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Abstract

Captured 2DV patterns (bidimensional vertical) of river flow velocities in a cross-plane

provide the basis for inferring the existence of helical flow in open-channel bends and

stream confluences as well. Researchers usually refer to the procedure named after

Rozovskii, which computes the cross-stream component with respect to the mean flow

direction at each vertical, forcing by definition a zero net discharge in outward and inward

directions. As a consequence, the secondary flow strength is determined locally by each

vertical velocity profile instead of defining it on the entire cross-section. Nevertheless,

some ambiguities still arise when deciding the orientation of the cross-channel plane that

defines the downstream and the cross-stream component.

Rhoads and Kenworthy (1998a) assumed that part of the method shortcomings could

be circumvented by projecting their field data onto fixed cross-sections. However, their

contribution ignited a controversy that continues to the present days. For that reason,

the questioning of the Rozovskii method is of substantial interest.

It is, therefore, the purpose of this thesis to contribute to the elucidation of the contro-

versy from both analytical and experimental points of view. Two rather simple analytical

flow solutions that exhibits helical behavior were developed without any attempt to cap-

ture the precise complex flow-pattern that set in curved open-channels. They should

be considered as semi-heuristic models built from past and probed descriptions of the

process. Then, massive field works were undertaken at river bends nearby the Santa Fe

city to test the previous theoretical findings.

The author establishes that despite the apparent capability of the Rozovskii procedure

to extract the helicoidal component, the cross-flow has distortion by an error source term

entirely attributed to the streamwise velocity. Thus, even though the Rozosvskii method

delivers crosswise-looking velocity distributions, the profile indeed blends the sought

secondary flow component with the unwanted streamwise velocity component. Despite

these disadvantages, the method can identify secondary currents if any, at extremely low

cost (in terms of the computing power required) and within the order of magnitude of

the actual phenomena.

Finally, the thesis closes by proposing an engineering intervention downstream of the

studied bifurcation at the entrance channel to the Santa Fe city harbor. It is possible to

set up a self-dredging flow reversal along the access channel, turning the actual diffluence

of the studied node into a stable confluence.





Resumen Extendido

Introducción

En las últimas décadas han surgido numerosas investigaciones en curvas de canales abier-

tos con la esperanza de descubrir parte de los mecanismos responsables de la generación

de meandros en cauces aluviales (Figura 1). No obstante, la forma en planta continua-

mente cambiante y la variabilidad topográfica del lecho hacen que la hidrodinámica de

un flujo natural meandriforme sea sumamente compleja (Blanckaert et al., 2009). El

campo de flujo es fuertemente tridimensional (3D), y en cada sección transversal del

meandro se desarrolla un flujo cruzado o secundario.

Por tanto, el flujo base en una curva de ŕıo resulta de superponer dos componentes

fácilmente identificables: uno longitudinal debido al transporte neto de la masa de agua

y otro transversal debido al desbalance mecánico que se establece entre el gradiente

lateral de presión hidrostática y la aceleración centŕıfuga inducida por la curvatura del

canal. La acción combinada de ambos da lugar a las conocidas corrientes helicoidales

en flujos curvos a cielo abierto (Figura 2), las que modifican los patrones de erosión y

transporte de sedimentos y con ello, la evolución morfológica de la sección transversal a

escala local (Engelund, 1974).

Figure 1: Meandros del Rı́o Colastiné, en la planicie aluvial del Rı́o Paraná en las
cercańıas de la ciudad de Santa Fe, Argentina

Paralelamente, en los últimos años hubo progresos significativos en la tecnoloǵıa disponible

para medir el flujo a cielo abierto en canales y cauces naturales. Es aśı que hoy se

cuenta con la posibilidad de medir con extrema precisión las 4 incógnitas básicas de la

hidrodinámica a superficie libre, esto es (h, u, v, w), tanto en el espacio como en el tiempo

(en este último caso, si es posible ignorar las complejidades propias de la turbulencia,



invocando por ejemplo la hipótesis de flujos poco profundos (Carrasco and Vionnet,

2004)). Aqúı h representa la profundidad local del agua, y (u, v, w) los componentes de

la velocidad del flujo con respecto a un sistema de referencia cartesiano (x, y, z) supues-

tamente inercial, usualmente definido en la pared del canal en un laboratorio o la margen

del ŕıo en campo.

La precisión espacial en el muestreo de las variables mencionadas se obtiene al combi-

nar un posicionador satelital con corrección diferencial trabajando en modo cinemático

(dGPS RTK) con perfiladores acústicos basados en el principio Doppler (ADCP - acous-

tic Doppler current profiler). El trabajo en “simultáneo” de estos equipos permite

disponer entonces de series de valores de las incógnitas hidrodinámicas promediadas

en un intervalo de tiempo dado (lo que filtra ciertos efectos turbulentos en el sentido

de Reynolds) y a lo largo, ancho y profundidad de un cierto volumen o “tramo” de ŕıo.

Sin embargo, la escasa disponibilidad de software espećıfico para procesar los datos de

ADCPs complica sobremanera la posibilidad de aislar en forma apropiada las corrientes

secundarias (Muste et al., 2004; Parsons et al., 2013).

Más aún, últimamente se desató una agria disputa en la comunidad cient́ıfica sobre

aspectos técnicos vinculados a la medición experimental de las corrientes secundarias.

Esta controversia involucra desacuerdos sobre la presencia o ausencia de corrientes secun-

darias en una curva de un ŕıo, y sobre el método utilizado para procesar las mediciones

y su capacidad para aislar el flujo cruzado (Lane et al., 1999; Rhoads and Kenworthy,

1999; Lane et al., 2000; Rhoads and Sukhodolov, 2001; Richardson and Thorne, 2001;

Parsons et al., 2007; Szupiany et al., 2009; Parsons et al., 2013). Uno de los métodos más

populares, y objeto de la controversia, es el llamado descomposición de Rozovskii (1957).

Este método calcula la componente del flujo cruzado en relación al flujo promedio de

cada vertical o perfil medido.

Es justamente esa forma de proyectar -o aislar- las corrientes secundarias lo que la

presente tesis pretendió discutir, dilucidando de una vez y en forma concluyente la men-

cionada controversia. Como resultado, el cuerpo principal de la Tesis se organizó en tres

Caṕıtulos independientes, aunque estrechamente vinculados entre śı. Con la excepción

del Caṕıtulo 1 (estado del arte), y del 5 y 6 (conclusiones y material suplementario,

respectivamente), los Caṕıtulos 2, 3, y 4 pretenden ser autocontenidos y susceptibles de

constituir cada uno per se una potencial publicación en una revista internacional de la

especialidad. En consencuencia, parte del material de un Caṕıtulo está repetido en otro

al solo efecto de garantizar la autocontención del material presentado.

El Caṕıtulo 2 revisa y critica el método de Rozosvskii sobre la base de dos modelos

teóricos de flujo helicoidad, uno el conocido modelo de Engelund (1974) y otro de-

sarrollado espećıficamente durante esta Tesis. El Caṕıtulo 3 hace lo propio pero con



datos de campo -en lugar de teóricos- para lo cual se desarrolló un código para proce-

sar información captada por ADCPs. Finalmente, el Caṕıtulo 4 (el más ingenieril de

todos) intenta comparar dicha información de campo, procesada con códigos de dis-

tinta procedencia, con resultados generados por la herramienta numérica Telemac-3d

(Telemac-Mascaret Modelling System, 2014).

Figure 2: Corrientes helicoidales en una curva de un cauce aluvial

Hipótesis

A partir de los desacuerdos y controversias planteadas en base al método de Rozovskii,

se asumé como hipótesis de la tesis la premisa que el método postulado por Rozovskii,

utilizado para extraer la componente lateral de un flujo helicoidal asimétrico de datos

de campo, presenta un sesgo intŕınsecamente erróneo que afecta su resultado. En otras

palabras, se asume que las corrientes secundarias computadas con Rozovskii contienen

un error intŕınseco.

Objetivos

Entonces, en función de la hipótesis, se fija como objetivo último de la tesis analizar el

tratamiento de las observaciones de campo captadas con ADCP con el fin de aislar la

circulación secundaria de la componente primaria de flujos curvos. Para ello primera-

mente se analizó exhaustivamente el método de Rozovskii con datos sintéticos generados

con modelos teóricos, luego se procesaron datos de campo filtrados sobre la base de la

cŕıtica previa, y finalmente se llevó a cabo una comparación cualitativa con resultados

numéricos producidos por un código 3D reconocido. En resumen, la tesis buscó satisfacer

tres objetivos diferenciados, y agrupados en tres caṕıtulos relacionados:

i Analizar cŕıticamente el procedimiento de Rozosvskii para aislar la circulación secun-

daria de un flujo primario curvo desde un aspecto teórico(Cap. 2),

ii Verificar las predicciones teóricas con datos experimentales e implementar un método

de proyección alternativo para el tratamiento de los datos de campo (Cap. 3),



iii Caracterizar el patrón del flujo en una difluencia de un ŕıo del sistema aluvial del

Paraná mediante una comparación entre datos de campo y simulaciones numéricas

(Cap. 4).

Metodoloǵıa y Resultados

El Caṕıtulo 2 presenta una revisión cŕıtica del popular método de Rozosvskii, el cual

es ampliamente utilizado por cient́ıficos y profesionales para la obtención de datos de

circulación secundaria de flujos medidos en campo o en laboratorios (Bathurst et al.

(1977); Dietrich and Smith (1983); Szupiany et al. (2009); Parsons et al. (2013)).

El procedimiento de Rozovskii (1957), reintroducido por Bathurst et al. (1977), supues-

tamente proporciona un criterio para determinar si las celdas de circulación secundaria

pueden estar presentes a lo largo de una trayectoria de flujo curvo mediante el cálculo de

una secuencia de planos discretos, y orientados perpendicularmente a la dirección local

de la velocidad media en la vertical (Dietrich and Smith, 1983). Sin embargo, la celda

de recirculación transversal no está necesariamente orientada en la perpendicular a la

dirección del vector medio en cada plano del perfil vertical.

Para el análisis del método de Rozovskii se recurrió entonces a dos modelos teóricos sim-

plificados que producen corrientes secundarias: la clásica solución de Engelund (1974),

modificada para admitir una deriva lateral, y un modelo de flujo potencial motorizado

por una capa de vórtices (vortex sheet) a partir de una aproximación conocida en teoŕıa

de lubricación (Vionnet, 1995). Las soluciones exactas fueron empleadas para la ge-

neración de datos sintéticos, y a la usanza de los datos de campo tal como son capturados

con un ADCP.

El procedimiento adoptado posibilitó identificar el error sistemático introducido por el

método de Rozovskii, el cual ha sido ignorado hasta el presente en la literatura especia-

lizada. Se establece entonces que una aplicación directa del método de Rozosvskii puede

enmascarar la correcta magnitud de las estructuras de circulación secundarias tanto en

curvas como en confluencias.

El Caṕıtulo 3 incluye una detallada descripción de los datos de campo capturados du-

rante el desarrollo de la Tesis. Se realizaron mediciones en dos sitios diferentes sobre el

Rı́o Colastiné; en el tramo exterior del Canal de Acceso al puerto de Santa Fe, donde si

bien el ŕıo presenta una bifurcación en forma de Y, su hidrodinámica responde a un flujo

curvo a superficie libre (Morell et al., 2014), y en una confluencia ubicada a pocos cientos

de metros aguas arriba. Las mediciones no sólo incluyeron determinaciones precisas de

la topograf́ıa del lecho sino también de las estructuras 3D del campo de velocidades.



Se propuso en consecuencia un procedimiento de proyección alternativo a Rozovskii,

basado en eliminar la deriva lateral del campo de velocidades en cada vertical, y proyec-

tar el campo resultante sobre una trayectoria media recorrida por la embarcación. Esta

última se obtiene a través de un ajuste ortogonal por mı́nimos cuadrados. A diferen-

cia de Rozosvskii, que es un método de proyección estrictamente local (el ángulo de

proyección depende de los valores del flujo en cada vertical), el aqúı presentado se basa

en coordenadas geográficas o globales (ENU: East-North-Up).

La metodoloǵıa adoptada involucra dos pasos: primeramente se exportan los datos de

campo en archivos de formato ASCII con los programas provistos por el fabricante del

ADCP (Sontek y TRDI), y posteriormente se filtran con un paquete de software escrito

en fortran 95, llamado read-aDcp para su posterior procesamiento y visualización. El

procedimiento after-read-aDcp permite a los usuarios integrar las velocidades primaria

y secundaria de una o más secciones transversales con el modelo digital del terreno,

generado previamente con las rutinas descritas en Vionnet (2010).

El procedimiento read-aDcp proyecta los datos de velocidad 3D con una metodoloǵıa

similar a la utilizada por Dinehart and Burau (2005). Las corrientes secundarias se

calculan con (o sin) la condición de caudal neto nulo del flujo trasversal. El código

descompone tanto el campo de velocidades 2D-horizontal (2DH), promediado en la ver-

tical, como los componentes de velocidades tangenciales (a lo largo del plano trasversal

al flujo) y normales (a lo largo del plano definido por la dirección del flujo principal), con

la adición del componente vertical (Up) para el caso 3D. Los componentes tangenciales

y verticales definen el plano 2D-vertical (2DV), representando el campo de velocidades

a lo largo del plano transversal proyectado, y ubicado a través de un ajuste de mı́nimos

cuadrados ortogonales de todas las trayectorias navegadas.

El procedimiento seguido se aplicó tanto a datos obtenidos con ADCPs de distintos

fabricantes (Sontek y TRDI) como a datos capturados en diferentes ocasiones. En todos

los casos se detectaron corrientes secundarias de estructura casi idéntica. Esto habla, en

principio, de la independencia de los resultados respecto del dispositivo utilizado, de su

posterior tratamiento, y de la estabilidad o “persistencia” de las corrientes secundarias

desde el punto de vista hidrodinámico. Y por último, el análisis realizado a los datos de

campo confirman las predicciones teóricas realizadas en el Caṕıtulo 2. La proyección de

Rozovskii definitivamente enmascara la correcta magnitud de las corrientes secundarias

con un error proporcional al déficit (o exceso) de la componente longitudinal de velocidad

con respecto a su valor medio.

