m,ndt,

(2.29)

where the terms

lim
T→∞

1

T

∫ T

0

M∑
m=1

N∑
n=1

M∑
r=1

N∑
s=1

m6=r,n6=s

αm,nαr,s dt,

lim
T→∞

1

T

∫ T

0

M∑
m=1

N∑
n=1

M∑
r=1

N∑
s=1

m6=r,n6=s

ϕm,nϕr,s dt,

(2.30)

vanish as T → ∞. Then, using the result of equation (2.29) and by virtue of equa-

tions (2.24) and (2.25):

u2
rms,i(x, t) = lim

T→∞

1

T

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt

= lim
T→∞

1

T

M∑
m=1

N∑
n=1

[pm,ni ]2
∫ T

0
[cos(k̃m,nj x̃j + ωm,nt)]

2dt+

+ lim
T→∞

1

T

M∑
m=1

N∑
n=1

[qm,ni ]2
∫ T

0
[sin(k̃m,nj x̃j + ωm,nt)]

2dt

=
1

2

M∑
m=1

N∑
n=1

[pm,ni ]2 +
1

2

M∑
m=1

N∑
n=1

[qm,ni ]2.

(2.31)
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2. SYNTHESIZED TURBULENCE FLOW

Now, by summing both sides of the equation (2.31) for i = 1, 2, 3:

3∑
i=1

u2
rms,i(x, t) =

1

2

M∑
m=1

N∑
n=1

3∑
i=1

[pm,ni ]2 +
1

2

M∑
m=1

N∑
n=1

3∑
i=1

[qm,ni ]2, (2.32)

or in a more compact form (using the Einstein summation convention):

uiui =
1

2

M∑
m=1

N∑
n=1

pm,ni pm,ni +
1

2

M∑
m=1

N∑
n=1

qm,ni qm,ni

= 2

∫ ∞
0

E(k)dk ≈ 2

M∑
m=1

E(km)∆km,

(2.33)

where the result of equation (2.8) was used. Now, according to the definition of pm,ni

and qm,ni , if they are replaced by the equations (2.18) and (2.19) in equation (2.33), it

can be seen that

uiui =
1

2

M∑
m=1

N∑
n=1

3∑
i=1

[ 4

N
Ei(km)

(rm,ni )2

1 + (rm,ni )2
+

4

N
Ei(km)

1

1 + (rm,ni )2

]
=

2

N

M∑
m=1

N∑
n=1

E(km) = 2
M∑
m=1

E(km),

(2.34)

which leads to an expression with different units. Furthermore, as E(km) is a positive

quantity for any km value, the resultant kinetic energy has a strong dependence on the

number of points M considered to discretize the target spectrum.

2.3.1 Time and spatial correlation

The time autocorrelation function gives information about how correlated is the signal

at two different times in a same point of the space and its connection to the time
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spectra was pointed out in section §2.2.3. Following equations (2.13) and (2.23) the

autocorrelation function can be computed as

ui(x, t)ui(x, t+ τ) = lim
T→∞

1

T

∫ T

0
ui(x, t)ui(x, t+ τ)dt

= lim
T→∞

1

T

∫ T

0

M∑
m=1

N∑
n=1

[
pm,ni cos(k̃m,nj x̃j + ωm,nt)+

+ qm,ni sin(k̃m,nj x̃j + ωm,nt)
] M∑
m=1

N∑
n=1

[
pm,ni cos(k̃m,nj x̃j+

+ ωm,n(t+ τ)) + qm,ni sin(k̃m,nj x̃j + ωm,n(t+ τ))
]
dt,

(2.35)

then, after some mathematical manipulation using equations (2.18) and (2.19),

ui(x, t)ui(x, t+ τ) =
M∑
m=1

N∑
n=1

[
(pm,ni )2 cos(τωm,n)

2
+ pm,ni qm,ni

sin(τωm,n)

2

− pm,ni qm,ni

sin(τωm,n)

2
+ (qm,ni )2 cos(τωm,n)

2

]
=

M∑
m=1

N∑
n=1

2

N
Ei(km) cos(τωm,n).

(2.36)

Note that, if τ = 0 then equation (2.36) gives back the equation (2.31). Likewise, an

expression for the spatial correlation can be obtained in an analogous way:

ui(x, t)ui(x
′, t) =

M∑
m=1

N∑
n=1

(pm,ni )2
cos[k̃m,nj (x̃′j − x̃j)]

2
+ (qm,ni )2

cos[k̃m,nj (x̃′j − x̃j)]
2

=

M∑
m=1

N∑
n=1

2

N
Ei(km) cos

[
k̃m,nj

(x′j − xj)
Ls

]
(2.37)

Again, equations (2.36) and (2.37) do not present the same units that equation (2.33).
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Furthermore, it can be seen that while in equation (2.37) a scaling length parameter

Ls (that provides a way to obtain the required spatial correlation in the generated flow

field) exists, there is not an analogous parameter in equation (2.36).

2.3.2 Proposed methodology

In the light of the analysis above, there are proposed some modifications to the equa-

tions of the DSRFG method. Firstly, the Fourier series in equation (2.13) will be

written as:

ui(x, t) =

M∑
m=1

N∑
n=1

[
pm,ni cos

(
k̃m,nj x̃j + ωm,n

t

τ0

)
+ qm,ni sin

(
k̃m,nj x̃j + ωm,n

t

τ0

)]
.

(2.38)

The inclusion of a parameter that modifies the time t is based on the work of Smirnov

et al. (2001) and Batten et al. (2004) although with a different physical meaning:

here, τ0 is not the turbulence time scale but a dimensionless parameter introduced

in equation (2.38) to allow some “control” over the time correlation of the generated

velocity series.

As it was previously shown by equation (2.33), the turbulent flow energy is related

to the three dimensional energy spectrum E(km) and the factors pm,ni and qm,ni . As

stated by Huang et al. (2010), these factors align the energy spectrum according to

the anisotropy conditions of the turbulence, providing a synthesized velocity series that

must satisfy the mean square values on each spatial direction. Starting from these

considerations and noticing that from equation (2.34) the resultant kinetic energy has

a strong dependence on the number of points M considered to discretize the target

spectrum, it is required an alternative analysis to ensure that the synthetic turbu-

lence intensity can represents adequately the flow to be simulated. In this thesis it is

performed a simple “decoupling” procedure over equation (2.33), using the following

relationship:

3∑
i=1

u2
rms,i = 2

M∑
m=1

E(km)∆km = 2

M∑
m=1

3∑
i=1

ciEi(km)∆km. (2.39)
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This equation implies that the three-dimensional energy spectrum E(k) is a weighted

sum of modified one-dimensional energy spectra aligned with the three principal direc-

tions. Some discussion about the consequences of this representation will be given in

Section §2.4.

In equation (2.39) ci is a function value that depends on the form of the spectrum

in order to satisfy the condition

u2
rms,i = 2ci

∫ ∞
0

Ei(k) dk, (2.40)

i.e., in each direction the variance of the simulated velocity series must satisfy the

equation (2.40). Then,

3∑
i=1

u2
rms,i = 2

3∑
i=1

∫ ∞
0

ciEi(k) dk = 2

∫ ∞
0

E(k) dk. (2.41)

Thereby, for each direction i it is obtained a modified version of the equations (2.18)

and (2.19):

pm,ni = sign(rm,ni )

√
4ci
N
Ei(km)∆km

(rm,ni )2

1 + (rm,ni )2
, (2.42)

qm,ni = sign(rm,ni )

√
4ci
N
Ei(km)∆km

1

1 + (rm,ni )2
. (2.43)

Furthermore, equation (2.36) is written as

ui(x, t)ui(x, t+ τ) =
2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
( τ
τ0
ωm,n

)
, (2.44)

while equation (2.37) changes to
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ui(x, t)ui(x
′, t) =

2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
[
k̃m,nj

(x′j − xj)
Ls

]
. (2.45)

As in the DSRFG method, the spatial scaling parameter Ls is computed as

Ls = θ1

√
L2
u + L2

v + L2
w, (2.46)

where θ1 varies between 1 and 2, while the dimensionless time-correlation parameter

τ0 is a scalar quantity which is further analyzed in the next section. Since this new

methodology is based on the DSRFG approach, it is called modified discretizing and

synthesizing random flow generation (MDSRFG).

2.4 Validation of the procedure

The first test performed is the simulation of an inhomogeneous anisotropic turbulent

flow field. This example was proposed by Huang et al. (2010). The spectra of the three

principal velocity components are described by the von Kármán models:

Su(f) =
4(IuUavg)2(Lu/Uavg)

[1 + 70.8(fLu/Uavg)2]5/6
, (2.47)

Sv(f) =
4(IvUavg)2(Lv/Uavg)[1 + 188.4 (2fLv/Uavg)2]

[1 + 70.8 (2fLv/Uavg)2]11/6
, (2.48)

Sw(f) =
4(IwUavg)2(Lw/Uavg)[1 + 188.4 (2fLw/Uavg)2]

[1 + 70.8 (2fLw/Uavg)2]11/6
. (2.49)

The turbulence intensity values are Iu = 8%, Iv = 16% and Iw = 24%, while

the turbulence integral length scales are Lu = 0.6 m, Lv = 0.3 m and Lw = 0.1

m. Firstly, the ci values in equations (2.42) and (2.43) must be obtained using the

relationship (2.40), that is
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u2
rms,1 = (IuUavg)2 = 2c1

∫ ∞
0

Su(k)dk

≈ 2c1 0.2377 β
(1

3
,
1

2

)
I2
uUavg ⇒ c1 =

Uavg

2
,

(2.50)

where β(, ) is the Beta function (Abramowitz and I., 1970). In the same way, c2 and c3

are

u2
rms,2 = (IvUavg)2 = 2c2

∫ ∞
0

Sv(k)dk

≈ 2c2

[
0.1189 β

(1

2
,
4

3

)
+ 0.3163 β

(1

3
,
3

2

)]
I2
vUavg

⇒ c2 = c3 ≈
Uavg

2
.

(2.51)

Figure 2.2: Spectra of the velocity series simulated by the MDSRFG vs target spectra.

As can be observed in figure (2.2), the spectra of the simulated series fit well with

the target spectra in the three principal directions; indicating that the anisotropy of the

spectra is well represented by the proposed method. The rms value of each simulated
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fluctuating velocity component (obtained from a sample of 10 velocity simulations) is

also compared to the corresponding target values. As shown in table (2.1), the rms

values of the fluctuating velocities simulated by the MDSRFG approach are in better

agreement with the target values than those obtained using the scaling and orthogonal

transformation or the aligning and remapping techniques (Huang et al., 2010).

σu σv σw
Scaling and transformation 0.9968 2.44 2.9956
Aligning and remapping 0.95 1.9987 3.08
MDSRFG approach 1.0527 2.1850 3.1123

target 1.12 2.24 3.36

Table 2.1: rms values (m/s) of the simulated velocities by different techniques.

When modeling the spatial correlation between same fluctuating velocity compo-

nents in two different points i and j, a spatial correlation matrix needs to be computed.

This target function is built for the u-component, for instance, from the spectra and

coherence functions between nodes i and j as

Sci,j =
M∑
m=1

√
Sui(fm)Suj(fm) γyu(fm), (2.52)

where

γyu(fm) = exp
(−Cyu|yi − yj |fm

Uavg

)
, (2.53)

is the coherence function of the u fluctuating velocity component in the y−direction and

Cyu is the decay coefficient (usually taken in the range 10-12). In figures (2.3) to (2.5) the

spatial correlation for the u, v and w-components of the velocity fluctuations obtained

by the expression (2.45) is compared to the correlations computed using equation (2.52)

for different values of Ls.
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Figure 2.3: Non-dimensional spatial correlation of the u fluctuating velocity component.
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Figure 2.4: Non-dimensional spatial correlation of the v fluctuating velocity component.

Time correlation is also computed for each velocity component, e.g. for the u-

component:

R(m δτ) =
1

M −m

M−m∑
j=0

u(j δτ) u[(j +m) δτ ], (2.54)

here m is an integer such that τm = m δτ , with 0 ≤ m < M , δτ is the time step

size and M is the length of the vector τm. Samples of temporal correlations from the

MDSRFG and the DSRFG methods are shown in figures (2.6) to (2.8) for each velocity
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Figure 2.5: Non-dimensional spatial correlation of the w fluctuating velocity component.

component. Also, they are compared to the autocorrelation function of a random

stationary process:

Ri(τ) = e−|τ |/Ti , (2.55)

with time scales Ti (i = u, v, w) computed as

Ti =

∫ ∞
0

Ri(τ)dτ ≡
M0∑
j=0

Ri(j δτ) δτ, (2.56)

where M0 < M . Low frequency fluctuations cause oscillations on the time correlation

around the zero value as the time lag tends to infinite. Consequently, if equation (2.56)

is approximated without an adequate upper limit of the sum, it will fail to estimate the

scale (Thacker et al., 2010). In this thesis the time scale is computed by setting M0 to

the first τ -axis crossing value, see figures (2.6) to (2.8).
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In order to analyze the influence of the time correlation parameter τ0 on the time

scales in the MDSRFG method, a parametric study is performed and the results are

shown in figure (2.9) for each fluctuating velocity component. In the original test

of Huang et al. (2010) no time scale value was provided, whereby in this work it is

estimated from Taylor’s hypothesis: Ti = Li/Uavg (i = u, v, w). These values are

compared with those obtained by the MDSRFG and DSRFG methods, see table (2.2).

Tu Tv Tw
DSRFG approach 0.034± 0.028 0.022± 0.009 0.010± 0.002
MDSRFG approach 0.043± 0.021 0.023± 0.014 0.011± 0.002

target 0.043 0.021 0.007

Table 2.2: Time scale statistics comparison (s).
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Figure 2.9: Time scale statistics of the fluctuating velocity components as a function of
τ0 obtained by the MDSRFG method.

The results in figure (2.9) and table (2.2) correspond to the mean and standard

deviation values of the time scale over a sample of 70 velocity series. The sample

size is chosen as statistically representative of the velocity record. It is important to

highlight here the possibility to slightly modify the time scale with different τ0 values

in the MDSRFG method whereas the DSRFG method is limitated to the three values

shown in table (2.2) for this particular case. Note that although the target time scales,

estimated by the Taylor’s hypothesis, are in accordance with those obtained by the
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DSRFG method, the application of the MDSRFG approach leads to a wider range of

possible values by changing τ0, see figure (2.9).

The anisotropic turbulence conditions at the inlet plane can be obtained by per-

forming a previous RANS simulation or by experimental measurements. The two input

parameters, Ls and τ0, must be selected in order to reproduce the statistical properties

of the flow under consideration. In this sense, the parameter θ1 in equation (2.46)

varies between 1 and 2 (Huang et al., 2010) and τ0 between 0.75 and 1.5, this later

range of values being derived from the parametric analysis shown in figure (2.9). Within

this range one can select the time scale values that better aproximate the target ones

without compromising other physical features (i.e., without loosing the adjustment of

the velocity spectra, spatial correlation and rms values of the turbulent flow being

simulated).

To validate the relationship proposed by equation (2.39) the influence of the fre-

quency interval size ∆f over the rms values of the time series is analyzed. What it is

expected is that the synthetic turbulence generation provides the correct rms values as

∆f → 0, that is, as the discretization of the spectrum becomes finer the energy content

in each frequency should be included in the time series generation. Table (2.3) shows

the results of this analysis, where it can be seen that the method proposed in this work

seems to converge to the target values as ∆f becomes smaller while in the case of the

DSRFG method the values do not converge at all.

∆f σu σv σw
DSRFG MDSRFG DSRFG MDSRFG DSRFG MDSRFG

10 0.49 0.76 1.27 1.84 2.05 2.95
5 0.83 0.87 1.93 2.07 2.94 3.01
2 1.47 0.98 3.15 2.11 4.69 3.03
1 2.17 1.04 4.47 2.11 6.75 3.11

target 1.12 2.24 3.36

Table 2.3: Comparison of the standard deviation values of the synthesized velocity com-
ponents by the two methodologies.

As it is clearly depicted by equation (2.38), the computational cost is identical to

that of the DSRFG method. Thus, for each node at the inlet section the cost at each

time step is O(MN); where M is the number of points in which the target spectrum is

discretized and N the number of samples for each wave number km. Furthermore, the
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computation of the fluctuating velocity components in equation (2.38) is independent

of the LES process, i.e., the turbulence synthesis for some number of time steps (or the

entire simulation process) can be done prior to the LES computations.

As a final observation, it must be noted that the proposed approach, as any syn-

thesized turbulence generation method, must be used as a turbulence initializer, i.e.,

a perturbation generator that “triggers” the transition to a fully developed turbulence

state by LES (Davidson, 2007). In this regard, it must be said that independently of

the selected Ls value, the resolved scales are in concordance with the mesh (filter) size

which is inherent to the LES conception.

2.5 Application of the modified DSRFG method in LES

It is well known that the generation of developed turbulence by LES at high Reynolds

number flows is computationally expensive and time consuming. In order to avoid

this drawbacks, the MDSRFG method can be used to setting up the turbulent inflow

conditions in LES computations. In the following sections, two examples of application

of the MDSRFG method are shown. For the sake of simplicity in the comparison

between the DSRFG and MDSRFG approaches, both parameters θ1 and τ0 are set

to 1.

2.5.1 Flow through a conical diffuser

This test case consists of a swirling boundary layer developing in a conical diffuser and

was experimentally studied by Clausen et al. (1993). The conical diffuser is placed 100

mm downstream of a rotating swirl generator of diameter D = 260 mm and discharges

into the atmosphere at x = 510 mm, see figure (2.10).

The device in charge of the swirl generation is a honeycomb positioned 500 mm

before the beginning of the expansion which rotates with a part of the pipe of 400 mm

long after it, while all other parts are locked. In the diffuser expansion, the boundary

layer separation is prevented by the swirl which is strong enough to avoid recirculation

in the core flow. The Reynolds number of the experimental test was 2.08 · 106 based
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Figure 2.10: Diffuser test case. All dimensions are in mm.

on the diameter of the inlet section D, the mean axial velocity Ux = 11.6 m/s and the

kinematic viscosity ν = 1.45 · 10−6 m2/s.

The computational domain adopted is shown in figure (2.11). A large dump is

added in order to avoid recirculations in the diffuser outflow region. A structured mesh

has been used for the computational simulation of the swirling flow which consists of

743, 925 hexahedral elements and 760, 568 nodes.

diffuser

dumper

3.5 Da) b)

c)

3 D

Figure 2.11: Diffuser test case. All dimensions are in mm.

Synthesized turbulence is imposed in all nodes at plane x = −25 mm considering

the von Kármán spectra, equations (2.47-2.49) and figure (2.12). At the dumper outlet

boundary we impose p = pref , being pref = 101, 325 Pa the reference pressure. In

figure (2.13) the comparison between the computational simulation for both, DSRFG
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and MDSRFG methods, and the ERCOFTAC measurement data (http://cfd.mace.

manchester.ac.uk/ercoftac/) is shown. Clearly, the mean velocity (streamwise and

orthoradial) and the kinetic energy boundary conditions for the MDSRFG method

match the experimental data at the inlet. A frequency step ∆f = 10 s−1 is enough for

the MDSRFG method to provide a suitable turbulent kinetic energy while this is not

the case for the DSRFG approach, as it can be seen in figure (2.13).
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Figure 2.12: Comparison of the spectra simulated by the MDSRFG with the target
spectra.

Vortex structures. Pictures of unsteady vortex structures were obtained from com-

putational simulations by means of isosurfaces of the second invariant of the velocity

gradient tensor. This is the so called Q-criterion, which can be written for an incom-

pressible flow as (Hunt et al., 1988):

Q =
1

2
(ΩijΩij − SijSij), (2.57)

where Sij is the rate-of-strain tensor and Ωij is the rate-of-rotation tensor which being
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Figure 2.13: Turbulent kinetic energy (left), mean streamwise and orthoradial velocity
profile (right) obtained by the computational simulation and experimental data Clausen
et al. (1993).

the symmetric and antisymmetric parts of the velocity gradient tensor Aij = ∂ui/∂xj

respectively, i.e.,

Sij = (Aij +Aji)/2 and Ωij = (Aij −Aji)/2. (2.58)

The physical interpretation of equation (A.14) is that the second invariant Q is

a balance between the strain rate Sij and the rotation rate Ωij which implies that

positive Q isosurfaces exhibits zones where the amount of rotation exceeds the strain.

Furthermore, Q can be expressed in a different form:

Q =
1

4

[
σ2 − 2(SijSij)

]
= −1

2

∂ui
∂xj

∂uj
∂xi

= − 1

2ρ
∇2p

(2.59)

where the connection between Q and the vorticity modulus (or enstrophy σ2 = σ2
1 +

σ2
2 + σ2

3) arises. Here, σi, i = 1, 2, 3 are the vorticity components in the three spatial

directions and ∇2p is the Laplacian of the pressure. From this equation it is possible

to prove that the Q-criterion (Q > 0) is a necessary condition for the existence of thin,

convex low pressure-tubes (Dubief and Delcayre, 2000), e.g. see the Appendix A of

this thesis for a detailed discussion about this subject. Vortex structures identified

with Q = 4000 s−2 are shown in figure (2.14). It can be noted that the instantaneous

characteristic vortex structures of this model are well captured.
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Figure 2.14: Vortex flow structures (Q = 4000 s−2) colored by pressure (N/m2). Com-
putational simulation with no synthesis (left) and with the MDSRFG method (right).

2.5.2 Ahmed body

The second test is a computational simulation of the flow around the Ahmed’s body.

In this Chapter, the generation of transient inlet flow conditions is described and its

consequences on the model (transient behaviour of forces and pressures) are discussed.

A more detailed explanation about this computational simulation along with a fluid-

structure interaction study are provided in Chapter (3).

The Ahmed body is a conceptual model of a generic car, proposed in the experi-

mental work of Ahmed et al. (1984). Though this model is composed of three simple

geometry parts: a fore body, a mid section and a rear end; the flow around it still

retains some characteristics of the flow around real road vehicles. Figure (2.15) shows

the geometry of the model for a slant angle of 35◦. All units are in millimeters.

Figure 2.15: Ahmed model.
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z [cm] u+
1 Iu σu

2.5 0.74 0.096 1.677
7.0 0.83 0.070 1.372
17.0 0.92 0.045 0.978
22.5 0.95 0.027 0.606
30.0 0.98 0.011 0.255
40.0 0.982 0.008 0.186
48.0 0.985 0.007 0.163
57.5 0.986 0.0065 0.151
62.5 0.987 0.007 0.163
70.0 0.988 0.008 0.187
75.0 0.988 0.009 0.210
88.0 0.990 0.010 0.234
102.5 0.995 0.011 0.258
119.0 1.000 0.012 0.283

Table 2.4: Parameters for the inflow boundary condition at the wind tunnel test section
(Wittwer and Möller, 2000).

Wind velocity and turbulence statistical parameters of the incident flow at the

test section are shown in table (2.4). Other parameters, like turbulence intensities

Iv = 0.02, Iw = 0.03 and integral length scales Lu = 0.3, Lv = 0.1 and Lw = 0.05 were

also adopted. The Reynolds number for the experimental test is roughly 1.70·106 based

on the length of the vehicle model L = 1.044 m, the mean velocity magnitude 23.6 m/s,

the kinematic viscosity ν = 1.45·10−6 m2/s and a constant density ρ = 1.225 kg/m3. In

order to adress the accuracy of the DSRFG and MDSRFG methods, a small frequency

interval, ∆f = 0.5 s−1, was used in both approaches.

The computational domain is a rectangular box with a cross section of 2.40 m

width (x-direction) and a height of 1.80 m (z-direction) representing a wind tunnel

section, see figure (2.16). The body was located at 2L downstream (y-direction) the

inlet section and at 3L upstream the outlet boundary to allow full development of the

flow downstream to the model, totaling an extension of 6L. No-slip boundary condition

is prescribed at ground, roof and tunnel walls, while null pressure is imposed at the

outlet wall. With these conditions the blockage ratio is about of 2.6%.

The grid was refined close to the body surface in order to account for viscous effects

at the walls and to adequately capture the changes in flow variables within the boundary

layer region. Five rows of wedge type elements, shown in detail in figure (2.16), were

generated from the surface of the vehicle model. The first wedge-layer has a thickness
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Figure 2.16: Computational domain and detail of the mesh.

hm = 4.79 · 10−3 L = 5 mm. A classical logarithmic law for velocity was imposed at

the body surface (see e.g. the work of Rodi (1997)).

Figure (2.17) shows, in the right side, the time history of the simulated fluctuating

velocity components by the MDSRFG method in a central point of the inlet section

and the instantaneous fluctuation contours on the left side. The velocities maintain the

spatial anisotropy among the three directions, as can be observed from the statistical

values. Furthermore, the rms values of the simulated velocity series are compared in

table (2.5). Clearly, for the small value of ∆f considered, the MDSRFG values almost

perfectly agrees with those of the target while in the case of the DSRFG method the

rms values exceeds the target ones.
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Figure 2.17: Inlet fluctuating velocities simulated by the MDSRFG method.

σu σv σw
DSRFG 0.4432 0.9043 1.2228
MDSRFG 0.2219 0.4411 0.6272

target 0.236 0.472 0.708

Table 2.5: rms values (m/s) of the velocity series simulated with ∆f = 0.5 s−1.

2.5.2.1 Forces acting on the body

To characterize the transient behavior of the forces acting on the model, an analysis in

the frequency domain is performed. In figure (2.18) the spectra of the forces in the z,

x and y directions are shown. It can be seen that for the x and y-directions the energy

content of the fluctuating forces obtained with the application of the DSRFG and
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MDSRFG methods are in agreement. The lift-force spectrum shows different results

for reduced frequency values higher than unity.
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Figure 2.18: Computational simulation with inlet synthesized turbulence (MDSRFG and
DSRFG) and without inlet synthesized turbulence. a) Side force spectrum (x-component
force). b) Drag force spectrum (y-component force). c) Lift force spectrum (z-component
force). d) Q = 800 s−2 isosurface colored by pressure.

Also in figure (2.18) instantaneous vortex structures identified with Q = 800 s−2 are

shown. It can be noted that these structures are in correlation with those reported

by Uruba (2010).

2.5.2.2 Unsteady velocity

The velocity unsteadiness produced by the application of the DSRFG method is rela-

tively higher than the one obtained with the MDSRFG method as a consequence of the

higher kinetic energy provided by the former approach. This is observed in the wake
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along the plane of symmetry, figure (2.19), and in the rms values of pressure coefficient

on the model back-light, see figure (2.20).

Figure 2.19: Standard deviation velocity magnitude. top: MDSRFG, bottom: MD-
SRFG.

The pressure coefficient unsteadiness is computed as

σCp =
σp

1
2 ρ U

2
avg

(2.60)

and although different levels of unsteadiness induced by both synthesized turbulence

methods are evident, the distribution of the pressure coefficient unsteadiness on the

back-light of the model presents in both cases high similarities, such as the wide region

of low fluctuating values in most parts of the vertical base and in the central region of

the slant.

Regions of high unsteadiness values on the sides of the back-light surface (near the

edge of intersection of the slant and vertical base) were detected in both cases. These
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Figure 2.20: Standard deviation of the pressure coefficient on the model back-light.
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Figure 2.21: a, b, c) Spectral density of pressure coefficients in different points on the
slant plane. d) Cross spectral density phase between two points on the back-light of the
model.

spots are consistent with the observed vortex generating regions in figure (2.18.d).
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Another region of high unsteadiness activity was found near the top edge of the back-

light slant surface in coincidence with the flow separation zone.

Furthermore, a frequency domain study of the pressure behavior was performed.

Figure (2.21) shows the non-dimensional auto-spectral density measured in points lo-

cated on the regions previously highlighted, by the simulations with the DSRFG and

MDSRFG methods. In can be seen that in the spots analyzed, higher energies are de-

tected in the range of high Strouhal numbers in the simulation with DSRFG. For the low

Strouhal numbers the energies are quite similar (except for the case in figure (2.21b)

where the energy content in the simulation with MDSRFG is higher) denoting that

both methods maintain the mean characteristics unaffected. Also, this low-Strouhal

number region (f
√
A/Uavg < 0.2, based on the square root of model frontal area) pos-

sesses the higher energy content which can be associated with the presence of shedding

phenomena.