Finalmente, el Caṕıtulo 4, el único publicado hasta el presente (Morell et al., 2014),

compara el flujo secundario tal como fuera relevado en la zona de estudio, y aislado

acorde a los procedimientos del Caṕıtulo 3, con simulaciones numéricas producidas por



Telemac-3D. La zona de estudio presenta una rama donde el flujo entrante experimenta

un giro agudo que lo hace propenso a efectos inerciales de las fuerzas centŕıfugas. En

rigor, los resultados numéricos confirman que ambas ramas de la difluencia actúan como

verdaderas curvas de un cauce aluvial, y por tanto, son propensas a acomodar corri-

entes secundarias (Dargahi, 2004). Todas las caracteŕısticas observadas en campo son

capturadas por las soluciones numéricas 2D y 3D: flujo helicoidal, zonas de separación,

y formación de un vórtice de eje vertical, incluyendo la deflección de la superficie libre

observada a lo largo del llamado “tramo exterior” del canal de acceso al Puerto de Santa

Fe.

Podŕıa decirse que al Caṕıtulo 4 le faltó el desarrollo de un algoritmo unificado para

aislar el flujo transversal de flujos curvos tanto de datos de campo como de resultados

numéricos (el algoritmo debe ser independiente de la procedencia o génesis del dato,

más allá del formato propio de cada uno). En este caso, la interface de pre- y post-

procesamiento de Telemac-3d no fue de ayuda.

Conclusiones

La captura de celdas de recirculación, a partir de patrones de velocidades 2DV en un

plano que representa una determinada sección transversal de un cauce aluvial, propor-

ciona la base para inferir la existencia de un flujo helicoidal tanto en tramos curvos

como en confluencias. Sin embargo, ciertas ambigüedades persisten a la hora de decidir

la orientación del plano medio transversal que define las componentes en sentido de la

corriente y la transversal (Lane et al., 2000).

Profesionales e investigadores recurren por igual al procedimiento de Rozovskii, donde

la componente transversal de la corriente se calcula con respecto a la dirección media del

flujo en cada vertical. Esta condición impone un flujo neto cero en dirección a la normal

al plano de velocidad media 2DH, dirección que rota continuamente a medida que el

dato captado se aproxima (o aleja) de las márgenes de la curva de un canal abierto.

Como consecuencia, la supuesta intensidad del flujo secundario se determina localmente

en cada perfil vertical de velocidad, en lugar de definirse globalmente en toda la sección

transversal.

Rhoads and Kenworthy (1998a) supuestamente elud́ıan en parte estas restricciones del

procedimiento proyectando sus datos de campo en secciones fijas. Sin embargo, su

contribución desató una polémica que aún persiste. Por esta razón, el cuestinamiento al

método de Rozovskii fue y aún es, de sustancial interés tanto desde un punto de vista

práctico como teórico.

En esta tesis se propuso contribuir al esclarecimiento de la controversia mediante el uso

de dos modelos, producto de diferentes aproximaciones a las ecuaciones de movimiento.



Ambos asumen el establecimiento de un flujo base “normal” en dirección de la corriente,

que es cuando gravedad y fricción están en perfecto equilibrio. Mientras el modelo

de Engelund (1974) resuelve una ecuación de cantidad de movimiento simplificada en

dirección lateral, el modelo de capa vortical resuelve la ecuación de continuidad 2DV en

el plano transversal en forma exacta. Ambos predicen información helicoidal útil para

evaluar cualquier método de captura y proyección de los resultados (o datos). En rigor,

uno de los modelos es incompleto puesto que no resuelve el componente vertical (Up),

responsable de “cerrar” la celda de recirculación en el plano 2DV.

No obstante, ambos modelos alcanzan para demostrar que el procedimiento de Rozovskii

es equivalente a disociar el campo de flujo en el componente helicoidal más un término de

error, nulo en promedio (en profundidad). Esto produce perfiles de circulación erróneos,

puesto que el verdadero componente transversal es afectado por la adición de un error,

que es función del exceso (o déficit) del componente de velocidad longitudinal respecto

de su valor medio. Este componente en nada contribuye al mantenimiento de la celda de

circulación secundaria, con excepción de su acción puramente advectiva. En definitiva,

si bien el método de Rozovskii produce “vistosas” distribuciones verticales de corri-

entes secundarias, sus resultados enmascaran la hidrodinámica real del ŕıo en la sección

transversal medida.

Fue necesario entonces desarrollar un método alternativo para tratar los datos de campo,

y fundamentalmente, para proyectar el flujo trasversal. El tratamiento realizado a los

datos de campo, acorde a la metodoloǵıa descripta en el Caṕıtulo 3, fue consistente con

las conclusiones teóricas del Caṕıtulo 2, es decir, Rozovskii produce un perfil trasversal

erróneo, mientras que el algoritmo basado en coordenadas ENU aisla correctamente la

circulación secundaria.

Finalmente, el Caṕıtulo 4 retoma la zona de estudio del Canal de Acceso. Aqúı se

comparan datos de campo con numéricos a fin de capturar el patrón de flujo dominante

en una difluencia del ŕıo Colastiné, donde uno de los brazos accede al puerto local.

El puerto ha estado en declive desde los 70 debido a los excesivos costos del dragado

de mantenimiento del canal de acceso. El objetivo del caṕıtulo fue, por tanto, doble:

demostrar la persistencia del patrón de flujo desarrollado en la difluencia a pesar de

los cambios morfológicos de reciente aparición, y probar una posible solución al casi

centenario problema de sedimentación que presenta el tramo exterior del canal de acceso.

Los conocimientos adquiridos durante la ejecución del estudio ayudaron a validar el

código desarrollado para procesar los datos de campo capturados con dos ADCPs. Los

resultados confirmaron que los dos brazos de la bifurcación son propensos a desarrollar

corrientes secundarias. Por otra parte, las simulaciones demostraron que una inter-

vención ingenieril aguas abajo de la bifurcación, a fin de invertir la dirección de la



corriente, puede establecer un flujo capaz de auto-dragar el tramo exterior del canal de

acceso, convirtiendo la difluencia existente en una confluencia estable.

En śıntesis, esta tesis reúne cuatro contribuciones novedosas:

i ) la extensión de la clásica solución de Engelund,

ii ) el análisis teórico que demuestra que Rozosvskii es, de hecho, un método mal condi-

cionado,

iii ) el desarrollo de un método alternativo de proyección para el tratamiento de datos

de ADCP (en consonancia con el marco teórico discutido aqúı), y

iv ) la solución ingenieril alternativa que establece que bajo ningún aspecto es necesario

reubicar el puerto de Santa Fe a un costo estimado en USD 180 millones.
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Chapter 1

Introduction

1.1 Motivation

The bed topography along river bends is partially shaped by the action of secondary

flows that sets in the transversal direction to the primary longitudinal flow, an effect

known as helical flow (Rozovskii, 1957; Dietrich and Smith, 1983). This coherent flow

structure is the result of a local competition between the curvature-induced centrifugal

acceleration and the counteracting pressure force associated with the lateral gradient of

the water surface along the curved channel (Engelund, 1974).

It turns out that the cross-flow, where turbulence plays a minor role (Blanckaert and

de Vriend, 2004), contributes to the local scour of the outer bank modifying the bed

topography of the cross sections observed in river bends. Thus, on the basic flow there

is a superimposed flow in the transverse direction, termed “secondary flow”, which

occupies the large part of the cross section and thereby named the centre-region cell to

differentiate it from the outer cell that is often observed near the outer bank (Blanckaert

and de Vriend, 2004).

Secondary currents represents a local process that scales with channel width (B), water

depth (H) and radius of curvature (R), and exhibit different behaviors depending on

the aspect ratio β = B/H and α = R/B (Rozovskii, 1957; Yalin, 1992; Kashyap et al.,

2012). Whereas Hickin (1978) cited the range 1.4 ≤ α ≤ 4.0 for many alluvial rivers,

apparently the vast majority of known field data about secondary currents lie in the

range 1.0 ≤ α ≤ 6.0 and 10 ≤ β ≤ 15 (Table 1.1). These cross-stream circulations driven

by centrifugal forces are important on their own right (Engelund, 1974; Leschziner and

Rodi, 1979; de Vriend, 1981), despite some authors believed their role in shaping the

bed topography has been over-emphasized over the years (Hooke, 1980).

1
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Figure 1.1: Velocity profile in curved channels

Table 1.1: Some field data from rivers around the world

River B(m) H (m) β α

Desna, Ukraine (Rozovskii, 1957) 150.0 3.5 43.0 2.3

Squamish, Canada (Hickin, 1978) 77.0 6.9 11.2 1.9

Severn, UK (Bathurst et al., 1979) 12.0 0.90 13.3 5.9

Dommel, The Netherlands (de Vriend and Geldof, 1983) 7.0 0.58 12.0 2.8

Muddy Creek, USA (Dietrich and Smith, 1983) 5.5 0.5 11.0 1.5

Brahmaputra, Bangladesh (Richardson and Thorne, 2001)∗ 450.0 6.0 75.0 6.3

Sacramento, USA (Dinehart and Burau, 2005) 130.0 12.0 10.8 4.3

Klarälven, Sweden (Dargahi, 2004) 75.0 5.0 15.0 1.9

Spree, Germany (Sukhodolov, 2012) 26.0 2.2 11.8 6.0

bifurc. Colastiné, Argentina(Morell et al., 2014) 130.0 10.0 13.0 1.1

Lower Paraná, Argentina (Szupiany et al., 2009)∗ 850.0 15.00 57.0 3.0

Colastiné, Argentina (Morell et al., 2014) 130.0 10.00 13.0 1.1
∗ confluences, whose hydrodynamics is not necessarily equivalent to those observed on
river bends (Rhoads and Kenworthy, 1998a)

As pointed out by Leschziner and Rodi (1979), knowledge of the mechanics of three-

dimensional 3D helical flows facilitates the prevention of silting, the location of naviga-

tion channels and water intakes, and the stabilization of riverbanks. Nevertheless, in

spite of the large body of experimental data on curved flows available nowadays, notably

the works of Rozovskii (1957), Shiono et al. (1999) and Blanckaert and de Vriend (2004),

who studied bends with central angles and aspect ratios of 180o and 13.33; 60o-180o and

2.83, and 120o with 3.6, respectively, there are few field studies to date detailing the

structure of helical flows driven by centrifugal forces.

On the other hand, and despite repeated assurances given by the research community

that ADCP (acoustic Doppler current profiler) measurements are appropriate to capture

3D flow patterns in rivers, no single issue in contemporary meander research, and stream

confluence research as well, is perhaps more controversial than the debate surrounding

the role of helical motion (Rhoads and Sukhodolov, 2001). The controversy involves
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disagreement about the presence or absence of helical motion, and about the method

used to detect it from field data (Rhoads and Kenworthy, 1998a; Lane et al., 1999;

Rhoads and Kenworthy, 1999; Lane et al., 2000; Richardson and Thorne, 2001; Parsons

et al., 2007; Szupiany et al., 2009). Part of the main concern of this thesis is therefore

related with the manner in which secondary circulation is defined, measured, and isolated

from the primary flow, whose strength and orientation must be independent of observer

point of view.

One of the most popular method to isolated the secondary flow from the primary flow is

based upon a velocity rotation scheme originally developed by Rozovskii (1957), and later

reintroduced by Bathurst et al. (1977). The Rozovskii procedure computes the cross-

stream component in relation to the mean flow direction for each individual vertical

velocity profile. This method identifies the primary velocity direction for each profile as

the depth-integrated flow vector, and the secondary currents are then obtained by an

orthonormal projection against this average vector within each vertical profile (Dietrich

and Smith, 1983).

The present thesis takes an extra step in analyzing the appropriateness of the Rozovskii

method to isolate secondary currents. The work relies on field data collected over a span

of almost 10 years (Table 1.2). From that period, most field data were collected during

the execution of the present thesis (2008-2013).

Table 1.2: Summary of ADCP surveys with discharge reported either at the entrance
channel to Santa Fe harbour or at main channel of the Colastiné river surrounding
Las Gallinetas Island. Fieldwork parameter: z∗w : water stage measured at Santa Fe’s
harbour, Q : mean discharge, V : mean-vessel velocity, ∆z : cell (bin) size, and ∆t :

sampling or averaging interval.

Date z∗w [m] Q [m3/s] V [m/s] ∆z[m] ∆t[s]

2004a,1 11.23 856±98 0.72 0.90 20

2006a,1 11.51 917±101 0.62 0.50 5, 10

2007a,1 12.16 663±116 1.36 1.10 10

2008a,1 10.78 622±119 1.15 0.75 10

2009a,1 13.27 1083±126 0.65 0.90 10

2010b,1 12.78 1085±63 1.52 0.25 0.59

2012b,1 ,2 10.57 595±14 1.15 0.25 0.59

2012b,2 10.56 1419±16 1.23 0.25 0.59

2013b,1 11.24 863±43 1.25-1.79 0.25 0.59

aSontek River Surveyor 1000kHz, 1 entrance channel to Santa Fe harbour
bTRDI Rı́o Grande 1200 kHz, 2 Colastiné river, “Las Gallinetas” confluence



Chapter 1. Introduction 4

1.2 Hipothesis

From disagreements and disputes that was arise from the Rozovskii method is assumed as

thesis hypothesis the premise that Rozovskii method used to extract the lateral compo-

nent of an asymmetric helical flow field data, presents an inherently bias wrong affecting

its outcome.

In other words, it is assumed that the secondary currents computed with Rozovskii

contain an intrinsic error

1.3 Objetives

A considerable part of the present work involved the collection of highly accurate field

data that supposedly contains helical flow behavior. It was therefore of paramount

importance to verify the capability of available methods to filter the sought behavior

from raw data.

Consequently, the thesis concerns with several issues: firstly, with the field-based ob-

servations captured with an ADCP treatment in order to isolate secondary circulation

from a primarily skewed flow; secondly, with the Rozovskii method to project secondary

currents, and finally, with the comparison between results generated by the well-known

3D numerical engine Telemac and field data.

Briefly speaking, the thesis content divides in three separate albeit related objectives,

each one constituting a potential publication:

i. to question the Rozosvskii procedure to isolate secondary circulation from a skewed

primary flow from a theoretical point of view,

ii. to verify the theoretical predictions with field, experimental, data and eventually,

to propose an alternative procedure to project the secondary currents,

iii. characterize the flow pattern in a difluence an alluvial river Paraná system by a

comparison of field data and numerical simulations.