In figure (2.21) the phase correlation between the points in the regions of vortices

production is shown. It can be seen that the phase estimate for Strouhal numbers lower

than 0.2 presents a phase shift of about 100◦ and more, indicating a nearly alternate

shedding.

2.6 Conclusions

In this Chapter, a general method for the generation of inflow synthesized turbulence

has been introduced and evaluated. The method is based on a previous turbulence

generator known as the discretizing and synthesizing random flow generation (DSRFG)

method (Huang et al., 2010). The proposed approach preserves the main characteris-

tics and advantages of the DSRFG method: it is highly parallelizable, different spectral

models can be used and it can represent either isotropic and anisotropic turbulence.

In addition, the key point of the modified DSRFG (MDSRFG) method is that it pre-

serves the statistical quantities that could be prescribed at the inlet of the domain as

the number of samples M (number of points in the spectrum) increases, through the

computation of the factors pm,ni and qm,ni by equations (2.42) and (2.43). This charac-

teristic ensures that the imposed turbulence intensity on the fluctuating velocity series

represents adequately the kinetic energy of the turbulent flow under study.
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Following previous methodologies (Smirnov et al., 2001; Batten et al., 2004), a

dimensionless time scale parameter, τ0, has been included in the formulation of the

proposed approach in order to “control” the time correlation of the generated velocity

series. In this way, the MDSRFG method can modify the time scale by varying τ0 as

it has been demonstrated in Section §2.4.

Some numerical tests show that the proposed approach is very well-suited for three-

dimensional computations using the LES approach. For the swirling turbulent flow

inside a diffuser the inlet conditions obtained matches almost exactly the experimental

measurements. Regarding to the simulation of the flow over the Ahmed body, it has

been shown that results obtained, i.e., forces, level of unsteadiness in the wake and

the back-light of the model, are very sensitive to the upstream inflow conditions and

therefore this issue must be correctly addressed by any synthesized turbulence method.
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Chapter 3

Fluid-structure interaction

Multidisciplinary and multiphysics coupled problems represent nowadays a paradigm

when studying/analyzing even more complex phenomena that appear in nature and in

new technologies. There exists a great number of problems where different physical

processes (or models) converge, interacting in a strong or weak manner (e.g., acous-

tics/noise disturbances in flexible structures, magneto-hydrodynamics devices, micro-

electro-mechanical devices, thermo-mechanical problems like continuous casting pro-

cess, fluid-structure interaction like wing flutter problem or flow-induced pipe vibra-

tions).

The numerical simulation of these kind of problems often requires to deal with strong

distortions of the continuum under consideration and at the same time allowing for a

clear definition of free surfaces and fluid-fluid, solid-solid, or fluid-structure interfaces

(Donea et al., 2004). An essential subject in these problems is the choice of a suitable

kinematical description of the continuum given that this description determines the

relationship between the deforming continuum and the mesh of finite elements. Two

classical descriptions of motion are typically used in continuum mechanics analyses:

the Lagrangian description and the Eulerian description. The technique known as the

arbitrary Lagrangian-Eulerian (ALE) description attempts to combine the advantages

of the above descriptions while minimizing their respective drawbacks. In the ALE

based finite elements formulation the mesh is chosen as a reference domain in order

to describe the kinematics of the continuum. The pure Lagrangian and pure Eulerian

formulation are particular cases of the ALE approach.
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For simple structural problems (like hinged rigid rods with one or two vibrational

d.o.f.’s) it is possible to combine into a single (simple) formulation the fluid and the

structural governing equations (Dowell et al., 1995). In those cases, a fully explicit or

fully implicit treatment of the coupled fluid/structure equations is attainable. Nev-

ertheless, for complex/large scale structural problems, the simultaneous solution of

the fluid and structure equations using a ‘monolithic’ scheme may be mathematically

unmanageable or its implementation can be a laborious task. Furthermore, the mono-

lithic coupled formulation would change significantly if different fluid and/or structure

models were considered.

An efficient alternative is to solve each sub-problem in a partitioned procedure where

time and space discretization methods could be different. Such a scheme simplifies ex-

plicit/implicit integration and it is in favor of the use of different codes specialized on

each sub-area. There exist several procedures for coupling fluid and structure solvers:

the coupling conditions and the moving interface can treated in a fully explicit or im-

plicit or in a mixed explicit/implicit manner. This approach allows a smooth transition

between “loose” and “strong” coupling, while a large system of nonlinear equations has

to be solved by using (iterative) solvers for the subsystems. Usually, this is done with

Block-Jacobi, Block-Gauss-Seidel or related relaxation methods. A detailed descrip-

tion of the ‘state of the art’ in the computational fluid/structure interaction area can

be found in the works of Piperno and Farhat (2001); Felippa et al. (2001); Park and

Felippa (2000); Dettmer and Peric (2006) and the references therein.

In this thesis, a partitioned algorithm implemented in the PETSc-FEM code is used.

A brief description of this algorithm is made in this chapter along with the definition

of the Arbitrary Lagragian-Eulerian formulation.

3.1 ALE formulation for moving meshes

The ALE approach provides a method for the solution of the equations describing fluid

flow through a moving mesh. As was stated before, it is a hybrid description, between

Lagrangian and Eulerian schemes. In the Lagrangian scheme each individual node of

the computational mesh follows the associated material particle during motion. That

is, the computational grid follows the continuum in its motion, being the grid nodes
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permanently linked to the same material points. An application ϕ is defined to relate

the material coordinates, X, to the spatial coordinates, x:

ϕ : (X, t)→ ϕ(X, t) = (x, t) (3.1)

which simply links X and x in time by the law of motion, namely

x = x(X, t) (3.2)

As can be seen, the spatial coordinates x depend on the material particle X and the

time t, while the physical time is measured by the same variable t in the material and

spatial domains. This means that for every fixed instant t, the application ϕ defines a

configuration in the spatial domain. Its gradient has the form

∂ϕ

∂(X, t)
=

(
∂x
∂X u

0T 1

)
(3.3)

where 0T is a null row vector and u the material velocity:

u(X, t) =
∂x

∂t

∣∣∣
X

(3.4)

with
∣∣∣
X

meaning “holding X fixed”. Clearly, the Jacobian of the transformation, J ,

must verify

J = det(∂x/∂X) > 0 (3.5)

in order to impose a one-to-one correspondence and to avoid change of orientation in

the reference axes, at each point X and instant t > t0. This description allows an

easy tracking of free surfaces and interfaces between different materials and are mainly

used in structural dynamics. Nevertheless, it can not follow large distortions of the

computational domain without intensive remeshing operations.
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On the other hand, in the Eulerian scheme the computational mesh is fixed and

the fluid moves with respect to the grid, enabling the simulation of large displacements

owing to the fluid motion. The physical quantities associated with the fluid particles

are evaluated while they are passing through a fixed region of space at every instant

of time. The material velocity u at a given mesh node is the velocity of the material

point coincident with this particular node at the corresponding time t. In consequence,

u is expressed with respect to the fixed mesh without any reference to the initial

configuration of the continuum and the material coordinates X:

u = u(x, t). (3.6)

This formulation is essential for the simulation of turbulent flows but is unable to deal

easily with the tracking of free surfaces and interfaces between different materials or

different media (e.g., fluid-fluid and fluid-solid interfaces). The ALE approach has been

developed in order to avoid the different shortcomings of the above descriptions. In this

scheme, the nodes of the computational mesh can move with a velocity independent of

the velocity of the material particles. Because of this freedom in moving the nodes of the

mesh, the ALE description can handle greater distortions of the continuum than would

be possible by a Lagrangian description and with more resolution than that provided

by an Eulerian scheme. This is done by the introduction of the referential coordinates

χ to identify the grid points. In figure (3.1) the material (RX), the spatial (Rx) and

the referential (Rχ) domains are shown jointly with the one-to-one transformations

relating the configurations (Donea and Huerta, 2003). The referential domain Rχ is

mapped into the material and spatial domains by Ψ and Φ, respectively.

The function Φ maps the referential domain into the spatial domain:

Φ : (χ, t)→ Φ(χ, t) = (x, t) (3.7)

being its gradient:

∂Φ

∂(χ, t)
=

(
∂x
∂χ û

0T 1

)
(3.8)
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Figure 3.1: The three different domains and one-to-one mappings (Donea and Huerta,
2003).

where û is the mesh velocity,

û =
∂x

∂t

∣∣∣
χ
. (3.9)

Regarding Ψ, as the particle motion may be expressed as ϕ(X, t) = Φ
[
Ψ−1(X, t), t

]
,

it is more straightforward to represent directly its inverse Ψ−1,

Ψ−1 : (X, t)→ Ψ−1(X, t) = (χ, t) (3.10)

and its gradient takes the form:

∂Ψ−1

∂(X, t)
=

(
∂χ
∂X w

0T 1

)
(3.11)

where w is a velocity defined as
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w =
∂χ

∂t

∣∣∣
X

(3.12)

and represents the particle velocity in the referential domain, since it measures the

time variation of the referential coordinate χ holding the material particle X fixed.

The velocities u, û and w are related in the following manner:

∂ϕ

∂(X, t)
(X, t) =

∂Φ

∂(χ, t)

(
Ψ−1(X, t)

) ∂Ψ−1

∂(X, t)
(X, t)

=
∂Φ

∂(χ, t)
(χ, t)

∂Ψ−1

∂(X, t)
(X, t)

or, by replacing each corresponding term with the equations (3.3), (3.8) and (3.11),

(
∂x
∂X u

0T 1

)
=

(
∂x
∂χ û

0T 1

)(
∂χ
∂X w

0T 1

)

⇒ u = û+
∂x

∂χ
w,

(3.13)

which may be rewritten as

c =
∂x

∂χ
w, (3.14)

where c = u− û is the relative velocity between the material particle and the mesh.

3.1.1 ALE form of the Navier-Stokes equations

With the ALE framework in mind, it is now necessary to obtain the conservation equa-

tions for mass and momentum. For the sake of convenience of presentation, the incom-

pressible Navier-Stokes equations in the Eulerian configuration presented in chapter 1

are rewritten here:
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ρ

(
∂u

∂t

∣∣∣
x

+ u · ∇u
)
−∇ · σ − ρg = 0 (3.15)

∇ · u = 0 (3.16)

To express the ALE form of the Navier-Stokes equations, one just need to replace

the material velocity u with the convective velocity c in the convective terms:

ρ

(
∂u

∂t

∣∣∣
χ

+ c · ∇u
)
−∇ · σ − ρg = 0 (3.17)

∇ · u = 0 (3.18)

and the initial and boundary conditions now are:

u = uD on ΓD

n · σ = t on ΓN ,

u(t = 0) = u0 ∀x ∈ Ω0

p(t = 0) = p0 ∀x ∈ Ω0

u = û on Γw

(3.19)

where the last condition is directly related with the ALE description, representing in

this case the assumption that the fluid adheres to the structure (no-slip condition).

Here, Γw is the boundary of the structure embedded in the fluid (interface of the fluid

and solid domains).

3.2 Partitioned simulation of fluid-structure interaction

The coupling of the fluid and structural response can be achieved numerically in dif-

ferent ways, but in all cases the conditions of displacement compatibility and traction
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equilibrium along the structure-fluid interfaces must be satisfied (Bathe and Zhang,

2004):

Displacement compatibility:

df = ds on Γw (3.20)

Stress equilibrium:

ff = fs on Γw (3.21)

where df and ds are the displacements, ff and fs are the tractions of the fluid and

the structure, respectively. A general description of these interface compatibility con-

ditions considering different meshes for the fluid and structural domains is depicted in

figure (3.2).

fluid mesh

solid mesh

Figure 3.2: Mappings of displacements and tractions on fluid-structure interfaces. The
solid arrows indicate traction mapping while the dashed ones indicate displacement map-
ping (Bathe and Zhang, 2004).

A straightforward way to satisfy the discrete version of equations (3.20) and (3.21)

is to solve the fluid and the structure problems at the same time in a unique solver,

approach usually known as monolithic. A monolithic method is typically strongly cou-

pled, meaning that the equations (3.20) and (3.21) are satisfied after time discretiza-

tion. Nevertheless, a monolithic scheme often requires a huge computational effort and

is software-wise unmanageable (Farhat et al., 1998). Alternatively, these equations can
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be solved by a partitioned (sometimes called staggered or segregated) procedure, where

the solution of the coupled problem is advanced over the fluid, structure and dynamic

mesh components separately. Then, three codes are needed: CMD (Computational Mesh

Dynamics) which computes the mesh dynamics, CSD (Computational Structure Dynam-

ics) which computes the structure dynamics and CFD (Computational Fluid Dynamics)

which computes the fluid dynamics. By applying such procedure it is possible to use

optimal discretization and solution methods inherent to each discipline while preserving

code modularity. Among the partitioned schemes it is possible to differentiate between

weakly and strongly coupled ones. A scheme is called weakly (or loosely or explicit)

coupled if equations (3.20) and (3.21) are not completely satisfied at each time step

(fluid and solid velocities do not exactly match at the interface). However, if accuracy

and/or numerical stability require it, predictor/corrector iterations can be added in

order to fulfill exactly the equations (3.20) and (3.21) in which case the partitioned

procedure becomes a strongly coupled solution algorithm (Storti et al., 2009).

To illustrate the applicability of partitioned schemes in the study of body aerody-

namics problems, in the following section the flutter of a suspension bridge is simulated.

A weakly coupling algorithm is implemented and tested in a commercial CFD code.

3.2.1 Numerical test: bridge aerodynamics

Among the different topologies of bridges, suspension bridges span the greatest dis-

tances. Due to their flexibility, lightness and very low structural damping, these struc-

tures are very sensitive to wind actions. Therefore, a key factor in its design process

is a dynamic phenomenon known as flutter, which is induced by the fluid-structure

coupling. The flutter occurs when the damping induced by the fluid to the structure

makes the structure damping negative (Badia and Codina, 2007).

The objective of this numerical test is to implement and evaluate a coupling algo-

rithm between a fluid solver and a structural solver in order to perform a partitioned

simulation of the fluid-structure interaction of the wind acting on the Great Belt East

bridge (Denmark). As fluid solver the Fluent software (Fluent Inc.) was used.