To that aim, river bottom surveying with an echo-sounder and 3D velocity measurements

with an ADCP were undertaken at several cross sections of two study sites located within

the alluvial floodplain of the Paraná River (Figure 2.1).
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Figure 1.2: Study sites within the aluvial system of the Paraná River

1.4 State of the Art

Besides the contributions mentioned before, it is well worth to cite the pioneer work

of Thomson (1876), who was one of the first to describe the formation of cells of se-

condary currents in curved open-channels. Even earlier, Boussinesq (1868) had solved

theoretically the problem of a viscous fluid flowing freely in a prismatic and curved open

channel of slowly varying curvature, obtaining the classical two layers solution flowing

in opposite directions. The Bousssinesq’s solution was revised years later by Rozovskii

(1957) in the context of the Russian school contributions onto the mechanics of river

bends, and revisited by Engelund (1974) and Johannesson and Parker (1989a) among

others. Therefore, most of the available contributions on the subject can be grouped in

three different categories:

1.4.1 Theoretical Contributions

Besides Boussinesq (1868) contribution, most theoretical advances has been set forth by

the Rozovskii (1957) monograph, and years later by the work of Engelund (1974) and

Johannesson and Parker (1989a). Their contributions were later improved by Kikkawa

et al. (1976), and then reviewed by Falcon (1984).

Kitanidis and Kennedy (1984) proposed a non-conservative 3D phenomenological model

to estimate the phase-lag between the flow velocity fluctuation and meander wavelength,

a mechanism believe to be partially responsible of the meander formation process. Their
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contribution was later revisited by Johannesson and Parker (1989a), who developed a

river bend model from the depth-averaged form of the conservation laws.

1.4.2 Modelling Contributions

There are many contributions based upon numerical computation of the process, ranging

from 2D averaged over depth (2DH) to full 3D simulations. Among all, it is worthwhile

to cite the pioneer contribution of Leschziner and Rodi (1979) and the work of Blanckaert

and de Vriend (2003).

More recently, modifications and validation of 3D models were introduced by Boxall

et al. (2003) and Blanckaert and Graf (2004). Dargahi (2004) applied a 3D flow model

to study the flow behavior in a river bifucation. By the same token, Kashyap et al.

(2012) employed a 3D model to investigate the effects of curvature ratio and aspect

ratio on channel bend.

1.4.3 Field & Laboratory-based Contributions

Most researchers resort to the Rozovskii procedure to isolate the secondary currents

from the primary flow component on their field and laboratory studies, regardless of

the problem under analysis. The method is based upon identifying the direction of

the depth-averaged velocity at an individual vertical, and then decomposing the flow

orientation at every elevation in that vertical into one component parallel to the direction

of the depth-averaged velocity (assumed to be the primary flow component), and one

component perpendicular to it (assumed to be the secondary flow component (Lane

et al., 1999).

The application of the method and others as well can be repeatedly found in many appli-

cations, which can be classified according to the following problem-oriented situations:

a)streams confluences, b)river bends, c)submarine canyons, and d)tidal forcing and river

discharge.

a) Streams confluence : field studies of streams confluences have mainly focused on

fluvial dynamics at or immediately downstream of the location where the confluent

flows enter the downstream channel. It was the work of Rhoads and Kenworthy

(1998a) that sparked the controversy about the capability of the Rozovskii method

to isolate secondary currents from skewed flows in streams confluence (Lane et al.,

1999; Rhoads and Kenworthy, 1999; Lane et al., 2000; Rhoads and Sukhodolov,

2001; Parsons et al., 2007; Szupiany et al., 2009; Parsons et al., 2013)
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b) River bends : Bathurst et al. (1977) reintroduced the Rozovskii procedure to

treat field measurements of long-stream and cross-stream velocities by sampling the

Severn river in UK with an electromagnetic flow-meter. Later on site investigations

of secondary currents in river bends were conducted by Dietrich and Smith (1983)

in the Muddy Creak (USA), and more recently by Dinehart and Burau (2005) in

the Sacramento River (USA), who tested a suite of methods for resolving cross-

stream velocity distributions from data collected using ADCP. Daniels and Rhoads

(2006) reported the results of three-dimensional flow structure from a meander

bend along a low-energy stream in the Midwestern United States. Measurements

of three-dimensional velocities were obtained with acoustic Doppler velocimeters

(ADVs). In 2012 Sukhodolov (2012) examined the flow structure using results of

field measurements carried out in a bend of the Spree river in Germany. Also,

Zinger et al. (2013) documented the 3D structures of flow and bed morphology of

developed chute cutoffs on meander bend on the Wabash River, USA.

c) Submarine canyons : the plan-form patterns of meandering submarine channels

and subaerial fluvial bends show many similarities that has given rise to strong

analogies concerning the fluid dynamics of these channel types. Corney et al.

(2006) and Straub et al. (2008) investigated and compared flows within fluvial

meanders and submarine model channel bends.

d) Tidal forcing and river discharge : in recent times, many studies related to

tidal forcing and river discharge have been carried out. Chant (2002) related the

strength, structure and character of secondary flow forced by flow curvature to

variations in river discharge and tidal forcing through analysis of ADCP data.

Cuadrado and Perillo (1997) postulate that helicoidal flow pattern was responsi-

ble for the large accumulation of sedimentation observed in one of the entrance

channels to the Bah́ıa Blanca system harbour, Argentina

1.5 Thesis Content

The idea was to begin with a critical review of the Rozovskii procedure used to project

secondary currents onto a cross-flow plane that is defined locally. Towards that aim, two

entirely new approximated flow solutions that mimic helical behavior within a prismatic

open channel were proposed. The expectation was to have an independent framework

where the capability of the Rozovskii procedure to isolate cross-flow from skewed primary

flow can be compared to.

Then, an alternatively projection procedure was proposed given the fact that the Ro-

zovskii rotation schem is an ill-conditioned method. Indeed, Chapter 2 shows that the
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method turns out to be unreliable, despite its popularity among practitioners and re-

searchers.

Finally, some numerical simulations with Telemac-3d were undertaken to see how close

-or far away- can numerics be from properly captured field-based observations.

In more detail, Chapter 2 recalls that captured patterns of 2D river flow velocities in the

cross-plane provide the basis for inferring the existence of helical flow in channel bends

and stream confluences as well. Nevertheless, some ambiguities still arise when deciding

the orientation of the cross-channel plane that defines the downstream and cross-stream

component of flow. Researchers usually refer to the procedure named after Rozovskii,

which computes the cross-stream with respect to the mean flow direction at each ver-

tical, forcing by definition a zero net discharge in outward and inward directions. As a

consequence, the secondary flow strength is determined locally at each vertical velocity

profile instead of defining it on the entire cross-section. Rhoads and Kenworthy (1998a)

apparently circumvented this aspect of the Rozovskii procedure by projecting their field

data onto fixed cross-sections. However, their contribution sparked a controversy that

continues to the present days. For that reason, the questioning of the Rozovskii method

is of substantial interest. Chapter 2 seeks to contribute to the elucidation of the contro-

versy with the implementation of two simple close flow solutions that exhibits helicoidal

behavior. The work shows that despite the cross-flow looking results delivered by the

Rozovskii method, its decomposition is clearly biased and introduce a systematic error

in the cross-stream fields.

Chapter 3 reviews critically the capability of the so-called Rozovskii method to isolate a

cross-flow from a skewed primary flow. The revision relies on field data collected with an

ADCP at two study sites located on the alluvial plain of the Paraná River (Argentina).

The river surveying included bathymetry data obtained with an echo sounder and de-

tailed 3D velocity measurements at several cross sections of both study sites. It is here

established, in tune with the previous theoretical findings, that the Rozovskii method

indeed blends the streamwise velocity component with the crosswise component. A sys-

tematic -or blind- application of the method yields the cross-flow component but adds

a zero depth-averaged error proportional to the streamwise velocity. To achieve these

conclusions was necessary to develop an alternative projection method entirely based on

global or earth coordinates instead of local procedures, as customary in the Rozovskii

decomposition.

Finally, Chapter 4 presents field and numerical data depicting the flow pattern formed

at a diffluence of the Colastiné River, Argentina, where one branch accesses the Santa Fe

City’s Harbor. The harbor has been in decline since the 1970s due to costly maintenance

dredging of the access channel. The objective of the work was thus twofold: to show
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the persistence of the flow pattern developed at the diffluence despite recent morpho-

logical changes seen at the site, and to test a possible solution to the entrance channel

sedimentation problem. Knowledge gained during the execution of the study helped to

validate a code developed to process field data captured with two ADCPs. The results

confirm that both branches are prone to developing secondary currents. Simulations

show that an engineering intervention downstream of the bifurcation can establish a

self-dredging flow reversal along the access channel, turning the actual diffluence into a

stable confluence.

Chapter 5 grouped the work major conclusions and potential guidelines for future re-

search. It can be said that the thesis major contributions are:

• i) the extended theoretical solution to the classical Engelund’s model (Engelund,

1974),

• ii) the theoretical analysis showing the Rozosvskii method is indeed an ill-posed

projection,

• iii) the alternative method to project cross-flow (based on global coordinates), and

• iv) the engineering solution to the relocation of the Santa Fe City’s harbor.

Appendix contains relevant and/or related material but not essential for the thesis de-

velopment.





Chapter 2

On the Rozovskii method to

isolate secondary circulation from

skewed flow

Captured patterns of 2D river flow velocities in the cross-plane provide the basis for

inferring the existence of helical flow in channel bends and in stream confluences as

well. Nevertheless, some ambiguities still arise when deciding the orientation of the

cross-channel plane that defines the downstream and cross-stream component of flow.

Practitioners and researches usually refer to the procedure named after Rozovskii, where

the cross-stream component is computed with respect to the mean flow direction at each

vertical, forcing by definition a zero net discharge in outward and inward directions. As a

consequence, the secondary flow strength is determined locally at each individual vertical

velocity profile instead of defining it on the entire cross-section. Rhoads and Kenworthy

(1998a) circumvented this aspect of the Rozovskii procedure by projecting their field

data onto fixed cross-sections. However, their contribution sparked a controversy that

rages on to the present days. For that reason, the questioning of the Rozovskii method

is of substantial interest. It is therefore the purpose of this chapter to contribute to

the elucidation of the controversy with the implementation of two simple close flow

solutions that exhibits helicoidal behavior. It is then established that despite the cross-

flow looking results delivered by the Rozovskii method, its decomposition is clearly in

error and fails to reproduce the cross-stream fields in both cases.

10
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2.1 Introduction

The bed topography along river bends is partially shaped by the action of a secondary

flow that sets in the transversal direction to the primary longitudinal flow; an effect

known as helical flow (Rozovskii, 1957; Dietrich and Smith, 1983). This coherent flow

structure is the result of a local competition between the curvature-induced centrifugal

acceleration and the counteracting pressure force associated with the lateral gradient of

the water surface along the curved channel (Engelund, 1974). Whereas electromagnetic

current meters were used intensively in the past to detect the presence of secondary

currents (Bathurst et al., 1977; Hickin, 1978; de Vriend and Geldof, 1983; Dietrich and

Smith, 1983; Rhoads and Kenworthy, 1998a), nowadays ADCP (acoustic Doppler current

profiler) measurements have gained considerable acceptance because of their efficiency

to study the three-dimensional (3D) structure of free-surface flows, where the trend is

to repeat crossings along linear routes to resolve weak cross-stream velocities (Dinehart

and Burau, 2005; Jackson et al., 2009; Parsons et al., 2013). As a result, regardless of

the measurement device employed, captured patterns of 2D velocities in the cross-plane

provide the basis for inferring the existence of helical flow in river bends (Dinehart and

Burau, 2005), and in stream confluences as well (Rhoads and Kenworthy, 1998a; Rhoads

and Sukhodolov, 2001; Szupiany et al., 2009). Nevertheless, some ambiguities still arise

when deciding the orientation of the cross-channel plane that defines the downstream

and cross-stream component of flow (Dietrich and Smith, 1983; Lane et al., 2000). Prac-

titioners and researchers usually refer to the procedure developed by Rozovskii (1957,

p.138), where the secondary flow strength is determined locally at each individual ver-

tical velocity profile (Bathurst et al., 1977; Parsons et al., 2007; Szupiany et al., 2009;

Coz et al., 2010) instead of defining it on an entire cross-section (Dietrich and Smith,

1983). The cross-stream component is then computed with respect to the mean flow di-

rection at each vertical, forcing by definition a zero net discharge in outward and inward

directions. As pointed out by Dietrich and Smith (1983), the analysis of Rozovskii is,

therefore, able to capture the proper secondary circulation on a local-basis, albeit may

fail to produce the complete picture of the cross-stream velocity field.

Rhoads and Kenworthy (1998a) circumvented this aspect of the Rozovskii procedure

by projecting their field data onto fixed cross-sections. However, their contribution

sparked a controversy that rages on to present days (Lane et al., 1999; Rhoads and

Kenworthy, 1999; Lane et al., 2000; Rhoads and Sukhodolov, 2001; Parsons et al., 2007;

Szupiany et al., 2009; Parsons et al., 2013). Similar questioning were raised within

the computational fluid dynamics community (Leschziner and Rodi, 1979; Boxall et al.,

2003, p.156), where velocities are referred to in global coordinates without need of using

correction angles to account for zero net cross-stream discharge. For that reason, and
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due to the considerable investment required to collect reliable field data and the risk

to infer misleading conclusions regarding the presence and the structure of secondary

circulation on river bends or stream confluences (Rhoads and Sukhodolov, 2001, p.2403),

the questioning of the Rozovskii method is of substantial interest. It is therefore the

purpose of this chapter to contribute to the elucidation of the controversy.

We revisit the Rozovskii method under the light of a rather simple analytical flow solu-

tion that exhibits helical behavior, obtained under assumptions si-milar to those invoked

by Kitanidis and Kennedy (1984). However, it must be clear that the proposed model of

helical flow behavior by no means attempts to capture the precise complex flow-patterns

that set in curved open-channels. It should be considered as a semi-heuristic model built

from past and probed descriptions of the process (e.g. Rozovskii, 1957; Engelund, 1974;

Kitanidis and Kennedy, 1984), and aimed solely to judge the capability of the Rozovskii

method to isolate a well-defined cross-circulation from the primary flow component. An

attempt in this direction was made by Lane et al. (2000) using numerical tools instead

as the preferred reference frame where the outcome of the method was compared to.

Here, using ideas borrowed from lubrication theory, a flow solution is obtained whose

downstream component is uncoupled from the cross-stream component. For the down-

stream velocity distribution, the classical slip-velocity concept of Engelund (1974) is

used, whereas the cross-flow component is driven by a vortex sheet with fixed vorticity

distribution along a thin strip located at the cross-section centre superimposed to a lat-

eral drift to account for the cross-stream discharge effect. It is then established that the

Rozovskii method, albeit conceptually correct, may introduced a systematic bias when

reproducing the entire cross-stream velocity field.

2.2 Theoretical Framework

Unless stated otherwise, a lower case letter represents a dimensionless quantity and its

corresponding upper case letter represents its dimensional counterpart. Bold face upper

case letters represent vectors.

Figure 2.1 defines a reference frame for two analytical models for laterally unbounded

flows, intended to provide two base solutions to test the Rozovskii decomposition. The

first model corresponds to the classical Engelund (1974) solution, and the second to the

foregoing vortex sheet model.

The water layer of depth H0 bounded by the bed elevation Zb and by the free-surface

elevation Zw that flows along the curved channel depicted in Figure 2.1 is now referred to
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R
Z b

Z w
4C

H0 B0

R, r,
 u, y, v

Z,  , w

Figure 2.1: Reference frame for a channel bend

in cylindrical polar coordinates (R, θ, Z), with (UR, Uθ, UZ) as the corresponding velocity

components.

2.2.1 Engelund model

The long wave approximation yields the well-known hydrostatic pressure distribution

within the flow field. If it is further assumed a motion approximately independent of θ,

the full set of governing equations reduces (Appendix A.2.1), after an order of magnitude

analysis (Rozovskii, 1957), to

1

R

∂ (RUR)

∂R
? 0 (2.1)

−gSR + ?
∂2UR

∂Z2
? −U2

θ

R
, (2.2)

gSθ + ?
∂2Uθ

∂Z2
? 0 , (2.3)

where the free-surface slopes in crosswise and streamwise directions are

SR =
∂Zw

∂R
, Sθ = − 1

R

∂Zw

∂θ
, (2.4)

respectively.

The primary flow component obeys the downstream momentum equation for uniform

and steady flow in a wide rectangular channel, whose integration between Zb and a

point Z, after specifying the boundary shear stress at the bed level and the stress-free

condition at the water surface, leads to

U2
∗ = gH0Sθ , (2.5)
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known as the friction or shear velocity. Moreover, Rozovskii (1957, p.93), and similarly

Engelund (1974), argued that for a circular channel the downstream water surface slope

must satisfy Sθ = Iθ/R, where Iθ is the uniform water surface elevation drop per unit

of turning angle. Consequently, the shear velocity varies inversely with the square root

of R

Sθ =
R0

R
S0
θ , U∗ =

√
R0

R
U0
∗ , (2.6)

However, since the Engelund’s model is based upon a constant eddy viscosity assumption

defined along the channel centerline by

?0 =
U0
∗H0

a
, (2.7)

equation (2.6) forces ? to vary with the inverse of the square root of R. Above, the

choice a = 13.04 fits a parabolic velocity defect law into the upper 90% of the log-law

profile in the least square sense (Engelund (1974), Appendix A.2.4).

From now on either the superscript or subscript “0” means quantities measured at the

channel centerline. Then, if the following similar solutions in product form of functions

of non-dimensional quantities

ζ =
Z − Zb

H0
, (2.8)

UR

V
=

R0

R
[j(ζ) + u(ζ)] , (2.9)

Uθ

V
=

√
R0

R
v(ζ) , (2.10)

SR = α
R0

R2

V 2

g
, (2.11)

are introduced, the equations (2.2) and (2.3) become

j??(ζ) = 0 , (2.12)

u??(ζ) = Re0
[
α − v2(ζ)

]
, (2.13)

v??(ζ) = −2β . (2.14)

Here ? = d/dζ, j(ζ), u(ζ), and v(ζ) are mere shape functions defining the crosswise

drift, helical and streamwise flow components, respectively, V a free-surface velocity

scale in the downstream direction, α a yet undetermined nondimensional parameter,

Re0 an effective Reynolds number defining the strength of the cross-circulation, and

r∗ the dimensionless slip-velocity at the channel bed in the radial direction (Engelund
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(1974); Johannesson and Parker (1989b))

Re0 =
U0H0

?0
, β =

a

2

U0
∗

V
, r∗ =

URb

U∗
. (2.15)

Above, U0 is a lateral velocity scale that depends on R albeit it is on the order of

V H0/R0 whenever R0/R ? 1.

The flow entering an open-channel bend exhibits a skewed main velocity distribution

(towards the inner bank in the first part of the bend, and gradually shifting outwards to

the outer bank near the bend exit (de Vriend and Geldof, 1983)). The choice j??(ζ) = 0

governs a radial velocity drift that satisfies the constraint (2.1) while preserving the

Engelund model for u(ζ) and v(ζ), defined by (2.13) and (2.14), respectively.

The set of ordinary differential equations (2.12)-(2.14) must obey the following restraints:

i) a mean lateral flow equal to the slip-velocity at the channel bed and no stresses at the

water surface, ii) a downstream velocity at the channel bed proportional to the friction

velocity and equal to V at the water surface, iii) a zero cross-circulation flux in lateral

direction and, iv) an equal ratio between the velocity components and the shear stresses

components in radial and azimuthal directions. In mathematical terms:

j(0) =
2β

a
r∗ , j?(1) = u?(1) = 0 , (2.16)

v?(0) = 2β , v(1) = 1 , (2.17)
∫ 1

0
u(ζ)dζ = 0 , (2.18)

2β [j(0) + u(0)] = v(0)
[
j?(0) + u?(0)

]
. (2.19)

The solutions to (2.12)-(2.14) are readily obtained after using the boundary conditions

(2.16)-(2.18)

v(ζ) = 1− β (1− ζ)2 , (2.20)

j(ζ) =
2β

a
r∗ , (2.21)

u(ζ) = Re0 [P6(ζ)− D] , (2.22)

where the sixth degree polynomial P6(ζ) and the constant D are

P6(ζ) =
(α − 1)

2
(1− ζ)2 +

β

6
(1− ζ)4

− β2

30
(1− ζ)6 , (2.23)

D =
(α − 1)

6
+

β

30
− β2

210
. (2.24)
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The remaining unknown α is now determined by the mixed boundary condition (2.19)

(Engelund, 1974)

α =
1− β +

(
3
5 − 4r∗

aRe0

)
β2 − 1

7β
3

1− β
3

, (2.25)

Equations (2.23) and (2.24) are identical to equations (25) and (26) of Engelund (1974)

in powers of ζ ?(= 1 − ζ) differing in that he considered the vertical axis up side down.

The expression (2.25) for α coincides with expression (28) of Engelund (1974) except by

the factor 4r∗/aRe0 , entirely attributed to the lateral drift contribution j(ζ) considered

here.

The coefficients α and β can now be expressed in terms of the Chezy resistance fac-

tor CZ which relates, in the limit of vanishing channel curvature, the depth averaged

downstream velocity Vm with the shear velocity according to

Cz =
Vm
U∗

. (2.26)

The relationships (2.10) and (2.20), once combined with (2.6) for U∗ and with (2.15) for

V/U0
? into (2.26), leads to

β =
1

1
3 +

Cz
6.5

. (2.27)

Accepting now that U0 scales with V H0/R0, the effective Reynolds number Re0 defined

in (2.15) can be expressed as

Re0 =

(
Cz

1− β
3

)(
H0

R0

)
a , (2.28)

obtained upon using (2.7) and (2.26) after invoking the result Vm/V = 1−β/3. Finally,

since the factor r∗ is also function of the Chezy coefficient (see Appendix A.2), the

expressions (2.20)-(2.22) define a biparametric family of solutions in Cz and H0/R0, as

explicitly shown by Engelund (1974, p.1636).

Figure 2.2a depicts the vertical distribution of the streamwise component v(ζ) for Cz = 9,

and the helicoidal component u(ζ) for varying for Cz. The modified solution is steeper

than the “classical” solution of Engelund; the later obtained by setting r∗ = 0 in (2.25).

Nonetheless, part of the concern here is not about which solution best captures the

secondary motion, but rather to provide grounds to test the capability of the Rozovskii

decomposition to isolate helical currents from primary skewed flows. The modified so-

lution exhibits an asymmetric cross-flow component and a skewed primary flow compo-

nent. The asymmetry of the cross-flow depends on Cz and H0/R0 (Figure 2.2b), and

the skewness of the primary flow depends on the angle tan−1(
√

R/R0(3− β)a/6βr∗).
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Figure 2.2: a) Streamwise and crosswise velocities, b) total crosswise velocity for
different ratios H0/R0

2.2.2 Vortex sheet model

Kitanidis and Kennedy (1984) used a heuristic model based upon a non-conservative

albeit plausible 3D velocity field to account for the phase lag between the secondary

currents strength and the curvature of a channel bend. Following them, this work

proposes a phenomenological flow model through a reductionist process able to deliver

a fully conservative helicity behaviour along mildly curved open-channels instead.

First of all, the so-called small-gap limit is invoked, which reduces the full set of govern-

ing equations into a quasi-decoupled system representing pure shearing motion in the

azimuthal direction and secondary circulation driven by centrifugal instabilities in the

cross-plane (Hall, 1975).

In second place, we established that the Engelund model is, within the bounds of suitable

hypothesis, a subset of the small-gap equations. Finally, it is shown that an even simpler

model, i.e. the Engelund reduced form of the momentum equation in the downstream

direction, and the small-gap limit of the continuity equation in the cross-plane suffices

to get helical motion.

In the presence of a free-surface, it is convenient to split the total pressure P between

its hydrostatic and dynamic components in the form

P = P0 + ρg(Zw − Z) + Pd ,
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for some given reference pressure P0. Then, for a cross-section with slowly-varying water

depth H0 = H0(R), the following change of variables

(x, y, ς, zw) =

(
R − R0

H0
, θ,

Z − (Zb +H0/2)

H0
,
Zw

H0

)
, (2.29)

(u, v, w, p) =

(
H0UR

?0
,
Uθ

V
,
H0UZ

?0
,
PdH

2
0

ρ?20

)
, (2.30)

is appropriated to cast the flow solution domain and the governing equations in di-

mensionless form. However, before going any further the chosen scales require some

clarification.

On one hand, V above represents a water surface velocity in the downstream direction

though this time assumed to be proportional to Ω0R0, where Ω0 is the mean angular

velocity of the curved flow. On the other hand, H0 represents a vertical length scale

that could be locally defined or, eventually, considered constant. For instance, a possible

choice for H0 is the cross-sectional mean water depth, or the water depth at the channel

centerline, whatever is more convenient. For analytical purposes the choice H0(R) in

(2.8) maps Z = [Zb, Zw] into ζ = [0, 1] whereas the choice (2.29) maps Z into ς =

[−1, 1] for reasons that will become apparent in a moment. On the contrary, a constant

length scale H0 is preferred for computational purposes (e.g. Vionnet, 1995). Finally,

all dimensionless variables retain their foregoing definitions unless stated otherwise.

Substituting the dimensionless variables (2.29) and (2.30) into the governing equations

detailed in Appendix A.2.1, taking the limit δ → 0, the following reduced form of the

equations of motion is obtained

∂u

∂x
+

∂w

∂ς
= 0 , (2.31)

u
∂u

∂x
+ w

∂u

∂ς
= − ∂p

∂x
+ Lu+ Tav

2 −
(
C2
za

2

F2
m

)
∂zw
∂x

, (2.32)

u
∂w

∂x
+ w

∂w

∂ς
= − ∂p

∂ς
+ Lw , (2.33)

u
∂v

∂x
+ w

∂v

∂ς
= 2β + Lv , (2.34)

where the reduced Laplacian operator L, the small-gap parameter δ, the Taylor number

Ta, and the Froude number Fm are defined as

L =
∂2

∂x2
+

∂2

∂ς2
, δ =

H0

R0
, (2.35)

Ta =
Ω2
0R0H

3
0

?20
= R2

eδ , Fm =

√
gH0

Vm
, (2.36)



Chapter 2. On the Rozovskii method to isolate secondary circulation from skewed
flow 19

respectively. Above, the streamwise Reynolds number

Re =
V H0

?0
(2.37)

should not be confussed with the effective lateral Reynolds number defined in (2.15) and

(2.28).

If the chosen scales were appropriated, the relative magnitude of each term is indicated

by the dimensionless factor preceding it. More precisely, for a low-gradient sandy river

values of Cz ? 10 and Fm ? 0.1 are reasonable, and since the free-surface gradient in

the lateral direction far outweighed the other terms (i.e. C2
za

2/F2
m ? 106), the rigid lid

approximation in the lateral direction, ∂zw/∂x = 0, is more than appropriated for the

present problem.

The resultant system, known as the small-gap equations, is widely used to study the

stability of axisymmetric Taylor-Couette flows (Hall, 1975), and the behaviour of rotary

lip seals in lubrication applications as well (Vionnet, 1995). Note that the limit δ → 0

entirely neglects curvature effects, albeit they are retained through the centrifugal term

by holding the Taylor number fixed as δ → 0. It follows that a layer of water that satisfies

the wide-channel approximation H0/B0 ? 1, together with the smallness requirement

on δ, H0/R0 ? 1, may be subjected to centrifugal instabilities that in turn could drive

secondary currents along the cross-section. Consequently, in the terminology of flows

along open-channel bends, the “small-gap” parameter actually embodied the “mildly

curved and shallow” flow condition concept for (2.31)-(2.34) to be valid.

It is possible to recover and enhance the Engelund model from the small-gap equations.

To that aim, and after assuming: i) negligible inertia, ii) constant pressure gradient in

lateral direction, iii) negligible vertical velocity across the water layer (w ? 0), and iv)

boundary layer behaviour (with much larger diffusion of vorticity in the normal than in

the lateral direction to a solid boundary), i.e.

∂p

∂x
= αTa ,

∂p

∂ς
? 0 ,

∂2

∂x2
? ∂2

∂ς2
,

the equations (2.13) and (2.14) are recovered with Ta instead of Re0 , and defined over

ς = [−1, 1] in place of ζ = [0, 1]. The approximation closes with the constraint (2.31).

In brief, the exact set of equations (2.31)-(2.34), obtained in the limit δ → 0, embodied

the Engelund model.

However interesting the small-gap equations are, a restricted form of them is enough

to get helical flow behaviour. The continuity constraint (2.31) together with the afore-

mentioned Engelund streamwise momentum equation provides a full and convenient
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description for (u, v, w).