The Great Belt East bridge is one of the largest suspension bridges in the world.

It has a section of W = 31 m width and B = 4.4 m tall, and a main span of 1624

m, figure (3.3). As it is usually done in wind tunnel tests, the 3D brigde model was
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Figure 3.3: Great Belt East suspension brigde.

reduced to a 2D problem. In figure (3.4) a sketch of the spring stiffnesses applied to

the elastic center (EC) along with the flexural and torsional displacements is shown.

The 2D cross-section was considered to be a rigid body.

�

khh

k��

x

y

EC

h

M(t)

x

y

L(t)
initial state

h

�

U

Figure 3.4: Elastic support of the bridge section on translational and rotational springs
(left). The bridge section in initial and deformed position (left).

The bridge section movement with small vibration amplitudes is described by the

following linearized system of ordinary differential equations (Svácek et al., 2007):
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Mass per unit length, m (kg/m) 2.27× 103

Vertical static moment on elastic center
per unit length, Sa (kg m/m) 1.61× 104

Mass moment of inertia on elastic center
per unit length, Iα (kg m2/m) 2.47× 106

Vertical spring stiffness, kh (N/m2) 8.78× 103

Torsional spring stiffness, kα (N m/m2) 7.21× 106

Vertical logarithmic damping, dh (%) 1

Torsional logarithmic damping, dα (%) 0.6

Table 3.1: Great Belt East bridge properties (Badia and Codina, 2007).

mḧ+ khh+ Sαα̈+ dhḣ = −L(t)

Sαḧ+ Iαα̈+ kαα+ dαα̇ = M(t)
(3.22)

where L(t) and M(t) denote the aerodynamical lift force and torsional moment, respec-

tively, m is the mass of the bridge section, Sα and Iα are the static and inertia moments

around the elastic center EC, kh and kα denotes the bending and torsional stiffness.

Furthermore, α represents the rotational displacement around the elastic center EC

and h is the vertical displacement of the elastic center EC.

The system (3.22) is equipped with the initial conditions h(0) = α(0) = ḣ(0) =

α̇(0) = 0. In order to transform this system into a first-order ODE system, it is written

in matrix format,

[
m Sα

Sα Iα

](
ḧ

α̈

)
+

[
dh 0

0 dα

](
ḣ

α̇

)
+

[
kh 0

0 kα

](
h

α

)
=

(
−L
M

)

that is,

Mü+Du̇+Ku = f ⇒ ü = M−1 [f −Du̇−Ku]

By making s = u̇ , a new system of equations is obtained:
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ṡ = M−1 [f −Du̇−Ku]

s = u̇

and then

ṡ1 =
1

mIα − S2
α

[
− Iα (L+ dhs1 + khh)− Sα (M − dαs2 − kαα)

]
ṡ2 =

1

mIα − S2
α

[
Sα (L+ dhs1 + khh)−m (M − dαs2 − kαα)

]
s1 = ḣ

s2 = α̇

(3.23)

This system can be solved numerically by, for example, the fourth-order Runge-

Kutta method:

∆h1 = ḣ ∆t

∆α1 = α̇ ∆t

∆ḣ1 = F1(h, α, ḣ, α̇, t) ∆t

∆α̇1 = F2(h, α, ḣ, α̇, t) ∆t

∆h2 = (ḣ+ 1
2∆ḣ1) ∆t

∆α2 = (α̇+ 1
2∆α̇1) ∆t

∆ḣ2 = F1(h+ 1
2∆h1, α+ 1

2∆α1,

ḣ+ 1
2∆ḣ1, α̇+ 1

2∆α̇1, t+ 1
2∆t) ∆t

∆α̇2 = F2(h+ 1
2∆h1, α+ 1

2∆α1,

ḣ+ 1
2∆ḣ1, α̇+ 1

2∆α̇1, t+ 1
2∆t) ∆t

∆h3 = (ḣ+ 1
2∆ḣ2) ∆t

∆α3 = (α̇+ 1
2∆α̇2) ∆t

∆ḣ3 = F1(h+ 1
2∆h2, α+ 1

2∆α2, ḣ+ 1
2∆ḣ2, α̇+ 1

2∆α̇2, t+ 1
2∆t) ∆t

∆α̇3 = F2(h+ 1
2∆h2, α+ 1

2∆α2, ḣ+ 1
2∆ḣ2, α̇+ 1

2∆α̇2, t+ 1
2∆t) ∆t

∆h4 = (ḣ+ ∆ḣ3) ∆t

∆α4 = (α̇+ ∆α̇3) ∆t

∆ḣ4 = F1(h+ ∆h3, α+ ∆α3, ḣ+ ∆ḣ3, α̇+ ∆α̇3, t+ ∆t) ∆t

∆α̇4 = F2(h+ ∆h3, α+ ∆α3, ḣ+ ∆ḣ3, α̇+ ∆α̇3, t+ ∆t) ∆t

thus, in each time step it is possible to compute the displacements and velocities of the
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next time step by the following equations:

hi+1 = hi +
1

6
(∆h1 + 2∆h2 + 2∆h3 + ∆h4)

αi+1 = αi +
1

6
(∆α1 + 2∆α2 + 2∆α3 + ∆α4)

ḣi+1 = ḣi +
1

6
(∆ḣ1 + 2∆ḣ2 + 2∆ḣ3 + ∆ḣ4)

α̇i+1 = α̇i +
1

6
(∆α̇1 + 2∆α̇2 + 2∆α̇3 + ∆α̇4)

(3.24)

Once the configuration of the structure is updated, the drag force, D, the lift force,

L, and the torsional moment are computed again.

Weakly coupled FSI simulation with Fluent. This test case was solved numeri-

cally using as fluid solver the commercial CFD package Fluent 6.3.26 (Fluent Inc.). In

order to connect the CFD and CSD codes (here the CSD code is simply composed by

equations (3.23)-(3.24) as it is considered a rigid solid body) a coupling algorithm must

be introduced.

Basically, the weakly coupling used here consists of the following tasks:

1) The Fluent solver computes the flow problem in time step ti.

2) With the resulting stress distribution on the fluid-structure interface, the coupling

algorithm computes the forces that has to be applied to the structure.

3) The displacement of the structure is calculated using equations (3.23)-(3.24).

4) The new position of the fluid-structure interface for time step ti+1 is obtained.

Fluent can deal with flows where the shape of the domain changes with time due

to motion on the domain boundaries by using the dynamic mesh model (Fluent Inc.,

2010). The coupling algorithm perform steps 2) and 3) setting the motion of the solid

boundaries as an user-defined function (UDF). Then Fluent updates the computational

mesh automatically at each time step based on the new positions of the boundaries.
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The computational mesh was divided in three differente regions, figure (3.5): a

static region, where no mesh deformation was allowed; a dynamic region, where the

mesh deforms according to some prescribed method; and a mobile region, where the

mesh follows the displacement of the structure as a rigid body, i.e., without deforming

its cells. The spring-based smoothing method was used to update the mesh in the

dynamic region. In a mesh with triangular elements, this method adjust the interior

node locations based on known displacements at the boundary nodes without changing

the mesh connectivity.

6.5 B

3
.2

 B

1.9 B

mobile region

(rigid body movement)
dynamic region

(deformable)

static

region

Figure 3.5: Computational mesh used. The distribution of the different mesh regions
allows to reduce the computational burden.

Results. Following the work of Frandsen (2004) an unsteady laminar flow was as-

sumed and no railings were included on the bridge deck model. Constant longitudinal

velocity (ux, vy = 0) was set at the inflow of the fluid domain and zero outlet pres-

sure. Slip boundary condition (vy = 0) was prescribed at the upper and lower domain

boundaries while no-slip condition (ux = vy = 0 or, equivalently, ux = usx; vy = vsy

when the bridge moves, where the superscript s indicates “structure”).

The velocity was incremented in several steps in order to identify that flutter onset

velocity. The time history of the aerodynamic lift coefficient,
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CL =
FL

1
2U

2B
(3.25)

is shown in figure (3.6). In equation (3.25) FL represents the aerodynamic lift force

and U the inlet velocity.

30
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0 50 100 150 200

CL
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U = 10 m/s

U = 20 m/s

U = 50 m/s

U = 70 m/s

FLUTTER

Figure 3.6: Time history of the lift coefficient.

The flutter region was clearly detected for an inlet velocity U = 70 m/s, which agrees

with the range of values reported by several authors, see table (3.2). In figure (3.7),

two snapshots of the bridge section are shown, at a time when the flutter limit of 70

m/s is reached. Despite the laminar flow assumption, it can be seen how the flow is

detached from the surface of the structure to eventually generate the vortex shedding

phenomenon.

Source Flutter limit (m/s)

FEM (Frandsen, 2004) 70

FEM (Selvam et al., 2002) 69

FEM (Braun and Awruch, 2003) 69

Wind tunnel tests (from Frandsen (2004)) 67-75

Table 3.2: Flutter limit predictions from different methods.
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Figure 3.7: Flow and structure configuration in two snapshots of the simulation.

3.2.2 Strongly coupled partitioned algorithm in PETSc-FEM

It was demonstrated in the previous section that the coupling algorithm used for the

FSI simulation has provided good results. Consequently, this algorithm is used (after

some adaptation) for the FSI analysis in the next chapter. However, as in the rest of

this thesis the computational code used is the PETSc-FEM code, a brief description of

the FSI implementation in this code is required.

In PETSc-FEM the temporal algorithm that performs the coupling between the

structure and the fluid codes is a fixed point iteration scheme over the variables of both

fluid and structure systems. Inside of the time step loop the algorithm is equipped with

an inner loop called ‘stage’, so if the ‘stage loop’ converges, then a ‘strongly coupled’
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algorithm is obtained. Hereafter, this algorithm is called ‘staggered algorithm’. The

basic scheme is similar to the one described previously and proceeds as follows:

i) Transferring the motion of the wet boundary of the solid to the fluid problem.

ii) Updating the position of the fluid boundary and the bulk fluid mesh accordingly.

iii) Advancing the fluid system and compute new pressures.

iv) Converting the new fluid pressure (and stress field) into a structural load.

v) Advancing the structural system under the flow loads.

For simplicity, the basic algorithm can be thought as if there were no ‘concur-

rence’ among the codes, i.e. at a given time only one of them is running. This can

be controlled using ‘semaphores’ and this is done using Message Passing Interface

(MPI) ‘synchronization messages’. This staggered procedure, which can be treated as

a weakly coupled solution algorithm, can also be equipped with an outer loop in order

to assure the convergence of the interaction process. The algorithm can be stated as

in Algorithm 1. At time tn, wn is the fluid state vector (ρ,v, p), un is the displace-

ment vector (structure state vector), u̇n the structure velocities and Xn the fluid mesh

node positions. In this case, both fluid and structure partitions are integrated with

the trapezoidal algorithm (with trapezoidal parameter 0 < αtrap ≤ 1 ) but another

integration scheme could be used, such as linear multisteps methods, depending on the

particular application (Mavriplis and Yang, 2005). The number of time steps in the

simulation is indicated by nstep, nstage is the number of stages in the coupling scheme

and nnwt is the number of Newton loops in the non-linear problem.

In each time step the fluid is first advanced using the previously computed structure

state un and the current estimated value un+1
p . In this way, a new estimation for the

fluid state wn+1 is computed. Next the structure is updated using the forces of the

fluid from states wn and wn+1. The estimated state un+1
p is predicted using a second

or higher order approximation:

u(n+1)
p = un + α0∆tu̇n + α1∆t(u̇n − u̇n−1). (3.26)
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Algorithm 1 Strong FSI coupling via fixed point iteration

1: Initialize variables:
2: for n = 0 to nstep do {Main time step loop}
3: tn = n∆t,
4: {CFD CODE:}
5: receive un from STRUCTURE

6: Xn = CMD(un) {run CMD code}
7: u(n+1)P = u(n+1,0) = predictor(un,un−1) {compute predictor}
8: {STRUCTURE CODE:}
9: receive wn from FLUID {fluid state}

10: for i = 0 to nstage do {stage loop}
11: {CFD CODE:}
12: receive u(n+1,i) from STRUCTURE

13: Xn+1,i+1 = CMD(un+1,i)
14: {Compute surface normals and velocities}
15: for k = 0 to nnwt do {Fluid Newton loop}
16: wn+1,i+1 = CFD(wn,Xn+1,i+1,Xn)
17: end for
18: send wn+1,i+1 to STRUCTURE

19: {FLUID CODE: after each stage iteration}
20: {CSD CODE:}
21: receive wn+1,i+1 from FLUID;
22: compute structural loads (wn,wn+1,i+1)
23: for k = 0 to nnwt do {Structure Newton loop}
24: un+1,i+1 = CSD(wn,wn+1,i+1)
25: end for
26: send un+1,i+1 to FLUID

27: {STRUCTURE CODE: after each stage iteration}
28: end for
29: {FLUID CODE: after each time step}
30: send un to FLUID;
31: {STRUCTURE CODE: after each time step}
32: send wn to STRUCTURE

33: end for

were α0 and α1 are two real constants. The predictor (3.26) is trivial if α0 = α1 = 0,

first-order time-accurate if α0 = 1 and second-order time-accurate if α0 = 1 and α1 =

1/2.

In the work of Piperno and Farhat (2001) there is an extended description about

the use of the predictor (3.26) on FSI problems and the energy transfer between the

fluid and the structure. It was proved that monolithic schemes and strongly-coupled

staggered schemes conserve energy-transfer at the fluid-structure interface boundary,

whereas weak-coupled algorithms introduce after a certain amount of time t an artificial

energy E = O(∆tp), where p is the order of the prediction.
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3.2 Partitioned simulation of fluid-structure interaction

Once the coordinates of the structure are known, the coordinates of the fluid mesh

nodes are computed by a ‘Computational Mesh Dynamics’ code, which is symbolized

as:

Xn = CMD(un). (3.27)

At the beginning of each fluid stage there is a computation of surface normals and

velocities. This is necessary due to the time dependent slip boundary condition for

the inviscid case, and also when using a non-slip boundary condition, where the fluid

interface has the velocity of the moving solid wall, i.e., v|Γ = u̇|Γ.
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Chapter 4

Applications to road vehicle

aerodynamics

Understanding ground vehicles aerodynamics allows us to optimize the operation of a

wide spectrum of road vehicles, that ranges from road passenger transport (cars, buses,

trains) to road comercial transport (trucks and trains). Road vehicle aerodynamics is

a complex topic due to the interaction between the air flow and the ground.