Considering now that all bounding surfaces (lateral walls, bed and free-surface) effects

are far away to be safely ignored, and that (2.7) describes the turbulence mixing ade-

quately under the hypothesis that supports the slip-velocity concept at channel bed of

Engelund (1974).Equation (2.31) is thus solved with 2D irrotational flow theory with the

aid of conformal mapping. A layer of negligible thickness, located in the mid-channel

section ς = 0, |x| ≤ 4c < B0/H0, c = C/H0, where the vorticity is assumed uniformly

distributed with total cross-circulation Γ (Figure 2.1), provides a surface across which

the horizontal component of velocity is discontinuous albeit satisfying (2.31) exactly.

As mentioned before, the expected skewing of the main velocity distribution is towards

the inner bank in the first part of the bend, outwards further downstream (de Vriend

and Geldof, 1983). Thus, it is customary to decompose the lateral velocity into a depth-

averaged or drift component, and a helicoidal part as in (2.9) (Johannesson and Parker,

1989b; Blanckaert and de Vriend, 2003)

UR = URl
+ URh

. (2.38)

Then, an uniform lateral drift velocity of magnitude ul ≶ 0 is added to the pure cross-

circulation motion, whose combined solution is (see Appendix A.2.5 for details)

u = ul −
γ

2π

h(x, ς)

d(x, ς)
, w =

γ

2π

f(x, ς)

d(x, ς)
, (2.39)

where γ = Γ/?0 is the dimensionless total circulation, and h and f the circulation

functions in the cross-stream and the vertical directions,respectively, given by

h = sgn(ς)

√
−p+ d

2
, f = sgn(x)

√
p+ d

2
, (2.40)

p = (x2 − 4c2)− ς2 ,

d =

√[
(x+ 2c)2 + ς2

] [
(x − 2c)2 + ς2

]
. (2.41)

Above, the sign of the real number t is defined as follows

sgn(t) =

{
-1 if t < 0

1 if t ≥ 0
(2.42)

The 2D velocity field solution (2.39), valid in the cross-plane (r, ς), is now complemented

with the decoupled 1D solution in the streamwise direction, equation (2.14). Summariz-

ing, the proposed phenomenological 3D model that mimics helical flow behaviour, after
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going back to physical variables and scaling against V instead, is

(UR, Uθ, UZ)

V
=

(
URl

V
− Γ

2πV H0

h(x, ς)

d(x, ς)
, v(ς),

Γ

2πV H0

f(x, ς)

d(x, ς)

)
, (2.43)

where v(ς) is defined in (2.20). Note that h(x, ς) is an odd function in ς , i.e. h(x,−ς) =

−h(x, ς) whereas d is even, d(x,−ς) = d(x, ς). Consequently, the total volume flux due

to the transverse circulation through the vertical vanishes

1∫

−1

h (x, ς)

d (x, ς)
dς =

0∫

−1

h (x, t)

d (x, t)
dt+

1∫

0

h (x, ς)

d (x, ς)
dς = 0 , (2.44)

as it can be shown by introducing t = −ς , and swapping the limits of integration.

The vertical distribution of the vortex sheet solution at r = 0 (mid-channel section) is

shown in Figure 2.3 for different values of URl
H0/Γ. The radial component of velocity

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0
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0.4
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         =  0.000UR H0
l

         = -0.075

         = -0.025
         = -0.050

Figure 2.3: Radial velocity component.

is continuous everywhere but across the vortex sheet, where the condition of zero-mass

flux is attained through a jump discontinuity.

Figure 2.4(a) depicts the vector field of the composite 3D phenomenological flow model

when UZ is set, for illustration purposes, equal to zero. Finally, Figure 2.4(b) shows

the helicoidal nature of the composite flow through the use of ribbon-like streamlines

starting from arbitrary locations at the inlet cross-section. The depicted velocity field

is the outcome of a clock-wise cross-circulation (negative) with a non-zero mean radial

velocity in outwards direction corresponding to the parameter ratio URl
H0/Γ = −0.04.

2.2.3 The Rozovskii method

The longitudinal and the principal velocities along a riverbend do not coincide precisely

since the velocity vectors are, in general, obliquely aligned with respect to any referential
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Figure 2.4: a) 3D composite velocity field, b) streamtraces

cross-section (de Vriend and Geldof, 1983). Consequently, the magnitude of a cross-

stream component can be influenced by this skewed flow, hampering the correct isolation

of the helical flow structure (Rhoads and Kenworthy, 1998a; Szupiany et al., 2009).

Rozovskii (1957) claimed that secondary currents at some given vertical if any, occur

in a plane normal to the depth-averaged velocity vector. The method was revised and

popularized by the work of Bathurst et al. (1977), and still widely used for treating field

data (Parsons et al., 2013).

According to Rozovskii (1957)[p.138], if U = (Ux, Uy) represents the flow velocity in an

open-channel bend at any depth Z with respect to Cartesian coordinates (X, Y ), whose

modulus forms an angle ϕ with the X-axis whenever Zb ≤ Z ≤ Zw, the primary and

secondary velocity components, Vp and Vs respectively, are

Vp = |U| cos (φ − ϕ) , (2.45)

Vs = |U| sin (φ − ϕ) . (2.46)

To avoid overuse of notation, the equivalence between the velocity fields in terms of the

unit base vectors eR, eθ and the alternative Cartesian basis i, j is sketched in Figure
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(2.5). In appendix C the reader can find a discussion about the definition of a positive

vs(vs > 0) or negative vs(vs < 0).
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Figure 2.5: The Rozovskii decomposition

Expanding the trigonometric expressions with the angle difference identities, the decom-

position becomes [
Vs

Vp

]
=

[
sinφ −cosφ

cosφ sinφ

][
Ux

Uy

]
, (2.47)

where φ is the angle of the depth-averaged velocity vector Um = (Umx , Umy) with respect

to the X-axis

φ = tan−1

(
Umy

Umx

)
, (2.48)

Umx =
1

H

Zw∫

Zb

UxdZ , Umy =
1

H

zw∫

zb

UydZ . (2.49)

Equation (2.48) implicitly satisfies the condition of zero net cross-stream discharge at

each vertical,
∫ Zw

Zb
VsdZ = 0, which is the essence of the Rozovskii procedure to isolate

secondary circulation from a skewed flow (Bathurst et al., 1977)

2.3 Results

2.3.1 ADCP kind of data

The Rozovskii method is still used for processing measurements obtained with an ADCP

mounted on a moving vessel (Parsons et al., 2013). The method is one of four commonly



Chapter 2. On the Rozovskii method to isolate secondary circulation from skewed
flow 24

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
0

1

2

3

4

5

6

y~

x~

Figure 2.6: 2DH velocity field along: (a) real vessel paths when surveying a linear
transect with an ADCP, (b) assumed sinusoidal and optimal vessel paths.

employed to rotate a river cross-section to isolate secondary circulation among the so-

called centre-line plane, the zero-net cross-stream plane, and the discharge continuity

plane (Lane et al., 2000). Others authors, such as Dinehart and Burau (2005) rotated

the flow vectors to conform with indicators inferred by the ADCP backscatter intensity.

However, the ambiguities in defining secondary-circulation planes are irrelevant in the

present context. The optimal cross-plane is unambiguously defined by rinn ≤ r ≤ rout,

θ = const (Figure 2.5). The limits rinn,out = ∓ b0/2 represent the normalized radii

along the channel bend banks, used just for illustration purposes since the solutions are

laterally unbounded where b0 = B0/H0.

Consequently, the foregoing exact solutions are now used as virtual ADCP data where

the synthetic flow velocities are sampled at regularly spaced verticals along a sinusoidal

or straight vessel path. Figure 2.6(a) depicts repeated transects that oscillate around a

targeted linear cross-section measured at the alluvial plain of the Paraná River nearby

Santa Fe City (Morell et al., 2014). The waviness arises when the helmsman follows an

oscillating path around a planned navigation transect in response to its steering ability,

lateral drag, and wind effects.

Other uncertainties originated from different sources (Simpson, 2001), such as the ex-

trapolation employed by the ADCP proprietary software to fill data in the unmeasured

portions of the cross-section are ignored because both flow fields are known exactly in

the whole domain.

The ADCP internal compass and tilt sensor (roll/pitch) referred water velocities compo-

nents in terms of the orthogonal East-North-Up (ENU) coordinates, with the first two
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later turned into Transverse Mercator (X, Y ) coordinates once corrected by the magnetic

declination bias. Thus, the virtual data considered here either inherits a small positional

error or is free of it if the vessel path is coincident with the cross-plane θ = const. In

both cases, the sampled velocity data (UR, Uθ) is converted into (X, Y )-components and

make it 3D with the up-component UZ .

The following dimensionless system delivers a set of nr + 1 discrete points that mimics

such sinusoidal vessel path about the optimal cross-section (Figures 2.5 and 2.6(b)):

[
x̃j

ỹj

]
=

[
cosθ −sinθ

sinθ cosθ

][
r0 + xj

∆rj

]
, (2.50)

∆rj = a(r)cos

[
2πk

b0
(r0 + xj) + ϕ0

]
, (2.51)

xj = −b0
2
+ j

b0
nr

, j = 0, 1, . . . , nr . (2.52)

Above,

a(r) =





A
H0

: constant ,

A
H0

√
r0

r0+xj
: variable ,

(2.53)

represents alternatively a constant or slowly varying amplitude function with A/H0 a

dimensionless wave displacement at the channel centerline, ∆rj the orthonormal varying

vessel departure from the optimal path θ = const, ϕ0 an initial phase, k an arbitrary

integer representing the total number of wavelengths along the nominal channel width

b0, and r0 = R0/H0. The remaining parameters retain the definition given previously.

If A = 0 the optimal path is recovered.

A straightforward application of the Rozovskii decomposition implies evaluating (Um, Vm)

and (U, V ) at each j-th vertical profile or water column, in turn divided into nz depth

cells. The depth-averaged velocity components for both models in R, θ directions are

(see (2.9), (2.10), and (2.43))

(
Umj , Vmj

)
/V =

(
χj ul,

√
χj [1− β/3]

)
, (2.54)

with a primary flow skewness given by

φj = θ + tan−1

[
(1− β/3)

ul
√

χj

]
, j = 0, 1, . . . , nr. (2.55)

Here, the mean lateral flow ul and the geometric factor χj are ±2βr∗/a (see (2.21)) and

χj =

{
r0/r̃j , Engelund model,

1 , Vortex sheet model ,
(2.56)
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respectively, where r̃j = (x̃2
j + ỹ2j )

1/2 is defined by (2.50). Whenever ul → 0, φ tends

to θ + π/2 in (2.55), expressing that the depth-averaged primary flow component is

perpendicular to the cross-plane θ = const (Figure 2.5).

Both cross-flow structures discussed are well defined over a local plane (x, ς) with con-

stant azimuthal angle. However, it is convenient to assume they come from an orthogo-

nal projection based on global coordinates (x, y, ς), in tune with reasons best known to

ADCP users.

Any field ADCP data interpretation requires further processing based on local projection

procedures such as the Rozovskii (Parsons et al., 2013), or alternative methods based on

global coordinates. The former referred to as ENU from now on (Morell et al., 2014).

Figure 2.7(a) shows the vertical distribution produced by the ENU algorithm when

the Engelund velocity field is either sampled along the optimal path (vectors) or the

sinusoidal path (dots). The associated velocity field delivered by the Rozovskii projection

appears in Figure 2.7(b). Figures 2.7(c) and 2.7(d) show equivalent results for the ENU

procedure and the Rozovskii decomposition, respectively, when the velocity field come

from the vortex sheet model instead.

The sampling along the sinusoidal path produces a weak distortion of the velocity field

with respect to its exact vertical distribution, defined along the straight path (Figures

2.7(a) and 2.7(c)). Nevertheless, the Rozovskii method delivers a cross-flow looking

projection that is clearly in error.

Summarizing, Figures 2.7(a) and 2.7(c) plot the exact secondary flow delivered for both

theoretical models, termed here as ENU in tune with standard ADCP field practice

(Simpson, 2001). Any accurate post-processing tool performing data mining from ADCP

data should be able to extract and produce graphs similar to those depicted in the

Figures 2.7(a) and 2.7(c). The apparent capability of the Rozovskii decomposition to

deliver cross-flow looking results may well explain its long-standing acceptance among

researchers and practitioners (Parsons et al., 2013).

The cross-stream velocities plotted in Figure 2.7 were “captured” with the following

parameters values: θ = 20o, nr = 20, nz = 20, A/H0 = 3, kπ/b0 = 2, and ϕ0 = ±1. In

turn, the cross-stream velocities themselves were formed with some of the parameters

values used to produce the solutions portrayed in Figures 2.2 and 2.3.
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Figure 2.7: Dimensionless ADCP data mining from the: (a) Engelund model with
ENU, (b) Engelund model with Rozovskii, (c) Vortex sheet model with ENU, (d) Vortex

sheet model with Rozovskii.

2.3.2 Error Analysis

2.3.2.1 Positional error

The synthetic data used are error-free from the sampling restrictions commonly faced

in any field situation (Oberg and Mueller, 2007). The analysis restricts to the error

introduced when collecting data away from the optimal path.

To that aim, it is convenient to assume that vorticity prevails downstream and upstream

of the cross-section for distances proportional to the local water depth. In other words,

it suffices to assume that the vectors unfolded in Figures 2.7(c) belong to the locally

stable 3D flow depicted in Figure 2.4. These data are then transformed first from polar

to Cartesian, and afterwards to Rozovskii with (2.47) to construct the error path free

vectors shown in Figure 2.7(d). Identical reasoning applies when treating the Engelund

data.

Under the bounds of the preceding assumption, the cross-sectionally averaged of the

absolute deviation of the velocity collected along the sinusoidal path with respect to the

straight path data is

δu|xs =
1

nr + 1

nr∑

j=0

1

nz

nz∑

k=1

|ũ(x̃j − r0, ςk)− u(xj , ςk)|
|u(xj , 1)|

. (2.57)
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Table 2.1: Relative values of the absolute deviation

abs. dev. a(r) Engelund Vortex sheet

ENU Rozov. ENU Rozov.
Fig.2.7(a) Fig.2.7(b) Fig.2.7(c) Fig.2.7(d)

δu|xs con. 0.2% 0.2% 4.4% 4.0%
var. 0.3% 0.2% 3.7% 3.4%

max δu|j con. 0.6% 0.4% 27.2% 25.3%
var. 0.9% 0.6% 21.8% 19.9%

Above, the pointwise absolute deviation is relative to the cross velocity at the free-surface

of each profile. The tilde indicates data taken off but orthogonally projected onto the

optimal plane, with x̃j evaluated according to (2.50).