Besides of fuel consumption, aerodynamics is directly related to vehicle stability: the

flow-vehicle interaction impacts on the straight line stability (roadholding), dynamic

passive steering and the response to crosswind. Furthermore, there are other issues

where the aerodynamics plays an important role: the accumulation of droplets of rain

water on windows and outside mirrors, the accumulation of dirt in headlights, wind

noise, etc. In summary, aerodynamics has a significant impact on the design of a

vehicle and requires a detailed analysis of the flow around it, including unsteady and

turbulent flow phenomena (Hucho, 1998).

A road vehicle has also aerodynamic properties that are specific to this kind of

vehicles. Due to its geometry, it can be considered a bluff body, which means that

drag is mainly due to the pressure acting on it. Skin friction, caused by viscous shear

forces on the surface of the vehicle, has only a small contribution to the drag. Flow

separation occurs in the back of the body, creating large recirculation regions in the

near wake, resulting in a lower pressure on the back surfaces, see figure (4.1). This
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mechanism produce an increase in the difference between the pressure acting on the

front and on the back of the vehicle. According to Wood (2004), approximately the

75 % of the total drag of a light ground vehicle is due to the pressure drag, while for

heavy ground vehicles around the 90 % of the drag is pressure drag.

C-pillar 

vortex

arch

vortex

-X

Y

Z

A

A

A

U

Figure 4.1: Vortex system behind a road vehicle (Ahmed et al., 1984).

The flow around three-dimensional bluff bodies is characterized by separated shear

layers formed at the top, bottom and side edges of the body (Gürlek, 2008). The wake

is often dominated by streamwise vortices (which may interact with each other) and its

unsteady nature can affect the aerodynamic forces acting on the body. If the frequency

of these forces equals or is close to the natural frequency of the body, it could cause

vibrations which can seriously impact on the comfort of the driver. The complexity

associated with time-varying flows causes that the vast part of the investigations has

been limited to time-averaged behaviour.

Until a few years ago, complex aerodynamic studies on road vehicles were performed

almost exclusively in wind tunnel facilities. Even today, they still are more frequently

used than numerical studies. Nevertheless, CFD nowadays allows predicting unsteady

aerodynamic effects due to the improvement of computational power and efficiency.
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RANS approach was widely used in vehicle aerodynamics studies (Basara et al., 2001;

Guilmineau, 2008), however, unlike the steady-state solution that can rely on RANS

method, the application of CFD when solving unsteady aerodynamic problems required

the use of the LES technique. For example, according to Guilmineau (2008), RANS

simulations does not accurately predict the flow pattern around the Ahmed body for

a slant angle of 25◦ while for an angle of 30◦ this approach worked well. This is

because RANS simulations strongly depend on the implemented turbulence model and

geometric characteristics of the problem. Meanwhile, using LES on this particular test

case has demostrated that it can predict the location at which the flow separates from

the model as well as the flow structure on the wake (Krajnovic and Davison, 2004).

As real vehicles have complex geometries, numerical simulations are often carried

out over simplified (generic) forms of vehicles. Although many different types of sim-

plified vehicle geometries were proposed, one of the most used is the so called Ahmed

model (Ahmed et al., 1984). This model is considered a standard benchmark and sev-

eral investigations have been evoked to implement numerical and experimental studies

of the flow around this particular model (e.g. Krajnovic and Davison (2005), Hinter-

berger et al. (2004), Serre et al. (2011)).

Another aspect of the automotive aerodynamics that is rarely explored in the liter-

ature is the interaction between a dynamic road vehicle model and the airflow. Cheng

et al. (2011) investigated the stability characteristics of road vehicles under pitching

oscillation. By imposing sinusoidal-forced-pitching oscillation on a sedan-type model

vehicle during the LES, the authors found that the front-pillar vortex is the main factor

that imparts the unstable tendency in the vehicle’s pitching behaviours. In line with

this research, the same authors proposed a dimensionless coefficient that reflects the

pitching stability of a vehicle in another paper (Cheng et al., 2012).

As it was pointed out by Krajnovic et al. (2011), forces and moments obtained in

tests where dynamic flow conditions were used, have shown to be different from those

found in steady flow conditions. A common approach is to evaluate the aerodynamic

performance using static conditions, where the position of the model is changed dis-

continuously. This approach is known as “quasi-steady” and it is widely employed in

experimental tests and numerical simulations.

In this Chapter several test cases regarding the simulation of wind flow passing

through a vehicle are analyzed. Different scenarios are considered, i.e. different bound-
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ary conditions and with static and dynamic models.

4.1 Ahmed body

As was mentioned in Chapter 2 of this thesis, the Ahmed body is a simplified road

vehicle model defined by Ahmed et al. (1984), see figure (4.2). A more detailed de-

scription of the model can be found in the work of Franck (2004); Franck et al. (2009)

and references therein.

x
y

z

B = 0.380 m

35°

x

y

z

0.9
44 m

y

z

L = 1.044 m

0.222 m

H
 =

 0
.2

8
8
 m

Figure 4.2: Main dimensions of the simpified model proposed by Ahmed et al. (1984).

In the test performed by Ahmed et al. (1984), the model was fixed on cylindrical

stilts, 50 mm above a ground board, 3 m wide and 5 m long, in an open tunnel

test section. A wind speed of 60 m/s was used, corresponding to a model length

based Reynolds number of 4.29 × 106 and a turbulence intensity less than 0.5%. The

authors found that the major contribution to the pressure drag comes from the slant

and vertical base surface of rear end. However, several investigations were made with a

smaller Reynolds number, a desired feature when LES is considered. Hinterberger et al.

(2004) performed a LES of the flow over the Ahmed body with a Reynolds number of

2.88 × 106 leading to a bulk velocity of 40 m/s while Krajnovic and Davison (2004)

used an even smaller velocity of approximately 10 m/s. Interestingly, in this later work
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the authors have found that the level of the Reynolds number has small influence on

the results in highly separated flows around cars provided that it is high enough.

4.1.1 Numerical method

An incompressible Newtonian viscous fluid model is adopted with kinematic viscosity

µ = 1.45 × 10−5 m2/s and density ρ = 1.225 kg/m3. The simulations were performed

with the PETSc-FEM code using the Finite Element Method to solve the momen-

tum and continuity equations for the velocity and pressure at each node and at each

time step. The SUPG/PSPG discretization scheme of the incompressible Navier-Stokes

equations are implemented.

The simulations were performed using two different Beowulf kind of clusters. The

“Aquiles” cluster, with 80 nodes Pentium 4 CPU 3.00 GHz and a server Xeon E5335

2.00 GHz, interconnected via a Gigabit Ethernet network, and the “Coyote” cluster,

with 7 nodes Xeon E5420 2.50 GHz (2 x 4 cores), 16 nodes Xeon W3690 3.47 GHz (1

x 6 cores) and a server Xeon E5335 2.00 GHz (2 x 4 cores).

4.1.2 Computational domain and inlet boundary conditions

As it was done in Chapter 2, the computational domain was adjusted to the main

dimensions of the “Jacek Gorecki” boundary layer wind tunnel in order to provide

data for a later comparison with an experimental test. The “Jacek Gorecki” is an

open circuit wind tunnel located at the Northeast National University at Resistencia

(Chaco), Argentina, which has a 2.4 m wide × 1.8 m high × 22.4 m long working

section (Wittwer and Möller, 2000). As can be seen in figure (4.3), the computational

domain has a width W = 2.40 m with a height H = 1.80 m and 6.264 m of length. The

center of the coordinate system was placed at the inlet plane (x = 0 is the symmetry

plane, y = 0 is the inlet plane, z = 0 is the ground plane). No advantage was taken of

the symmetry of the problem in order to perceive any asymmetry in the solution.

The body was located at 2L downstream (y-direction) the inlet section and at 3L

upstream the outlet boundary to allow full development of the flow downstream the

model, totaling an extension of 6L. Non-slip boundary condition was prescribed at
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Figure 4.3: Computational domain of the Ahmed test case.

ground, roof and tunnel walls, while null pressure was imposed at the outlet wall.

With these conditions the blockage ratio was about 2.6%.

The cross section of the domain used in this work is larger than the one used by

Krajnovic and Davison (2004) which consisted in a channel of approximately 1.87 m

× 1.40 m (width × height). Also, the boundary conditions on the lateral walls and

ceiling are different. In their work, Krajnovic and Davison (2004) treated the lateral

surfaces and ceiling as slip surfaces using symmetry conditions in order to reproduce

the experimental test of Lienhart and Becker (2003) who performed their experiment

in a channel with a 3/4 open test section (with floor but without lateral surfaces or

ceiling). This 3/4 open section configuration enables the flow across these surfaces

while in the numerical simulation of Krajnovic and Davison (2004) and in the present

work that is no possible, leading to a different blockage ratio condition.

The boundary condition at the inlet of the domain calls for a fully developed flow

with boundary layers on roof, walls and floor, as this is the case in the wind tunnel

test section. To achieve this condition, mean velocity profiles and turbulence intensity

values were adopted in agreement with the values reported by Wittwer and Möller
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4.1 Ahmed body

(2000). Here again, an observation must be made. The maximum velocity value at the

center of the wind tunnel test section is about 27 m/s. This leads to a model length

based Reynolds number of approximately 1.91 × 106 which is less than the values

reported in all the above cited references except for the work of Krajnovic and Davison

(2004). Nevertheless, even with a smaller velocity they found, at least for the geometry

of this simplified road vehicle model, that the external vehicle flow at high Reynolds

numbers becomes independent of it.

4.1.3 Mesh details

The grid used for this test case has 462, 580 nodes, 2, 192, 778 elements and h = 0.001 m,

being h the mean thickness of the first element layer (measured from the model surface).

The grid was refined close to the body surface in order to account for viscous effects at

the wall and to adequately capture the changes in flow variables within the boundary

layer region. An unstructured mesh consisting of tetrahedral and prismatic (wedges)

finite elements was used for these tests and was divided in three different regions to

account for the mesh movement, figure (4.4). A more detailed discussion about this

domain division is made in Section §4.1.5.

region I

region II

Ahmed

body

region III

Figure 4.4: Different regions of the mesh.
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Resolution. As the flow around a car is a wall-bounded one, its turbulence content

is kept by the coherent motions in the boundary layer. To have some indication of the

extent to which the flow can be resolved it is mandatory to consider several charac-

teristic length scales associated with the problem (Tennekes and Lumley, 1972). Two

length scales are commonly used, the Kolmogorov microscale and the Taylor microscale

(Howard and Pourquie, 2002; Franck et al., 2009). The Kolmogorov microscale is as-

sociated with the smallest turbulent motions of the flow, computed by the following

expression

η = A−1/4Re
−3/4
l l (4.1)

while the Taylor microscale is related with the length scale of the integral scale motions

(length scales of the mean flow) and can be obtained by

λ =
√

15A−1/2Re
−1/2
l l (4.2)

where A is an O(1) constant, l is the bulk integral scale and Rel = U∞L/ν is the

free stream Reynolds number, ν is the kinematic viscosity of the fluid and U∞ the free

stream velocity. Equations (4.1) and (4.2) are derived from empirical correlations.

In the present case, the following values are adopted: A = 0.5, l ≡ L = 1.044 m,

ν = 1.45 × 10−5 m2/s. As it can be noted from the values listed in table (4.1), close

to the body surface, the mesh spacing exceeds the Kolmogorov scale but it is smaller

than the Taylor microscale, so it is expected that the large scale turbulent eddies down

to the Taylor microscale size should be well represented by LES.

Rel η λ h

1.91× 106 2.31× 10−5 L 3.96× 10−3 L 9.6× 10−4 L

Table 4.1: Grid resolution for the Ahmed test case.

4.1.4 Static model simulation

The time history of the aerodynamic forces and moments in all three directions, i.e.,

side (Fx), drag (Fy) and lift (Fz) forces (figure (4.5)) and pitch (Mx), roll (My) and
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yaw (Mz) moments (figure (4.6)) were computed during the simulation by adding the

viscous and pressure forces around the full three-dimensional model. The deviation

(rms values) of the drag force was found to be around 1.3% of the mean value. The

corresponding force coefficients were also computed as:

CS =
Fx

1
2ρU

2
∞A

CD =
Fy

1
2ρU

2
∞A

CL =
Fz

1
2ρU

2
∞A

(4.3)

being CS , CD and CL the side, drag and lift force coefficientes, respectively, and A the

frontal area. Mean and rms values of these coefficients are presented in table (4.2-(a)).

(a) (b)
CS CD CL CS CD CL

mean -0.006 0.297 0.151 -0.001 0.267 0.035
rms 0.008 0.013 0.017 0.010 0.013 0.022

Table 4.2: Ahmed static test: time-averaged side (CS), drag (CD) and lift (CL) coefficients
(mean and rms values). (a) no-slip condition in the tunnel floor, (b) sliding ground.

As can be noted, the mean drag force coefficient was found to be higher than the

value CDmean = 0.255 obtained by Ahmed et al. (1984). Therefore, another simulation

was performed under the same conditions except for the tunnel floor boundary condi-

tion, which was modified to simulate a moving ground by imposing the incoming mean

velocity U∞ as the velocity of the lower wall. This was done in order to validate the

numerical model against the experimental study. The results of this later simulation

are resumed in table (4.2-(b)). The mean drag force coefficient still exceeds the value

reported by Ahmed et al. (1984) but with a difference less than 5%, highlighting the

interference effect that the fixed floor boundary layer causes over the flow pattern and,

as a consequence, over the aerodynamic forces.

4.1.5 Fluid-structure interaction study

Forced vibration. As a first step prior to the fully coupled fluid-structure interac-

tion study, a test considering an imposed model movement was performed. The main

idea behind this test was to verify the correct behaviour of the code in charge of the

communication between the fluid problem and the structure problem. Two degrees of

freedom were considered namely lateral movement and yawing, see figure (4.7). The
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Figure 4.5: Time history of the aerodynamic forces.

geometric properties of the Ahmed body (assuming unitary constant density) are listed

in table (4.3), where xo, yo and zo are the distance of the local coordinate center from

the front of the model and Ix, Iy and Iz are the moments of inertia about the local

axes.

A forced-sinusoidal-yawing (Mz) and a forced-sinusoidal-lateral (Fx) oscillation were

imposed on the vehicle model:

Fx = Po sin(ωF t)

Mz = Mo sin(ωM t)
(4.4)

where ωF and ωF are the loading frequency of the lateral force and yawing moment,

respectively. With these settings, the following system of ordinary differential equations
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Figure 4.6: Time history of the aerodynamic moments.

is obtained:

mẍ+ kxx+ dxẋ = −Fx(t)

Iψψ̈ + kψψ + dψψ̇ = Mz(t)
(4.5)

being Iψ ≡ Iz, m the mass of the model (in case equal to its volume), kx, kψ, the

bending and torsional stiffnes, respectively, and dx, dψ, the bending and torsional

damping, respectively.

Assuming that the system (4.5) is underdamped, that is, 0 < ξx = dx/d
c
x < 1 and

0 < ξψ = dψ/d
c
ψ < 1, where dcx = 2

√
mkx and dcψ = 2

√
Iψkψ are the critical damping

in x-direction and yawing, respectively, and with the initial conditions x(0) = ψ(0) = 0

and ẋ(0) = ψ̇(0) = 0, then its solution is given by:
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Figure 4.7: Mechanical configuration of the Ahmed body (top view).

Volume Centroid Inertia
(m3) (m) (kg m2)

0.1099
xo yo zo Ix Iy Iz

0.00 0.52 0.14 0.0098 0.0021 0.0104

Table 4.3: Geometrical data for the Ahmed test case.

x(t) = e−ξxωxt
[
A1 cos(ωxDt) +B1 sin(ωxDt)

]
+ C1 cos(ωF t) +D1 sin(ωF t)

ψ(t) = e−ξψωψt
[
A2 cos(ωψDt) +B2 sin(ωψDt)

]
+ C2 cos(ωM t) +D2 sin(ωM t)

(4.6)

where

C1 =
Po
kx

−2ξx
ωF
ωx[

1−
(
ωF
ωx

)2]2
+
[
2ξx
(
ωF
ωx

)2]2 C2 =
Mo

kψ

−2ξψ
(
ωM
ωψ

)2[
1−

(
ωM
ωψ

)2]2
+
[
2ξψ
(
ωM
ωψ

)2]2

D1 =
Po
kx

1−
(
ωF
ωx

)2[
1−

(
ωF
ωx

)2]2
+
[
2ξx
(
ωF
ωx

)2]2 D2 =
Mo

kψ

1−
(
ωM
ωψ

)2[
1−

(
ωM
ωψ

)2]2
+
[
2ξψ
(
ωM
ωψ

)2]2

(4.7)
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and

A1 = −C1 A2 = −C2

B1 =
C1ξxωx −D1ω

x
D

ωF
B2 =

C2ξψωψ −D2ω
ψ
D

ωM

(4.8)

where ωx =
√
kx/m and ωψ =

√
kψ/Iψ are the natural frequency of the lateral and

yawing oscillation, while ωxD = ωx
√

1− ξ2
x and ωψD = ωψ

√
1− ξ2

ψ are the corresponding

damped frequency in each degree of freedom. The structural properties used in this

test are listed in table (4.4).

Po Mo ωF ωM kx kψ dx dψ
(N) (Nm) (rad/s) (rad/s) (N/m) (Nm/rad) (Ns/m) (Nms/rad)

170 5 50 50 100 6 13.34 1.00

Table 4.4: Structural properties for the Ahmed forced oscillation test case.

The lateral displacement and yaw angle for different times in the simulation are

shown in figure (4.8). For the sake of simplicity only 10 time frames are represented

here. As it can be seen from figure (4.8), the algorithm in charge of passing the forces

and moments to the structure works well for the case of forced oscillation. Also, in

figure (4.9) are depicted the different positions of the Ahmed body in correspondence

with these times along with isosurfaces of the second invariant of the velocity gradient

tensor Q = 2× 105.

Importance of the meshing strategy. As was pointed out before, the computa-

tional domain was divided into several regions or “boxes” with different refinement

ratio, i.e., the most inner region have the smallest element sizes, which increase in size

towards region III, see figure (4.4). In this work, the Computational Mesh Dynamics

(CMD) problem is solved by relocating the nodes of the mesh. This methodology was pre-

ferred to the re-meshing approach, which would introduce an additional computational

cost.

The linear elasticity approach is used, where the CMD problem is modeled as an

elastic medium governed by the linear elasticity equation. The equation governing the

displacement of the internal nodes is written as (Stein et al., 2004)
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Figure 4.8: Time history of lateral displacement (top) and yaw angle (bottom). Numerical
simulation (circles) and analytic solution (red line).

∇ · σ + f = 0 on Ω (4.9)

being σ = λ tr
(
ε(y)

)
I + 2µε(y) the Cauchy stress tensor, f the external force; y is the

displacement, tr() the trace operator, λ and µ are the Lamé constants, I is the identity
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(0) t = 0.00 s:

(1) t = 0.09 s:

(2) t = 0.15 s:

(3) t = 0.21 s:

(4) t = 0.28 s:

(5) t = 0.34 s:

(6) t = 0.40 s:

(7) t = 0.47 s:

(8) t = 0.53 s

(9) t = 0.59 s

Figure 4.9: Ahmed forced vibration test. Different adopted geometric configuration in
time (top view).
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tensor and ε the strain tensor:

ε(y) =
1

2
(∇y + (∇y)T ) (4.10)

while the boundary conditions are imposed on the fluid-structure interface. By express-

ing the Lamé constants as a function of the Young’s modulus and Poisson ratio, it is

possible to avoid severe mesh distortions in critical regions (those elements near the

body on region I, for example) with different combinations of parameters. All the tests

in this chapter were performed with a ratio EI/EII = 50 and EII/EIII = 10 between

Young’s modulus.

4.1.6 Full fluid-structure coupling

There are, to the best author’s knowledge, no numerical or experimental FSI stud-

ies of simplified road vehicle models. All investigations so far were focused on the

forced oscillation of simplified models (Krajnovic et al., 2011; Cheng et al., 2011, 2012;

Gilliéron et al., 2003) but none with a full coupling between the fluid and the struc-

ture. Therefore, some numerical experiments were performed in order to analyze this

phenomenon.

Two simulations with the following parameters were considered: m = 0.5495 kg,

Iψ = 0.052 kgm2, kx = 100 N/m, kψ = 6 Nm/rad, ρ = 5 kg/m3 and were carried

out with and without inlet synthesized turbulence. The particular parameters of each

simulation are listed in table (4.5).

Turbulence dx dψ
synthesis (Ns/m) (Nms/rad)

test I-a no 13.343 1.005

test I-b yes 13.343 1.005

Table 4.5: Structural properties for the Ahmed FSI test case.

In figures (4.10) and (4.11) the lateral and angular displacements of the Ahmed

body are shown. For test I-a the minimum/maximum values are −0.05 m/0.23 m

(lateral displacement) and −15◦/28◦ (yawing), while for test I-b are −0.16 m/0.23

(lateral displacement) and −25◦/8◦ (yawing). The influence of synthesized turbulence
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is evidenced by the vortex structures visualized with Q isosurfaces. Clearly, test I-b

presents mode developed structures than test I-a.

These results demonstrate that by using the numerical tools presented in this work

it is possible to reproduce an experimental test in a wind tunnel. In particular, it is

possible to assess experimental FSI studies by a computational model, reproducing all

the mechanical and dynamical characteristics of a road vehicle model along with the

turbulent flow that interacts with it.
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Figure 4.10: Ahmed FSI test I-a. The red line indicates lateral displacement (top) and yaw angle (bottom). Also, the geometric
configuration of the Ahmed body for five different time instants is shown (top view).
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Chapter 5

Overview and Final Remarks

The interaction of a fluid with a structure is an important phenomenom that has to

be considered in many engineering applications. Particularly, the interaction between

a dynamic vehicle model and the airflow is an aspect of the automotive aerodynamics

that is poorly investigated. In this thesis the study of the aerodynamic characteristics

of a simplified road vehicle model under the action of a turbulent air flow was per-

formed with the aim of simulating a wind tunnel test. As a main contribution of this

work, a synthesized turbulence methodology called MDSRFG was proposed, tested and

validated. The problem of generating synthesized turbulence at inflow boundaries of

the simulation domain was addressed in the context of the LES method. To represent

adequately certain statistical properties of a turbulent process, the proposed method-

ology is based on previous works (Huang et al., 2010; Smirnov et al., 2001). Time

and space correlations were strictly introduced in the mathematical formulation of the

synthetic turbulence generator. It was demonstrated that the proposed approach in-

herits the properties of the methods on which it is based while presents some particular

advantages as well.

Furthermore, for the analysis of road vehicle aerodynamics, a simplified model

known as the Ahmed body was studied under two different scenarios: considering

the model as a rigid one and by assigning it dynamic properties. By comparing the

numerical simulations with and without generated turbulence it has been shown that

the inclusion of unsteady components of velocity leads to a more realistic representation

of the physical phenomenon. The fluid-structure interaction model was tested and the
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results demonstrated that the computational tools developed in this work enable us to

reproduce and/or assist experimental studies.

5.1 Publications

During the work on this thesis the following articles have been published in refereed

journals:

1) Hugo G. Castro, Rodrigo R. Paz “A time and space correlated turbulence

synthesis method for Large Eddy Simulations”. Journal of Computational Physics

235, pp. 742-763. ISSN: 0021-9991. (2013).

2) Rodrigo R. Paz, Mario A. Storti, Lisandro D. Dalcin, Hugo G. Castro,

Pablo A. Kler “FastMat: A C++ library for multi-index array computations”.

Advances in Engineering Software 54, pp. 38-48. ISSN: 0965-9978 (2012).

3) Rodrigo R. Paz, Mario A. Storti, Hugo G. Castro, Lisandro D. Dalcin

“Using Hybrid Parallel Programming Techniques for the Computation, Assembly

and Solution Stages in Finite Element Codes”. Latin American Applied Research

41, pp. 365-377. ISSN: 0327-0793 (2011).

In addition, the following book chapters has been written:

1) Castro, H.G.; Adotti, M.I.; Paz, R.R.; De Bortoli, M.E.; “Estudio de

la interacción fluido-estructura en tableros de puentes”, La UTN en el NEA.

Investigación y Desarrollo en la Facultad Regional Resistencia, edUTecNe. ISBN:

978-987-27897-0-1 (2012).

2) Luciano Garelli, Rodrigo R. Paz, Hugo G. Castro, Mario A. Storti,

Lisandro D. Dalcin “Fluid Structure Interaction and Galilean Invariance”. in

Computational Fluid Dynamics: Theory, Analysis and Applications, Alyssa D.

Murphy (edts.), pp. 511-550. Nova Science Publishers. ISBN: 978-1-61209-276-8

(2011).
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Also, the following works have been presented in conferences on different topics

related with this thesis:

1) Castro, H.G.; Paz, R.R.; “A modified turbulence synthesis method for Large

Eddy Simulations”, 10th World Congress on Computational Mechanics, San Pablo,

Brasil. (07/2012).

2) Castro, H.G.; Burguener, H.; Paz, R.R.; De Bortoli, M.E.; “Desarrollo

de una interfaz gráfica para un código abierto de elementos finitos”, II Jornadas

de Investigación en Ingenieŕıa del NEA y Páıses Limı́trofes. ISBN: 978-950-42-

0142-7. UTN Facultad Regional Resistencia, Chaco, Argentina (2012).

3) Castro, H.G.; Paz, R.R.; Sonzogni, V.; “Synthezised turbulence with time

and space correlation for Large Eddy Simulations”, XXX Congreso sobre Métodos

Numéricos y sus Aplicaciones, Rosario, Sante Fe, Argentina (2011).

4) Castro, H.G.; Paz, R.R.; Storti, M.; Sonzogni, V.; Marighetti, J.O.;

De Bortoli, M.E.; “Experimental and numerical study of the aerodynamic

behaviour of a simplified road vehicle”, Mecom - Cilamce 2010, Buenos Aires,

Argentina (2010).

5) Sonzogni, V.; Castro, H.G.; Paz, R. R.; Balbastro, G.; Storti, M.

“Uso de computación de alto desempeño en ingenieŕıa”, XXXIV Jornadas Sud-

Americanas de Ingenieŕıa Estructural, San Juan, Argentina (2010).

6) Sonzogni, V.; Castro, H.; Paz, R.; Balbastro, G.; Storti, M.; “Experi-

encias en el cálculo paralelo en el CIMEC”, Primer Congreso sobre los métodos

numéricos en la enseñanza, la ingenieŕıa y las ciencias - EMNUS 2010, Agosto de

2010, UTN, Facultad Regional Haedo, Argentina.

7) Castro, H.G.; Paz, R.R.; Storti, M.; Sonzogni, V.; Dalcin, L.; “Hybrid

Parallel Programming Technique on a Finite Element Code”, II MACI, diciembre

de 2009, Rosario, Santa Fe, Argentina.

8) Castro, H.G.; Paz, R.R.; Storti, M.; Sonzogni, V.; Dalcin, L.; “Paral-

lel Implementation of a FEM Code by Using MPI/PETSc and OpenMP Hybrid

Programming Techniques”, XVII Congreso sobre Métodos Numéricos y sus Apli-

caciones, noviembre de 2009, Tandil, Argentina.

91

Castro, Hugo Guillermo      - 2014 -



5. OVERVIEW AND FINAL REMARKS

9) Storti, Mario A.; Castro, Hugo G.; Paz, Rodrigo R.; Dalcin, Lisandro

D.; “The FastMat2 Matrix Library. Description and Parallel Implementation”.