Table 2.1 summarizes cross-sectionally and maximum depth-averaged values of the rel-

ative absolute cross-velocity deviation, computed with the full expression (2.57) for the

former case and the inner summation for the later. The Engelund solution depends

weakly on the radial position whereas the vortex sheet solution varies sharply nearby

the half depth and with the radial position to a lesser extent. However, both methods

yield similar error bounds for each testing solution. These are about 0.3 % and 4 % on

average with a local maximum of 1 % and 25 % for the Engelund and the vortex sheet

models, respectively.

These are expected error bounds if the cross-flow is locally stable, and the vessel departs

up to three times the local water depth from the targeted linear transect. The consistency

of the error distribution is an indication that whenever data projects correctly onto the

optimal plane, the result is independent of the chosen methodology.

2.3.2.2 Identification of Rozovskii elemental error

While the positional error seems to be independent of the projection method, the Ro-

zovskii decomposition produces a cross-circulation pattern clearly erroneous. To isolate

the problem, it is first necessary to express the Rozovskii decomposition in terms of

the polar components of the flow velocity UR and Uθ, and their depth-averaged values,

namely Um and Vm, respectively. Thus, the well-known rotation between polar and

Cartesian coordinates

[
Ux

Uy

]
=

[
cosθ −sinθ

sinθ cosθ

][
UR

Uθ

]
, (2.58)

allows mapping Um = (Um, Vm) onto (Umx , Umy) (Figure 2.5). Then, after using (2.47)

and (2.58) to relate Vp and Vs with UR and Uθ, and by noting that cos(φ−θ) = Um/|Um|
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Table 2.2: Signs of err(Z) depending on bend location

water layer bend entry bend exit

upper + −
lower − +

and sin(φ − θ) = Vm/|Um|, the scaled Rozovskii decomposition against V reads

Vp
V

=
Um

|Um|
UR

V
+

Vm
|Um|

Uθ

V
, (2.59)

Vs
V

=
Vm
|Um|

UR

V
− Um

|Um|
Uθ

V
, (2.60)

valid whenever |Um| ?= 0. Had the Rozovskii method been correct, the secondary

component would inherit just the helical contribution UR, which is the only crosswise

velocity part to isolate from the skewed principal flow.

Two conclusions are easily extracted from (2.60): i) the location of the cross-section does

not affect the computation of Vs (θ independent), as it should be in any locally-based

projection method, and ii) the magnitude of the secondary current is erroneously affected

by the streamwise velocity component. To see these effects better, it is convenient to

recall (2.38) with URl
≡ Um. Then, the Rozovskii estimation for Vs would read

Vs
V

= vscl
URh

V
+ err , (2.61)

where vscl = Vm/|Um| is a positive definite scale factor, and err the departure from the

helicoidal flow portion given by

err(Z) = uscl

[
Vm
V

− Uθ(Z)

V

]
, uscl =

Um

|Um| . (2.62)

Thus, the Rozovskii decomposition adds a varying error along any vertical profile pro-

portional to the excess (or deficit) of the primary flow velocity component relative to its

depth-averaged value.

Any monotonically increasing function for Uθ produces the inequality Vm − Uθ(Z) ≶ 0

within the upper and lower portion of the water column, respectively (e.g. Figure 2.2(a)).

Then, the error function err(Z) could alternatively be negative or positive on the vertical

depending if the cross-section locates nearby the bend entry or exit (Table 2.2), where

Um ≶ 0, respectively (de Vriend and Geldof, 1983).

Each term of the error expression (2.62), resulting from both theoretical models, are

plotted in Figure 2.8. The composite velocity matches the Rozovskii decomposition

deployed in Figure 2.7(b) and (d), profiles 1 and 4, respectively.
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Figure 2.8: Rozovskii elemental error: (a) Profile 1 of the Engelund model depicted
in Figure 2.7(b), (b) Profile 4 of the Vortex sheet model depicted in Figure 2.7(d)

2.4 Discussion

The adoption of the constant eddy viscosity model of Engelund allows to treat the full

3D free-surface flow problem along curved channels into two simpler and decoupled

problems (1D + 2D). The models so obtained exhibit secondary currents or helical flow

behavior where the Rozovskii method can be compared with.

The Rozovskii procedure supposedly provides a criterion for determining whether coher-

ent flow patterns of secondary circulation may be present along a curved flow path. The

method relies on computing a discrete sequence of “flow planes” oriented perpendicular

to the local orientation of the depth-averaged velocity field. Only at verticals where

φ = θ + π/2 the Rozovskii local plane of reference and the actual cross-sectional plane

containing the cross-circulation be equivalent. Apparently, the Rozovskii method takes

the correct orientation of the cross-stream plane, it computes the excess (or deficit) of

the cross-component of flow velocity relative to its respective depth-averaged value. This

was clearly the objective set forth by Rozovskii . . . if the angle φ is correctly computed,

then the transverse flow across the vertical must be equal to zero (Rozovskii, 1957, p.139).

However, the systematic use of Rozovskii embeds part of the downstream velocity com-

ponent in the secondary circulation (despite a zero depth-average error). Consequently,

the isolation of a well-defined cross-circulation from the primary flow component could

be masked by a straightforward application of the Rozovskii procedure.

Regarding the controversy, both Rhoads and Kenworthy (1999) and Lane et al. (1999,

2000) were right on their own. Rhoads and Kenworthy (1998a) explicitly uses a set

of local coordinates to project the Rozovskii components of the velocity field. In turn,
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Lane et al. (2000) were right when claiming to abandon Rozovskii when treating flow

data in river bends.

An alternative projection method based on absolute coordinates should be used instead.

Morell et al. (2014) decompose the 2DH and the 3D velocity fields along the cross-wise

and the stream-wise planes components of the absolute velocity relative to the ground,

with the addition of the up component for the 3D case. Finally, both the tangential

and up components define the vertical 2DV representation of the flow field along the

projected cross-stream plane. Their treatment of the flow field is fully compatible with

the data mining outcome depicted in Figures 2.7(a) and (c).





Chapter 3

A global-referenced grid method

to isolate secondary circulation

from a skewed flow

The capability of the so-called Rozovskii method to isolate the helical flow component

from a skewed primary flow is critically reviewed. The 90’s witnessed a debate about

the appropriateness of the method for processing field data. The questioning of it is

of substantial interest given its continued use and the still unanswered issues that stem

from that debate. This chapter shows that despite the capability of the method to

project crossflow-looking distributions, it adds an error source term that depends on

the streamwise velocity. The method indeed mixes what it pretends to isolate, which is

a pure crossflow component dissociate from the streamwise component. An alternative

projection method, based on globally referenced grid coordinates, is here proposed. Con-

trary to most published works, it relies on an algorithm that coalesces ADCP (acoustic

Doppler current profiler) neighboring cells data without resorting to any interpolation

whatsoever. The revision relies on field data collected with an ADCP at two study sites

located on the alluvial plain of the Paraná River, Argentina.

3.1 Introduction

The so-called Rozovskii procedure provides a criterion for determining whether coher-

ent flow patterns of secondary circulation may be present along a curved flow path

(Bathurst et al., 1977). The method computes a sequence of projection planes oriented

perpendicular to the local direction of the depth-averaged velocity field.

32
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However, the secondary flow field is not necessarily perpendicular to the mean flow at

each faceted plane. The ambiguities surrounding the optimal cross-plane orientation

have been the subject of intense research (Dietrich and Smith, 1983; Lane et al., 2000;

Dinehart and Burau, 2005).

Consequently, many authors prefer to use instead a set of tangential (t), normal (n),

and up (z) cylindrical coordinates departing from a local center of curvature. The z-axis

points perpendicularly upward from the horizontal (t, n) plane, and increments ∆n and

∆t relate in the polar coordinates sense, ∆n = t∆θ, with θ the azimuthal angle.

Rhoads and Sukhodolov (2001) used that frame to study a river confluence, as well

by Daniels and Rhoads (2006) and Sukhodolov (2012) for analyzing obstruction effects

and flow turbulence on meander bends, respectively. In all cases, they deployed one or

several ADV (acoustic Doppler velocimeter) along predetermined verticals to measure

the fluid velocity components. The 3D (three-dimensional) velocity field were measured

with respect to the right-handed coordinate system (t, n, z) aligned with the main sensor

axis, in turn oriented orthogonally to the cross section at each vertical.

Field measurements produced in the past with flowmeters either at river bends (Ro-

zovskii, 1957; Hickin, 1978; Bathurst et al., 1979) or confluences (Rhoads and Kenworthy,

1998a) oriented the sensor head with similar criteria.

Thus, Rhoads and Sukhodolov (2001), Daniels and Rhoads (2006) and Sukhodolov

(2012) followed standard laboratory practices, where an ADV scans the curved flow

on fixed cross-sections (Blanckaert and de Vriend, 2004; Kashyap et al., 2012). Upon

filtering the data, the proprietary software of the ADV yields then profiles of the time-

mean transverse velocity ut(z), or crossflow cells (ut, w) in the plane (t, z).

However, contrary to the readily identifiable (t, n, z) storage format of the data produced

by stationary devices, measurements from moving platforms are not directly transferable

into (t, n) coordinates. In the later case, the up coordinate is invariant unless uncorrected

by roll and pitch.

A typical moving platform is a downward-looking ADCP mounted on fiberglass or

aluminum-made boats (Muste et al., 2004; Szupiany et al., 2007). With an ADCP the

trend is to repeat transects along linear routes for resolving weak cross-stream velocities

(Dinehart and Burau, 2005). Then, the adequacy of repeating transects for capturing

3D flow structures adds another issue to the dauting task of processing field data.

In the presence of large convective instabilities as those found at the confluence of two

streams (Best and Roy, 1991), the repetition of transects would cut the information in

uncorrelated pieces. The front cover of Ashworth et al. (1996)’s book provides a striking
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Table 3.1: Some studies based on the Rozovskii method.

River device mechanism

Desna and Snov, Ukraine1 current-meter bend-driven
Severn, UK2 elect. flowmeter bend-driven
Kaskaskia, USA3 elect. flowmeter confl.-driven
Upper Paraná, Argentina4 ADCP confl.-driven
Lower Paraná, Argentina5 ADCP confl.-driven
Ain River, France6 ADCP cavity-driven
Wabash-Embarras, USA7 ADCP confl.-driven
White-Wabash, USA8 ADCP confl.-driven
Wabash-Ohio, USA9 ADCP bend cutoff-driven

1(Rozovskii, 1957) , 2 (Bathurst et al., 1979), 3 (Rhoads and Kenworthy, 1998a), 4 (Parsons

et al., 2007) , 5 (Szupiany et al., 2009) , 6 (Coz et al., 2010), 7 (Parsons et al., 2013) , 8

(Jackson, 2013) , 9 (Zinger et al., 2013)

example of such Kelvin-Helmholtz instabilities. Thus, repeat-crossings based research

should restrict to stable flow situations (Jackson et al., 2009).

On the other hand, the intrinsic structure of the ADCP data have hampered the inter-

pretation of secondary currents role given the lack of proper tools to translate between

geographical and local coordinates until recently (Parsons et al., 2013). The data han-

dling shortcoming and the straightforward implementation of the Rozovskii decomposi-

tion made it the preferred choice for researchers to infer the existence of transverse flow

on a river cross-section.

Table 3.1 details devices used and the type of curvature-driven mechanism of the sec-

ondary currents, isolated in turn with the Rozovskii procedure. It was the work of

Rhoads and Kenworthy (1998a) what caused a controversy (Lane et al., 1999; Rhoads

and Kenworthy, 1999; Lane et al., 2000; Richardson and Thorne, 2001; Rhoads and

Sukhodolov, 2001), whose implications have not been addressed yet in light of the con-

tinued use of the method. For that reason, the questioning of the Rozovskii method is

still of substantial interest.

Hickin (1978) quoted that the formation of cross-flow scales with the channel width, B,

water depth, H , and channel curvature, R. Although the ratio β = B/H changes with

flow stage and channel planform geometry, most values reported in the literature range

from 10 to 15 (Table 3.2). Similarly, the ratio α = R/B lies within 1.0 ≤ α ≤ 6.0.

Flume-based research usually works with other ranges (Blanckaert and de Vriend, 2004;

Kashyap et al., 2012).

On a river bend, the competition between centripetal acceleration and pressure forces

ensures the presence of persistent crossflow (Engelund, 1974). Thus, a river bend and
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its associated ADCP data constitute a benchmark against which the Rozovskii method

can be compared with.

The objective of this chapter is thus twofold: to introduce an alternative procedure to

isolate and project secondary currents, and to test the Rozovskii decomposition against

it. The last objective seeks to confirm with field data previous theoretical findings

(Chapter 2).

Despite the Rozovskii rotation may hit the order of magnitude of the secondary current

(Parsons et al., 2007, 2013), the procedure adds an error proportional to the streamwise

flow component. Although the error is zero when averaged over depth, its pointwise

magnitude growths with the flow skewness.

The alternative procedure bases its projections on global-referenced grid coordinates. It

relies on an algorithm that coalesces ADCP neighboring cells data without resorting to

any interpolation whatsoever. The use of the global coordinates produces field data read-

ily available for comparison with 3D numerical simulations, which is another drawback

of the Rozovskii decomposition (Leschziner and Rodi, 1979; Boxall et al., 2003).

Knowledge acquired while executing the study helped to refine a computer routine de-

veloped to process field data obtained with an ADCP. Both, the Rozovskii and the

global-referenced grid methods interpret data from two sites located nearby the outlet

of the Colastiné River, in the alluvial plain of the Paraná River, Argentina (Figure 3.1).

The sites are a river bifurcation, with one branch behaving as a river bend typified by

β ? 13, and a river confluence by β ? 75, both with α ? 1 (Table 3.2).

The next section describes the study sites and the collected data. There follows a

description of the algorithm developed to treat the field data. Then, a qualitative

comparison between Rozovskii results and the new projection is presented, to close with

few recommendations.

3.2 Materials and Methods

3.2.1 Study sites

The Colastiné River is an anabranch of the Paraná River with riverbanks composed of

a 4−6 m layer of clay and silt overlying coarse sands (Iriondo, 2007), with a free-surface

slope of about 2 cm/km. It is a typical meandering river with an approximated average

water depth, channel width, and discharge of 6 m, 600 m, and 1700 m3s−1 respectively.
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Table 3.2: Studies on river bends around the world.

River α = R/B β = B/H

Desna, Ukraine1 2.3 43.0
Squamish, Canada2 1.9 11.2
Severn, UK3 5.9 13.3
Dommel, The Netherlands4 2.8 12.0
Muddy Creek, USA5 1.5 11.0
Klarälven†, Sweden6 1.9 15.0
Sacramento, USA7 4.3 10.8
Lower Paraná?, Argentina8 4.2 54.0
Spree, Germany9 6.0 11.8
bifurc. Colastiné, Argentina10 1.1 13.0
Colastiné?, Argentina (this study, XS3) 1.4 75

1(Rozovskii, 1957, XS3) , 2 (Hickin, 1978, XS7) , 3 (Bathurst et al., 1979, Llandinam bend, XS

3), 4 (de Vriend and Geldof, 1983, reach average) , 5 (Dietrich and Smith, 1983, reach averge) ,
6 (Dargahi, 2004, XS W13), 7 (Dinehart and Burau, 2005, XS6) , 8 (Szupiany et al., 2009,

XS B2) , 9 (Sukhodolov, 2012, XS4), 10 (Morell et al., 2014, XS4) , † inferred numerically , ?

confluence

About 80-85 % of the river sediment transport is wash load made of silts and clays

barely found in measurable quantities in the bed (Drago and Amsler, 1988). The rest

is bed-material made of fine and medium sands predominantly carried in suspension.

Morell et al. (2014) includes size distributions of bed material collected at the sites.

Before reaching the main channel of the Paraná River, the Colastiné outlet forms a

diffluence node with the entrance channel to the Santa Fe’s city harbor, whose sharp

turn makes it prone to developing secondary currents. Few hundreds of meters upstream

the vegetated bar, named “Isla Las Gallinetas”, provides the second scenario to test the

Rozovskii procedure (Figure 3.1).

3.2.2 Field data

Table 3.3 summarizes the low-medium flow conditions found and parameter values used

in the field works. The surveys discussed from now on were conducted in both cases with

a downward-looking 1200 kHz TRDI ADCP mounted on the side a fiberglass vessel. A

second serial port connected a digital 210 Hz Raytheon single beam echo sounder to the

on-board computer during the surveys.

The ADCP integrated water velocity and bathymetry data with a Leica 1200 differential

Global Positioning System working in Real Time Kinematic (dGPS RTK) mode and

reading at the rate of two positional points per second. The setup delivered an accuracy

of ±0.02 m in planar and ±0.04 m in vertical directions. The ADCP internal compass
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Figure 3.1: Location of the study sites, in the floodplain of the Paraná River, Santa
Fe, Argentina.

and tilt sensor (roll/pitch) then referred water velocities components in terms of East-

North-Up or ENU coordinates.

On the curved reaches, the surveyed transects aligned with rays departing from a virtual

center of curvature located on the inner -convex- bank sides. The curvature center defines

the radius of a circle that best fits the river planform on the inner bank. Otherwise, in the

straight reaches, the transects aligned approximately perpendicular to the streamwise

velocities. Once in the field, the helmsman maneuver to navigate along the drawn

transects as closely as possible by tracking the vessel position in real-time with the

dGPS RTK (Figure 3.1).

Both bed elevation models, zb = zb(x
+:East, y+:North), were generated with bathymetry

data collected by the echo sounder and depth data estimated with the ADCP TRDI.

The echosounder data referenced in geographical coordinates was later converted to

Transverse Mercator (TM) coordinates with the formulas given by Snyder (1987). In a

separate processing, the water depth data from the four beams of the ADCP were geo-

referenced with the bathymetry export option of the Velocity Mapping Toolbox (Parsons

et al., 2013). Both data sets were later merged with information from complementary

sources and processed according to the procedure detailed in Morell et al. (2014). The

additional data usually represent borders of mid-channel vegetated bars and river banks

elevations.
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Table 3.3: River parameters estimated during the fieldworks: zw : water stage above
datum at Santa Fe harbour in m, Qr and Ql, discharges along right and left branches

in m3s−1, respectively, and Vb : boat velocity during surveys in ms−1

.

site date zw Qr Ql Vb
bifur. Col.1 4 May 2010 12.78 1085 ± 63 − 1.52

17 Dic 2013 11.24 863 ± 43 1976 ± 3 1.79
confl. ILG2 2 Mar 2012 10.57 1401 ± 18 182 ± 6 1.51

20 Sep 2012 10.56 1419 ± 16 182 ± 4 1.23
1 Colastiné River outlet, 2 “Isla Las Gallinetas”

3.2.2.1 The external reach of the entrance channel

The bifurcation node has remained stable in the past hundred years, in part due to the

maintenance dredging performed periodically over the so-called external reach that links

the entrance channel with the Paraná River.

Morell et al. (2014) reconstructed the site morphology with a century-long record, es-

tablishing the Y-shaped node exhibits nowadays a bifurcation angle close to the stability

range reported by Federici and Paola (2003). Table 3.3 details the fieldworks where the

cross-sections labeled from A to E (Figure 3.1) were surveyed with four to six transects.

Pathlines produced by releasing two floats equipped with standard navigation software,

together with numerical results, confirm that the flow along both bifurcation branches

matches the hydrodynamic of a river bend.

The pathlines along the left branch are smooth, weakly curved, whereas on the right

branch tend to point regions of flow reversal, stagnation, separation, and reattachment.

A dividing pathline, extending behind the mid-channel island bounds the zone of stag-

nant water formed there, so conforming with a solid river bend response (Figure 3.1).

The procedure detailed later recomputes, among other ADCP output data, the river

discharge through the surveyed transects. The lateral distribution of the horizontal

depth-averaged (2DH) flow velocity (U(s), V (s)) depicted in Figure 3.2 delivers a hy-

drodynamic portrayal consistent with the surveyed pathlines pattern. Here, s is the

arc length along the cross-section, increasing from left to the right bank when looking

downstream. A vortex is clearly visible in the vicinity of the curve apex, on the inner

bank. The lower window of Figure 3.2 shows that the point of maximum depth shifts

towards the outer bank from upstream to downstream.

3.2.2.2 At the confluence “Isla Las Gallinetas”

The diffluence-confluence unit formed by the vegetated sandbar “Isla Las Gallinetas”,

located few hundred meters upstream from the Colastiné River outlet, steers flow and
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Figure 3.2: Top: depth-averaged velocity (U, V ) on transects at the external reach of
the entrance channel to Santa Fe’s harbor. Vectors colored with |U| =

√
U2 + V 2, in

ms−1. Bottom: cross-sections with zero progressive distance at the dividing pathline
(Figure 3.1).

sediment around both branches without human interference.

Detailed ADCP measurements were undertaken at the site with two to four repeating

transects each starting at the entrance channel mouth (Table 3.3).

Figure 3.3 depicts the 2DH flow field surveyed on September 20, 2012. The lower window

shows the bed elevation of the left branch is, on average, 5.5 m above the main channel

of the Colastiné River. The height differences between the elevations of the scour hole

found at the confluence and the bottoms of the left and right branches are 8.5 m and 3

m, respectively. A sandbar is visible between XS 4 and XS 3.

The left branch discharge reaches full mix a short distance from XS 4, approximately

at twice the right upstream channel width. The fast mixing responses to the small flow

momentum ratio of the confluence, (ρQV )l/(ρQV )r ? 0.09. Here, the subscripts r and

l and Q retain the definition given in Table 3.3, and ρ denotes water density and V

cross-sectionally average flow velocity (ms−1).
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Figure 3.3: Top: depth-averaged velocity vectors (U, V ) along the transects at the ‘Las
Gallinetas”. Bottom: cross-sections of upstream branches and downstream confluence.
Distance decreases from right (RM) to left (LM) margins, so view agrees with the

satellite imagery.

The flow separates ahead of the vegetated bar, and downstream the junction between

XS 4 and XS 1 and the outer edges of the faster flow core and the riverbanks. It is

within the fast unmixed core of water flowing along the gently curved right branch

where cross-flows are prone to develop.

3.2.3 ADCP data

On one hand, the intrinsic working principles of an ADCP (Sontek, 2004; TRDI, 2007)

and users experience helped to establish guidelines for safe field practices (Muste et al.,

2004; Szupiany et al., 2007; Parsons et al., 2013). Thus, besides following them and

keeping the best possible control of boat speed and orientation (Table 3.3), the ADCP

was set up in water mode 1 with a 0.25 m bin size and a sampling frequency of one

ensemble every 0.59 s. Then, the distance from the water surface to the first cell center

was about 0.6 m.
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On the other hand, the post-processing procedure adopted here involves two steps: first

the use of proprietary software and then an in-house code. The in-house code gets the

sought cross-velocity field onto a given cross-section. The proprietary program WinRiver

II exports 3D flow data into spreadsheet files written in ASCII format (TRDI, 2007).

A fortran 95-based program called read aDcp loads then the ASCII files for further

processing and visualization.

In summary, the methodology bases the flow velocity projection in the following step-

by-step procedures: i) filtering raw ensembles (a vertical profile with ni
z bins each filled

with sampled velocities and backscatter intensity, and all referenced with respect to

true earth coordinates), ii) transforming geographical coordinates into TM coordinates

(with the Snyder (1987) formulae), iii) computing flow discharge trough each transect

and reversing it if necessary, iv) finding the best cross-section fit to all transects, v)

averaging the flow velocity with all transects data, vi) projecting the flow velocity, and

vii) computing the Rozovskii rotation.

3.2.3.1 Filtering raw ensembles

Several filters are run first to improve the ADCP data quality. A moving platform

separates successively sampled ensembles by some distance function of the boat speed.

However, depending on the sampling frequency of the dGPS RTK and the boat speed,

two or more successive ensembles may be spatially coincident. Moreover, some of these

positional coincidental raw ensembles may include different cells with wrong readings.

Thus, for each transect, the filter stripes bad echoed data and averages those sharing

the same recorded position geographically. In turn, it averages the water depth with the

number of good readings (one, two, three or four out of four emitted beams). With this

filtering, positional repeated data are averaged, and missing data are filled rather than

interpolated.

3.2.3.2 Transforming coordinates

The ADCP automatically georeferences the velocity components and backscatter inten-

sity during data collection. First, the magnetic declination bias reconciles the internal

compass readings of the ADCP with the dGPS true earth coordinate system. Then, it

is straightforward to compute the Gauss-Krüger official TM coordinates in Argentina

from the geodetic readings of the dGPS RTK. The South latitude and West longitud are

converted to rectangular x (positive towards East), and y (positive towards North) with

the aid of the expansion given by Snyder (1987) (p. 61). The up z coordinate remains
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Figure 3.4: Schematic representation of the moving platform surveying procedure.

invariant. The origin of the Gauss-Krüger coordinates is the intersection of the South

Pole with the central meridian of each band, with a zero northing.

3.2.3.3 Computing river discharge

If when transversing two reciprocal transects the boat path ∂Ω encloses a region Ω,

parameterized by the unit tangent t+ and the unit normal n− vectors (Figure 3.4)

t+ = (tx, ty) ≡ (δx/δs, δy/δs) (3.1)

n− = (−ty, tx) ≡ (−δy/δs, δx/δs) ,

a simple relation for the mass continuity can be derived.

In the absence of sources, the mass conservation constraint for a steady shallow 2DH flow

Um = (U, V ) and thickness H reads ∇ ·HUm = 0. The integral form of the equivalent

outward flux of HUm yields the sought river discharge Q̃ through either transect (zero

fluxes at the riverbanks)

Q̃ =

∫

∂Ω
(HUm) · n+ ds (3.2)

?
nj
e∑

i=1

(UH ty − V H tx)i
(∆si−1 +∆si)

2
, (3.3)

where ∇ refers to the plannar nabla operator, nej the number of ensembles measured

along transect Tj , ∆si the separation distance between two consecutive ensembles with

∆s0 and ∆snj , the specified user distance from both riverbanks to the first and last

measured ensemble, respectively, and Um · n+ = Un the outward normal velocity of the

depth-averaged flow. The t+ points in the increasing arc-length (s+) direction when

traversing the transect in the counterclockwise direction, and a 90o counterclockwise

rotation of it yields n− such that n+ = −n−.
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At one point, the internal computations of read aDcp determines the number ni
z of

active depth cells scanned by the ADCP in each water column. Then, if (u, v, w) are

the velocity components at the barycentric point (x, y, z) of each depth cell, the adopted

depth-averaged flow is

Ui =

∑ni
z

k=1 uk
ni
z + 1

, Vi =

∑ni
z

k=1 vk
ni
z + 1

. (3.4)

The above arithmetic mean results from imposing the no-slip condition at the river bed

without correction for the bottom layer thickness (Morell et al., 2014).

The approximations for inferring the nearest surface, bed, and riverbanks flow velocities

differ considerably from the one-sixth power-law and the ratio interpolation methods

embedded in the proprietary software (TRDI, 2007). The proprietary code delivers

in turn the discharge Q. Nevertheless, computations of Q̃ and Q across all transects

depicted in Figures 3.2 and 3.3 shows Q̃ is, on average, 1.2% off from Q with a fractional

standard deviation of 4.1 %.

Such way of computing Q̃ is relevant for four reasons:

1. to check the consistency of results produced by the proprietary software and the

actual methodology,

2. to enforce the correct handling of the unit vectors t+ and n−, which are the base

of the proposed scheme to project the cross-flow components,

3. to set the proper orientation of the actual transect (Q < 0 when surveying data

from left to right banks when looking downstream or Q > 0 in the opposite case).

Reversing data for the latter case correctly locates both banks,

4. to apply the Rozovskii method, for which (3.4) is critical.

3.2.3.4 Finding the best cross-section fit

Repeat transects surveyed along a ray drawn in advance from a virtual center of cur-

vature usually oscilate around the line representing the optimal cross-section (Figures

3.1).

The scanning of any cross-section nt times yields nej ensembles along each transect Tj .

The mean line Tm(ax + b = y) fitting the 2D set {xjk, y
j
k}

nej

k=1, for all j = 1, . . . , nt, that
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Figure 3.5: Orthogonal linear regression of all Tj along XS 3 (inset). The procedure
read adcp coalesces those ensembles from each Tj lying in a single averaged bin.

minimizes the orthogonal distance function

D(a, b) =

nt∑

j=1

nej∑

k=1

(
xji − xjk

)2
+
(
yji − yjk

)2
(3.5)

assumes that both {xk} and {yk} are affected by equally random positional errors.