XVII Congreso sobre Métodos Numéricos y sus Aplicaciones, noviembre de 2009,

Tandil, Argentina.
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Appendix A

Appendix A

A.1 Visualization techniques

Once the results from CFD computations are obtained, the next step is to visualize the

flow properties in order to understand the flow structure and individualize certain crit-

ical regions. Being the flow field three-dimensional, the velocity has three components

in the Cartesian space:

u =

 dx/dt

dy/dt

dz/dt

 =

 u

v

w

 (A.1)

The velocity field gradient, ∇u, allow us to describe more accurately the flow topol-

ogy. This 3×3 tensor contains the information on how the velocity is changing in space,

∇u = Aij =
∂ui
∂xj

=


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (A.2)

Aij has units of time−1, therefore data deriving from it has the form of a rate.

93

Castro, Hugo Guillermo      - 2014 -



A. APPENDIX A

An usual form to work with Aij is to decompose it to its symmetric and antisym-

metric parts:

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂ui
∂xj︸ ︷︷ ︸

= 2
∂ui
∂xj

+
∂uj
∂xi
− ∂uj
∂xi︸ ︷︷ ︸

= 0

)

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= Sij + Ωij

(A.3)

S =
1

2
(∇u+∇uT )

Ω =
1

2
(∇u−∇uT ) =

1

2

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (A.4)

where Sij is a symmetric tensor called the strain-rate tensor and Ωij is an antisymmetric

tensor called the vorticity tensor. Vorticity is often represented as a vector given that

the vorticity tensor has six nonzero values from which only three are independent:

ωi = εijk
∂uk
∂xj

(A.5)

and the trace of Sij which equals the trace of ∇u and represents the divergence of the

field is:

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= δij

∂ui
∂xj

(A.6)

Critical point theory. Critical points or stationary points are points where the

streamline slope is indeterminant and the velocity is zero relative to an observer. The

properties of the streamline field or velocity field seen by an observer depends on the

velocity of the observer.

Let us consider a non-rotating frame of reference attached to a given particle in

the flow. The geometry of the instantaneous streamlines in the neighborhood of any
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point in the flow, as seen by an observer moving with the local speed of the fluid, can

be described according to the nature of the eigenvalues, and associated eigenvectors,

of the velocity gradient tensor at that point (Chong et al., 1990). In such conditions,

there will be a critical point located at the particle, and the velocity field ui in the

region immediately surrounding the particle and observer can be described (to a first

order approximation) as

ui = Aij xj (A.7)

where ui is the velocity at the position xj relative to the particle and observer.

The eigenvalues of the velocity gradient tensor which satisfy det(A − λI) = 0 are

the roots of the characteristic equation of Aij :

λ3 + Pλ2 +Qλ+R = 0 (A.8)

being P , Q and R the tensor invariants,

P = −trace(∇u) = −Aii = −δij
∂ui
∂xj

(A.9)

Q =
1

2
{[trace(∇u)]2 − trace[(∇u)2]} =

1

2
(A2

ii −AijAji)

=
1

2
(P 2 − SijSji − ΩijΩji) (A.10)

R = −det(∇u) =
1

3
(−P 3 + 3PQ− SijSjkSki − 3ΩijΩjkSki) (A.11)

where det indicates the determinant of the tensor. P , Q and R remain the same under

arbitrary rotations and translations of the coordinate system. The first invariant P is

zero for incompressible flow and hence equation (A.8) reduces to

λ3 +Qλ+R = 0 (A.12)
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It can be shown that the curve that separates the region of real roots from the

region were two roots are complex and one is real (in the Q−R plane) is given by the

zero value of the discriminant D of Aij :

D =
27

4
R2 +Q3 (A.13)

The invariantsQ and R along with equation (A.13) summarizes the basic topological

information of the flow. For example, points in the flow where D > 0 are called foci

and for these points equation (A.12) admits two complex and one real root. For D < 0

the points are called node-saddle-saddle and all roots of equation (A.12) are real.

All componentes of Aij can be computed for every node in the computational mesh

and the invariants Q and R obtained by means of equations (A.9)-(A.11). These values

can be used to describe the geometry of the streamline with respect to their position

in the Q−R plane.

A.1.1 The Q-criterion

Coherent vortices are regions which have a vorticity concentration strong enough to

induce a local roll-up of the flow and keep a characteristic shape during a time Tc large

enough with respect to the local turnover time (Lesieur, 2008). Isosurfaces of high

vorticity modulus, or vorticity componentes, or low pressure are usually employed to

capture these structures. Nevertheles, the so called Q criterion have demostrated to be

a very efficient method to such a purpose.

Follow the equation (A.10), the second invariant Q for an incompressible flow can

be written as

Q =
1

2
(ΩijΩij − SijSij) (A.14)

where consideration was made of the symmetric and antisymmetric characteristics of

the tensors Sij and Ωij . The first term on the rhs of equation (A.14) is proportional to

the total enstrophy while the second is proportional to the kinetic energy dissipation
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rate. Thus, isosurfaces with Q > 0 show regions where rotation rates are bigger than

the strain ones, so they can develop coherent structures, enable us to detect vortex

structures accurately.

(a) Instantaneous isosurface of Q.

(b) Mean isosurface of Q

Figure A.1: Q criterion around the Ahmed body.

Figures (A.1(a)) and (A.1(b)) shows the vortex structure following the Q criterion
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at the level 800 sec−2. Figure (A.1(a)) is a snapshot of the instantaneous vortex system

while figure (A.1(b)) shows the time average isosurface of Q.
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Appendix B

Resumen extendido en castellano

Generación de turbulencia de entrada
para simulación de grandes escalas:

aplicaciones a problemas de interacción
fluido-estructura.

B.1 Introducción

La aerodinámica estudia el movimiento de un cuerpo sólido en un flujo de aire y la

interacción de la superficie del mismo con el fluido que lo rodea, con diferentes veloci-

dades relativas y direcciones. La aerodinámica de veh́ıculos de carretera introduce otra

fuente de complejidad debido a la existencia de la capa ĺımite atmosférica (ABL, por at-

mospheric boundary layer). El viento en la ABL genera un entorno de flujo turbulento,

que impacta sobre la velocidad media experimentada por el veh́ıculo en su movimiento.

Además, esta turbulencia junto con la estela provocada por el veh́ıculo pueden afectar

las fuerzas aerodinámicas transientes que actúan sobre el mismo. Si la frecuencia de

estas fuerzas coincide con la frecuencia natural del cuerpo, pueden provocar ruido y

vibraciones que pueden afectar seriamente el confort del conductor y ocupantes del

veh́ıculo. La complejidad asociada con flujos transientes ocasiona que gran parte de las

investigaciones estén limitadas al comportamiento del veh́ıculo bajo la acción del flujo

medio.
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La Dinámica de Fluidos Computacional (CFD, por Computational Fluid Dynamics)

permite realizar estudios sobre la aerodinámica de veh́ıculos de carretera mediante la

simulación numérica de las ecuaciones de gobierno del sistema f́ısico. La gran amplitud

de escalas de longitud y tiempo presentes en los problemas anteriormente menciona-

dos precisa de un alto grado de refinamiento en las mallas de elementos finitos (o de

volúmenes finitos), lo cual se traduce en el requerimiento de grandes recursos com-

putacionales. Nuevas tecnoloǵıas y computadoras cada vez más rápidas y potentes

posibilitan hoy en d́ıa resolver numéricamente este tipo de problemas complejos.

En el estudio de la aerodinámica vehicular a menudo se asume que el veh́ıculo es un

cuerpo ŕıgido, es decir, que su frecuencia natural es varias veces superior a la frecuencia

de las ráfagas más energéticas presentes en el flujo. Sin embargo, esto no es aśı para el

caso de los veh́ıculos reales en carretera. Estos interactúan con el viento incidente, el

cual cambia de intensidad y dirección de manera impredecible y además con los golpes

e imperfecciones en la superficie del camino. La interacción entre el viento y el veh́ıculo

puede modelarse numéricamente como un problema de interacción fluido-estructura

(FSI, por fluid-structure interaction) mientras que las imperfecciones del camino como

una fuerza estocástica sobre el sistema.

En los problemas de FSI la dinámica del fluido y la estructura se influencian mutu-

amente: la estructura se deforma bajo el efecto de las fuerzas provocadas por el fluido

y el fluido acompaña los desplazamientos de la estructura. Esta interacción no sólo

implica que la velocidad del fluido iguala a la de la estructura en la interfase sino que

el dominio cambia como consecuencia del movimiento de la estructura.

Incluso en la actualidad, con los grandes incrementos logrados en la potencia de

cálculo de las computadoras, la simulación experimental es optada por sobre la numérica

en el estudio de la aerodinámica vehicular e incluso en el análisis de problemas de FSI

dada la confiabilidad adquirida por los túneles de viento.

El propósito de este trabajo de tesis es el de investigar la factibilidad del uso de un

código computacional para reproducir las condiciones experimentales presentes en un

túnel de viento. Este estudio está centrado no sólo en la aerodinámica de un cuerpo

fijo sino que además en su interacción dinámica con el flujo de viento incidente.

El objetivo global es el de demostrar que los códigos computacionales desarrollados

en este trabajo pueden utilizarse no para reemplazar los ensayos en túnel de viento
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sino como herramientas complementarias. Esta observación está basada en el hecho de

que un túnel de viento permite la medición y no la estimación de las fuerzas aerod-

inaámicas, siempre que la f́ısica del flujo sea correctamente representada. Además, el

túnel de viento ha demostrado una notable correlación con los ensayos sobre prototipos

en carretera y es una herramienta rápida, rentable y confiable (Cooper, 2004). Por otro

lado, mediante la CFD es posible realizar las siguientes tareas:

• desarrollar un análisis detallado del problema, aislando cualquier aspecto de la

geometŕıa del cuerpo si es preciso,

• ampliar la comprensión de la f́ısica del problema, mediante la utilización de po-

tentes herramientas de visualización,

• modificar las condiciones del ensayo de manera eficiente.

Todas estas caracteŕısticas sugieren que, si es utilizada complementariamente con

estudios experimentales, aceleraŕıan el ciclo de desarrollo de vehćulos de carretera.

B.2 Ecuaciones de Navier-Stokes para flujo incompresible

Un número de importantes fenómenos en la mecánica de fluidos son representados

adecuadamente mediante las ecuaciones de Navier-Stokes. Estas ecuaciones describen

el efecto dinámico de las fuerzas externamente aplicadas y las fuerzas internas de un

fluido, el cual, a lo largo de este trabajo, será asumido como newtoniano.

Consideremos una región del flujo acotada Ω ∈ Rnsd , donde nsd es el número

de dimensiones espaciales y un dominio en el tiempo (0, t+]. El contorno Γ = ∂Ω se

asume Lipschitz continuo (una superficie cerrada y lo suficientemente regular). Luego,

la versión para flujo incompresible de estas ecuaciones es

ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · σ − ρg = 0 en Ω× (0, t+] (B.1)

∇ · u = 0 en Ω× (0, t+], (B.2)
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La ecuación (B.1) representa la conservación de cantidad de movimiento para fluidos

newtonianos, con densidad ρ y viscosidad dinámica µ, bajo la acción de un campo

gravitacional de aceleración g. Además, σ = −pI + µ(∇u + ∇uT ) es el tensor de

tensiones debido a la presión p y las fuerzas viscosas mientras que I representa el tensor

identidad. La ecuación (B.2) expresa la conservación de masa en fluidos incompresibles.

Las condiciones de contorno e iniciales son

u = uD sobre ΓD

n · σ = h sobre ΓN

u(t = 0) = u0 ∀x ∈ Ω0

p(t = 0) = p0 ∀x ∈ Ω0

(B.3)

donde ΓD y ΓN son los contornos Dirichlet y Neumann, respectivamente, tales que

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅
(B.4)

B.3 Un método modificado para sintetizar turbulencia

como condición de entrada

Huang et al. (2010) propusieron un método de śıntesis de turbulencia denominado “gen-

eración de flujo aleatorio mediante discretización y śıntesis” (DSRFG, por discretizing

and synthesizing random flow generation) para la implementación de condiciones de

turbulencia en el ingreso de dominios en LES. Este método demostró poseer varias

ventajas sobre su predecesor, el método de generación de flujo aleatorio (RFG, por

random flow generation) de Smirnov et al. (2001). No obstante, es posible demostrar

que mediante un nuevo análisis de las ecuaciones DSRFG es posible realizar algunas

mejoras al método. De acuerdo a esto, una breve descripción del método DSRFG es

realizada en esta sección junto con la introducción de las modificaciones propuestas.

Para una más detallada discusión acerca de los métodos RFG y DSRFG se recomienda

al lector referirse a los art́ıculos originales (Smirnov et al., 2001; Huang et al., 2010).
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entrada

Siguiendo el desarrollo del método DSRFG, un campo de flujo turbulento, ho-

mogéneo e isotrópico, u(x, t), puede sintetizarse de la siguiente manera:

ui(x, t) =

M∑
m=1

N∑
n=1

[
pm,ni cos(k̃m,nj x̃j + ωm,nt) + qm,ni sin(k̃m,nj x̃j + ωm,nt)

]
, (B.5)

donde

pm,n =
ζ × km,n

|ζ × km,n|

√
a

4E(km)

N
, (B.6)

qm,n =
ξ × km,n

|ξ × km,n|

√
(1− a)

4E(km)

N
, (B.7)

x̃ =
x

Ls
, (B.8)

k̃
m,n

=
km,n

k0
, (B.9)

con ωm,n ∈ N(0, 2πfm), fm = kmUavg, a es un número aleatorio uniformemente dis-

tribuido entre 0 y 1, ζ y ξ son la forma vectorial de ζni y ξni , los cuales son números

aleatorios seleccionados independientemente de N(0, 1). Aqúı, N(µ, σ) representa una

distribución Normal con media µ y desv́ıo estándar σ. En las ecuaciones (B.8) y (B.9)

Ls es un factor de escala relacionado con la escala de longitud de la turbulencia y k0

es el número de onda más bajo del espectro discreto.

Los factores pm,ni y qm,ni definen la distribución del espectro de enerǵıa tridimen-

sional E(km) en cada uno de los ejes de coordenadas espaciales, los cuales a su vez son

funciones del número de onda espacial km,n (|km,n| = km) y de los vectores aleatorios

normales ζ y ξ.

Cuando se trata con turbulencia homogénea e isotrópica, la distribución de km,n

es isotrópica sobre la superficie de una esfera y en consecuencia la enerǵıa es uni-

formemente distribuida en el espacio. En tales condiciones es evidente que el mismo

espectro será obtenido en las tres direcciones principales pero en el caso de turbulen-
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cia heterogénea y anisotrópica la distribución de km,n debe cambiar de acuerdo a las

condiciones de heterogeneidad y anisotroṕıa.

Para lograr este comportamiento, pm,ni y qm,ni deben alinearse con el espectro de

enerǵıa con respecto a una dirección principal y luego la distribución de km,n puede

ser nuevamente mapeada sobre la superficie de la esfera. En resumen, el método es

implementado utilizando la ecuación (B.5) y

pm,ni = sign(rm,ni )

√
4

N
Ei(km)

(rm,ni )2

1 + (rm,ni )2
, (B.10)

qm,ni = sign(rm,ni )

√
4

N
Ei(km)

1

1 + (rm,ni )2
, (B.11)

km,n · pm,n = 0, (B.12)

km,n · qm,n = 0, (B.13)

|km,n| = km, (B.14)

donde rm,ni es un número aleatorio, independientemente seleccionado de una distribución

Normal tridimensional con µr = 0 y σr = 1.

En base a esta formulación, es posible demostrar que

uiui =
1

2

M∑
m=1

N∑
n=1

pm,ni pm,ni +
1

2

M∑
m=1

N∑
n=1

qm,ni qm,ni

= 2

∫ ∞
0

E(k)dk ≈ 2
M∑
m=1

E(km)∆km,

(B.15)

o bien
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uiui =
1

2

M∑
m=1

N∑
n=1

3∑
i=1

[ 4

N
Ei(km)

(rm,ni )2

1 + (rm,ni )2
+

4

N
Ei(km)

1

1 + (rm,ni )2

]
=

2

N

M∑
m=1

N∑
n=1

E(km) = 2
M∑
m=1

E(km),

(B.16)

implicando que, dado que E(km) es una cantidad positiva para todo k, la enerǵıa

cinética de las velocidades fluctuantes generadas dependa fuertemente del número de

puntos M considerados en la discretización del espectro modelo.

B.3.1 Metodoloǵıa propuesta

En vista del análisis previo, proponemos algunas modificaciones a las ecuaciones del

método DSRFG. Primeramente, la serie de Fourier en la ecuación (B.5) es escrita como:

ui(x, t) =
M∑
m=1

N∑
n=1

[
pm,ni cos

(
k̃m,nj x̃j +ωm,n

t

τ0

)
+ qm,ni sin

(
k̃m,nj x̃j +ωm,n

t

τ0

)]
. (B.17)

La inclusión de un parámetro que modifica el tiempo t está basado en el trabajo

de Smirnov et al. (2001) y Batten et al. (2004) pero con diferente significado f́ısico.

Aqúı, τ0 no es la escala de tiempo de la turbulencia sino que es un parámetro adimen-

sional introducido para permitir algún “control” sobre la correlación temporal de la

serie de velocidad generada.

Tal como fuera demostrado mediante la ecuación (B.15), la enerǵıa del flujo turbu-

lento está relacionada con el espectro de enerǵıa tridimensional E(km) y los factores

pm,ni y qm,ni . Como indicaran Huang et al. (2010), estos factores alinean el espectro

de enerǵıa de acuerdo a las condiciones de anisotroṕıa de la turbulencia, propocio-

nando series de velocidad sintetizadas que deben satisfacer los valores cuadrados medios

en cada dirección espacial. En base a estas consideraciones y notando que según la

ecuación (B.16), la enerǵıa cinética no es aproximada mediante una serie convergente, es

necesario un análisis alternativo para asegurar que la intensidad de turbulencia sintética
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pueda representar adecuadamente el flujo a simularse. En este trabajo se realiza un

simple “desacople” de la ecuación (B.15) utilizando la siguiente relación:

3∑
i=1

u2
rms,i = 2

M∑
m=1

E(km)∆km = 2

M∑
m=1

3∑
i=1

ciEi(km)∆km. (B.18)

Esta ecuación implica que el espectro de enerǵıa tridimensional E(k) es una suma

ponderada de espectros de enerǵıa unidimensionales modificados, alineados con las tres

direcciones principales.

En la ecuación (B.18), ci es un valor que depende de la forma del espectro necesario

para satisfacer la condición

u2
rms,i = 2ci

∫ ∞
0

Ei(k)dk, (B.19)

es decir, en cada dirección, la variancia de las series de velocidad simuladas deben

satisfacer la ecuación (B.19). Luego,

3∑
i=1

u2
rms,i = 2

3∑
i=1

∫ ∞
0

ciEi(k)∆k = 2

∫ ∞
0

E(k)∆k. (B.20)

De esta manera, para cada dirección i obtenemos la versión modificada de las ecua-

ciones (B.10) y (B.11):

pm,ni = sign(rm,ni )

√
4ci
N
Ei(km)∆km

(rm,ni )2

1 + (rm,ni )2
, (B.21)

qm,ni = sign(rm,ni )

√
4ci
N
Ei(km)∆km

1

1 + (rm,ni )2
. (B.22)

Con esta formulación, la correlación temporal puede escribirse como
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ui(x, t)ui(x, t+ τ) =
2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
( τ
τ0
ωm,n

)
, (B.23)

mientras que la correlación espacial como

ui(x, t)ui(x
′, t) =

2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
[
k̃m,nj

(x′j − xj)
Ls

]
. (B.24)

Al igual que en el método DSRFG, el parámetro de escalado espacial Ls es calculado

como

Ls = θ1

√
L2
u + L2

v + L2
w, (B.25)

donde θ1 vaŕıa entre 0 y 1, mientras que el parámetro adimensional de correlación

temporal τ0 es un escalar cuyo valor depende del problema analizado. Dado que esta

nueva metodoloǵıa está basada en el método DSRFG, se ha denominado generación

modificada de flujo aleatorio mediante discretización y śıntesis (MDSRFG, por modified

discretizing and synthesizing random flow generation).

B.4 Forma ALE de las ecuaciones de Navier-Stokes

Con el marco de la formulación ALE presente, es necesario ahora introducir las ecua-

ciones de conservación de masa y cantidad de movimiento. Para facilitar la pre-

sentación, las ecuaciones de Navier-Stokes para flujo incompresible en la configuración

Euleriana, ecuaciones (B.1) y (B.2), son nuevamente escritas aqúı:

ρ

(
∂u

∂t

∣∣∣
x

+ u · ∇u
)
−∇ · σ − ρg = 0 (B.26)

∇ · u = 0 (B.27)
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Para expresar las ecuaciones de Navier-Stokes en la formulación ALE, sólo es nece-

sario reemplazar la velocidad material u por la velocidad convectiva c en los términos

convectivos:

ρ

(
∂u

∂t

∣∣∣
χ

+ c · ∇u
)
−∇ · σ − ρg = 0 (B.28)

∇ · u = 0 (B.29)

siendo ahora las condiciones iniciales y de contorno:

u = uD sobre ΓD

n · σ = t sobre ΓN ,

u(t = 0) = u0 ∀x ∈ Ω0

p(t = 0) = p0 ∀x ∈ Ω0

u = û sobre Γw

(B.30)

donde la última condición está directamente relacionada con la descripción ALE, rep-

resentando en este caso la suposición de que el fluido se “adhiere” a la estructura

(condición de no deslizamiento). Aqúı, Γw es el contorno de la estructura embebido en

el fluido (interfase entre los dominios fluido/estructura).

B.4.1 Simulación particionada de la interacción fluido-estructura

El acoplamiento entre el fluido y la respuesta estructural puede lograrse de diferentes

maneras, pero en todos los casos las condiciones de compatibilidad de desplazamientos y

el equilibrio de tensiones sobre las interfases fluido/estructura deben satisfacerse (Bathe

and Zhang, 2004):

Compatibilidad de desplazamiento:

df = ds on Γw (B.31)
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Equilibrio de tensiones:

ff = fs on Γw (B.32)

donde df y ds son los desplazamientos, ff y fs son las tensiones del fluido y de la

estructura, respectivamente. Una descripción general de estas condiciones de compat-

ibilidad, considerando distintas mallas para los dominios del fluido y de la estructura

es ilustrada en la figura (B.1).

malla del uido

malla del sólido

Figure B.1: Mapeos de los desplazamientos y tensiones sobre las interfaces fluido-
estructura. Las flechas continuas indican el mapero de tensiones mientras que las flechas
a rayas indican el mapeo de desplazamientos (Bathe and Zhang, 2004).

Una manera sencilla de satisfacer la versión discretizada de las ecuaciones (B.31)

y (B.32) es resolver los problemas fluido y estructura en el mismo instante, en un único

“solver”, metodoloǵıa usualmente conocida como monoĺıtica. Un método monoĺıtico es

t́ıpicamente fuertemente acoplado, significando que las ecuaciones (B.31) y (B.32) son

satisfechas después de la discretización en el tiempo. Sin embargo, a menudo un es-

quema monoĺıtico precisa un gran esfuerzo computacional además de ser de muy dif́ıcil

control a nivel de software (Farhat et al., 1998). Alternativamente, estas ecuaciones

pueden resolverse mediante un procedimiento particionado (a veces denominado por

etapas o segregado), donde la solución del problema acoplado se avanza sobre los com-

ponentes del problema: fluido, estructura y malla dinámica, en forma separada. Luego,

tres códigos son necesarios: CMD (por Computational Mesh Dynamics), que calcula la

dinámica de la malla, CSD (por Computational Structure Dynamics) que calcula la

dinámica de la estructura, y CFD (por Computational Fluid Dynamics) que calcula la

dinámica del fluido. Al aplicar esta procedimiento es posible utilizar métodos optimiza-
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dos para la discretización y resolución en cada disciplina en particular, preservando

la modularidad del código. Entre los esquemas particionados es posible diferenciar

entre débilmente y fuertemente acoplados. Un esquema se denomina débilmente (o

expĺıcitamente) acoplado si las ecuaciones (B.31) and (B.32) no son completamente

satisfechas en cada paso de tiempo (las velocidades del fluido y el sólido no coinciden

exactamente en la interfase). Sin embargo, si es necesaria mayor exactitud o estabil-

idad numérica, es posible adicionar iteraciones con predictor/corrector, en cuyo caso

el procedimiento particionado se convierte en un algoritmo de resolución fuertemente

acoplado (Storti et al., 2009).

B.5 Observaciones finales y conclusiones

La interacción de un fluido con una estructura es un fenómeno importante en muchas

aplicaciones de la ingenieŕıa. Particularmente, la interacción entre un modelo dinámico

de un veh́ıculo y el flujo de aire es un aspecto de la aerodinámica vehicular que es es-

casamente investigado. En esta tesis se han estudiado las caracteŕısticas aerodinámicas

de un modelo simplificado de veh́ıculo de carretera bajo la acción de un flujo de aire

turbulento, con el objetivo de simular un ensayo en túnel de viento. Como principal

contribución de este trabajo, fue propuesta, probada y validada, una metodoloǵıa para

sintetizar turbulencia, denominada MDSRFG. La generaración de turbulencia sinteti-

zada en el flujo de ingreso a dominios fue abordada en el contexto del método LES.

Para representar adecuadamente ciertas propiedades estad́ısticas de un proceso turbu-

lento, la metodoloǵıa propuesta está basada en trabajos previos (Huang et al., 2010;

Smirnov et al., 2001). Las correlaciones en tiempo y espacio fueron estrictamente in-

troducidas en la formulación matemática del generador de turbulencia sintetizada. Se

ha demostrado que el método propuesto hereda las propiedades de los métodos en los

cuales se basa, presentando además algunas ventajas particulares.

Además, para el análisis de la aerodinámica de un veh́ıculo de carretera, un modelo

simplificado conocido como cuerpo de Ahmed fue estudiado en dos escenarios diferentes:

considerando el modelo como ŕıgido por un lado y caracterizándolo con propiedades

dinámicas por otro. Comparando las simulaciones numéricas con y sin generación

de turbulencia se ha demostrado que la inclusión de las componentes instantáneas

de la velocidad conducen a una representación más realista del fenómeno f́ısico. El

modelo de interacción fluido-estructura fue probado y los resultados demostraron que
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las herramientas computacionales desarrolladas en el marco de esta tesis permite la

reproducción y/o la asistencia de estudios experimentales.

B.5.1 Publicaciones

Durante la elaboración de esta tesis, los siguientes art́ıculos han sido publicados en
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1) Hugo G. Castro, Rodrigo R. Paz “A time and space correlated turbulence

synthesis method for Large Eddy Simulations”. Journal of Computational Physics

235, pp. 742-763. ISSN: 0021-9991. (2013).

2) Rodrigo R. Paz, Mario A. Storti, Lisandro D. Dalcin, Hugo G. Castro,

Pablo A. Kler “FastMat: A C++ library for multi-index array computations”.

Advances in Engineering Software 54, pp. 38-48. ISSN: 0965-9978 (2012).

3) Rodrigo R. Paz, Mario A. Storti, Hugo G. Castro, Lisandro D. Dalcin

“Using Hybrid Parallel Programming Techniques for the Computation, Assembly

and Solution Stages in Finite Element Codes”. Latin American Applied Research

41, pp. 365-377. ISSN: 0327-0793 (2011).

Adicionalmente, los siguientes caṕıtulos de libro han sido escritos:

1) Castro, H.G.; Adotti, M.I.; Paz, R.R.; De Bortoli, M.E.; “Estudio de
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Investigación y Desarrollo en la Facultad Regional Resistencia, edUTecNe. ISBN:

978-987-27897-0-1 (2012).

2) Luciano Garelli, Rodrigo R. Paz, Hugo G. Castro, Mario A. Storti,

Lisandro D. Dalcin “Fluid Structure Interaction and Galilean Invariance”. in

Computational Fluid Dynamics: Theory, Analysis and Applications, Alyssa D.

Murphy (edts.), pp. 511-550. Nova Science Publishers. ISBN: 978-1-61209-276-8

(2011).

Además, los siguientes trabajos han sido presentados en congresos sobre diferentes

tópicos relacionados con esta tesis:
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Eddy Simulations”, 10th World Congress on Computational Mechanics, San Pablo,

Brasil. (07/2012).
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