Ignoring the superscript j from now on, any equation of the form y? = −x/a + b? is

necessarily orthogonal to the sought regression line. If this second line passes through the

data point (xk, yk), these two lines intersect at the point (xi, yi) (Figure 3.5) satisfying

xi − xk =
aLk

1 + a2
, yi − yk = − Lk

1 + a2
(3.6)

where

Lk ≡ yk − (axk + b) . (3.7)

The substitution of (3.6) in (3.5) yields

D(a, b) =
(
1 + a2

)−1
m∑

k=1

L2
k , (3.8)

which is a generalization of the ordinary least squares method by the factor
(
1 + a2

)−1
.

Above, m =
∑nt

j=1 nej is the total number of ensembles associated with Tm.

The condition for an extreme of D is obtained whenever ∂D/∂a = ∂D/∂b = 0, which

comes down to a quadratic equation for a whose two solutions represent a minimum and

a maximum of D. The corresponding lines are orthogonal to each other, and the proper

one must be used to get the slope of the so-called Deming regression line.
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3.2.3.5 Averaging the flow velocity

Firstly, the adopted procedure links all ADCP data to the bed elevation model zb =

zb(x, y) constructed from bathymetry data (Figures 3.2 and 3.3). Therefore, each depth

cell in which the device averages the collected data later is referred to the elevation

above datum using zk = zw − z?k. Here, zw is the free-surface elevation above datum,

and z?k is the local depth of the kth cell (Figure 3.6). The later results after using

z?k = td+ bd+ (k− 1/2)∆z for all k = 1, . . . , ni
z, where td, bd, and ∆z are the transducer

draft, the blanking distance, and cell size, respectively, and the superscript “i” refers to

the ith ensemble along the Tj transect.

Secondly, the processing of the ADCP data uses a coalescing technique without any

interpolation whatsoever. A bin value, nbin, must be defined first, preferably an odd

number equal e.g. to 3 which means that the central, left, and right ensembles coalesce

into a single bin (Figure 3.5). In brief, nbin ensembles come together from each transect

Tj to form a larger group of data cells at each depth cell. If each Tj contributes on

average with 180 ensembles, the mean transect Tm will have about 60 coalescing bins,

referred as nb.

The averaging counts on a double bookkeeping procedure, one “dissipative” that works

on globally-grid coordinates, and one “conservative” that projects on local ones. The

first relies on the coalesced matrix en, an integer matrix that stores the coalescing bin

number of Tm where each ensemble from each transect projects onto. Then, summing

all well-echoed data shapes the integer matrix mvel, which counts the ith ensembles of

each Tj that coalesces onto the enth bin of Tm. Finally, mvel contracts to the matrix

nocc required for the final averaging. The matrix nocc stores how many depth-cells come

together into each coalescing bin for the final averaging. As the procedure progresses,

information is lost since it adds cell data one by one. In more detail, the averaging goes

through three different programming blocks:

a. “Dissipative” bookkeeping algorithm

1. input (ve, vn, vu) w.r.t. ENU coordinates,

2. set all arrays = 0,

3. forall j = 1 : nt, i = 1 : ne(j), k = 1 : nz

→ retrieve en = en(i, j),

→ if ( ?= bad echoe) : (ve, vn, vu) =
∑

(ve, vn, vu)

→ add mvel(k, en, j) = mvel(k, en, j) + 1
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4. contract mvel

→ nocc =
∑

(mvel, dim = 3)

→ lvel =
∑

(mvel)

5. average → (ve, vn, vu) = (ve, vn, vu)/nocc

Figure 3.6 shows a strip of nocc obtained after surveying an XS with four transects. Each

column represents a coalescing bin and each row the depth cells set up at the beginning

of the field work. The number of contributing depth-cells diminishes towards the edge

of the overlapping transects. Whenever the argument dim is present in the contraction

expression
∑

(array, dim), the result is the summation of all elements values of array

along dimension dim.

On the contrary, the “conservative” bookkeeping preserves each single depth cell data

from each ensemble and averages them all at once. It relies on the matrix iTm that stores

how many ensembles from each Tj coalesces onto the jth bin, and the matrix nvel that

stores the ensemble number of each Tj that coalesces onto the jth bin. In detail, the

conservative bookkeeping procedure amounts to:

b. “Conservative” bookkeeping algorithm

1. set all arrays = 0,

2. forall ixs=1:nt, j=1:nb, i=1:iTm(j, ixs), k=1:nz

→ retrieve

→ l : cumulative # of ensembles,

→ en = nvel(i, j, ixs), if ( ?= bad echoe)

→ then (ut, un)|(k,l,j) = Q(ve, vn)
T|(k,en,ixs)

→ set iscat(k, l, j) = 1

3. contract iscat

→ nscat =
∑

(iscat, dim = 2),

→ lscat =
∑

(iscat)

4. contract & average (ut, un)

(ut, un) =
∑

(ut, un, dim = 2)/nscat
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Figure 3.6: Left: schematic of four transects with cells at same depth albeit laterally
displaced (see inset). Right: a sample of the integer matrix nocc showing the number

of coalescing data contributing to the final average.

Above, Q is a projection matrix to be defined next, and (ut, un) the tangential and

normal components of the projected velocities of each cell onto each bin of Tm. The

superscriptT denotes the transpose of the vector (ve, vn). In the end, both bookkeeping

must coincide:

c. Cross-check

1. if (lvel ?= lscat) → stop.

2. if (nocc ?= nscat) → stop.

3. if (ut, un) ?= Q(ve, vn)
T → stop.

The average of the up-component, vu, is only computed with the first bookkeeping

algorithm, and it does not require any further manipulation.

3.2.3.6 Projecting the flow velocity

In the previous chapter shows that when the ADCP data, collected with a moderated

boat path departure from a straight radial cross-section, projects orthogonally onto it

the mean relative deviation is utmost 4 %. Accordingly, the actual procedure relies on

the following assumptions: i) the surveyed transects are as close as possible to the local
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optimal radial plane, ii) the projected data lies on a plane that best fit the surveying

boat paths, and iii) the error in the Rozovskii method indicates how to extract the

crossflow.

The first premise depends on well-planned fieldworks (Figure 3.1) and the second on

minimizing (3.8). Finally, if (t+, n−) points in radial and azimuthal directions in terms

of a local polar system, respectively (Figure 3.4), the Rozovskii crossflow component vs

reads (Chapter 2):

vs =
Un

|U| u
hel
t +

Ut

|U|(Un − un) . (3.9)

Here, uhelt strictly refers to the helicoidal part of the crossflow velocity, (Ut, Un) the 2DH

velocity components, and |U| its modulus.

The expression establishes that the helical crossflow component points in the opposite

direction, and it is proportionally affected by the excess or deficit of the streamwise

component with respect to its 2DH value. To reconcile things it suffices to project the

velocity data on the tangent plane and to remove the 2DH value of the ut-component.

Mathematically, a vector projection is always a vector though in engineering aplications

usually means its magnitude. Thus, the projection of the column vector u = (ve, vn)
T

on the line generated by the vector n, with norm ?n?2 = ?n,n?, is the vector cn for

some scalar c. Now, the difference u − cn is orthogonal to n, so ?n,u − cn? = 0, where

?·, ·? is the inner product between two vectors. Solving for c and using elementary linear

algebra, the isolated crossflow helical component becomes

uhel
t =

(
I − nnT

?n?2
)

u − Ut , (3.10)

where I is the identity matrix and the expression between parenthesis is the matrix Q

that projects u onto Tm. From (3.10), the velocity component normal to Tm is

un =
nnT

?n?2u = Pu , (3.11)

such that PQ = 0.

3.2.3.7 The Rozovskii rotation method

The primary vp and secondary vs flow Rozovskii components at elevation z are (Bathurst

et al., 1977) [
vs

vp

]
=

[
senφ −cosφ

cosφ senφ

][
ve

vn

]
, (3.12)
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where φ is the angle of the depth-averaged velocity vector U = (U, V ) with respect

to the x-axis whenever zb ≤ z ≤ zw (Figure 3.4). Furthermore, if these velocities are

projected into the normal and tangential directions along Tm, then

vrkp = vp cos(φ − α) , (3.13)

vrks = vs sin(φ − α) , (3.14)

represents the downstream and cross-stream components, respectively, of the Rozovskii

velocities after Rhoads and Kenworthy (1998b).

The derivation of (3.13)-(3.14) require the angles ϕ and α measured counterclockwise

from the x-axis to (ve, vn) and Tm, respectively (Figure 3.4).

3.3 Results and discussion

Figures 3.7 depicts un and uhel
t in terms of the globally-grid coordinates given by (3.10)

and (3.11), the later isolated from any primary flow skewness effect. The vertical dis-

tribution of un is seen on a large part of XS b as the flow approaches the sharp turn

towards the Santa Fe’s harbor entrance channel. A strong helical flow component is

visible across XS c, weaker on XS d and barely present on a portion of XS e.

Figure 3.8 illustrates the difference between (3.10) and the first of equations (3.12) by

plotting the vertical distribution of the streamwise and the crosswise flow components

produced with both methods on selected profiles. The larger the departure of the stream-

wise flow from an approximated parabolic -or log- distribution the greater the separation

between both predictions.

The “dissipative” and “conservative” algorithms deliver identical averaged distributions

of uhelt , indistinguishable on the bottom plot of Figure 3.8. The scatter points represent

depth cells contributing to a single coalescing bins, namely profiles 27, 29, and 39. The

top plot only depicts every other vertical profile among the final 41 averaged bins that

define the mean transect Tm of XS c on the entrance channel. Similar blanking criteria

were used in the following figures to avoid vector cluttering.

Despite Rhoads and Kenworthy (1998b) best efforts to cure the intrinsic deficiencies of

the Rozovskii scheme, the extra rotation (3.14) is insufficient to remove completely the

streamwise flow component blended into uhelt . To make sure this is the case, Figures 3.9

and 3.10 plot the vertical bidimensional (2DV) distribution, in the (t, z) plane, of the

vector fields (ut, 0), (u
hel
t , 0), and (vrks , 0). The fourth plot starting from above depicted

the net difference between the proposed projection of the crossflow component and
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Figure 3.7: Projection of ut (and un) on global-grid coordinates, and isolated from
primary flow skewness effects.

Rozovskii, corrected after Rhoads and Kenworthy (1998b), uhelt − (vrks ). The last plot

contains the spatial coverage of the pointwise fractional deviation

δk,j =
|(uhelt )k,j − (vrks )k,j |

(ūhelt )j
, k = 1, . . . , nj

z , (3.15)

where ūhelt |j represents the average of the absolute values of uhelt on the j th profile

(
ūhelt

)
j
=

1

nj
z

nj
z∑

k=1

|uhelt |k,j , j = 1, . . . , nb (3.16)

Equation (3.15) takes uhelt as a reference quantity, a certain assertion once (3.9) probes

true. Finally, each plot exhibits either the contours of the flow modulus or the local

fractional deviation in the background. The plot of Figures 3.9 and 3.10 show that the

local fractional deviation between the two methods peaks well above 100 % in some

areas.

The discrepancy between the outcome of the two projection procedures is similar when

the fluvial setting is different. The broad and gently curved right branch of the “Las

Gallinetas” confluence triggers the formation of weak secondary currents, here captured

on XS 4 just downstream the junction (Figure 3.11). Again, the local fractional deviation

is about 50 % in vast parts of the cross section and above 100 % in the upper and lower

flowing layers.

The magnitude of δk,j signals the limitation of the Rhoads and Kenworthy (1998b)

projection to annihilate the inherent deficiency of Rozovskii to match uhelt (Figure 3.8).

A curved open-channel flow develops helical flow directed radially outward (inward) near

the upper (lower) layers of the flow (Engelund, 1974). The radially positive direction is
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Figure 3.10: Crossflow on XS d at the Access Channel. From top to bottom: ut,
uhel
t , vrks , uhel

t + vrks , in ms−1, and δk,j .

away from the virtual center of curvature. Figures 3.9-3.11 show a straight application

of Rozovskii in tune with (3.9).

Leschziner and Rodi (1979) recognized the outcome of Rozovskii as representing the

excess (or deficit) of the radial velocity component relative to the 2DH value. A claim

later repeated by Boxall et al. (2003).

Any observer based on mechanistic considerations may judge that the Rozovskii com-

ponent is enough to capture the proper magnitude of the crossflow. However, in some

cases the Rozovskii component is not only insufficient to capture the strength of the

secondary current but also inaccurate as the error plots of Figures 3.9-3.11 demostrate.

It adds a non-trivial error term all over the water depth, albeit zero on the average.

3.3.1 Identification of Rozovskii elemental error

To expose the error nature of the Rozovskii scheme, Figure 3.12 deploys on the left the

two terms of which (3.9) is made of and on the right the straight computation of (3.12),

first equation. It is worth to mention that uhelt and un are the basic supply of (3.9),

in turn computed with (3.10) and (3.11), respectively, albeit projected onto the cross

plane. The composite velocity matches exactly the Rozovskii decomposition deployed

in Figures 3.8 and 3.11, profiles 27 and 20, respectively.
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t + vrks , in ms−1, and δk,j .

The remarkable agreement depicted in Figure 3.12 between the composite expression

(3.9) and the Rozovskii raw decomposition, equation (3.12), works as a double cross-

checking. One one hand, it ascertains the inherent correctness of uhelt , both operationally

when computed with (3.10), and theoretically since (3.9) relies on decomposing the cross-

flow as ut = uhelt +Ut (Johannesson and Parker, 1989b; Blanckaert and de Vriend, 2004).

On the other hand, and besides reversing uhelt , it shows that Rozovskii adds an error

along the vertical proportional to the excess (deficit) of the streamwise flow velocity

component with respect to its depth-averaged value.

3.4 Conclusions

It has long been assumed that whenever the Rozovskii method takes the correct ori-

entation of the cross-stream plane, it computes the excess (or deficit) of the cross-

component of flow velocity relative to its respective depth-averaged value. Nevertheless,

many researchers acknowledged certain ambiguities when deciding the orientation of

the cross-channel plane that defines the downstream and the cross stream component.

Rhoads and Kenworthy (1998b) supposedly circumvented this shortcoming of the Ro-

zovskii procedure by projecting their field data onto fixed cross-sections. However, their
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at the “Las Gallinetas” confluence. The horizontal axis is just for referencing the scale

factors (Un, Ut)/|U|.

contribution initiated a controversy that continues to the present days. For that reason,

the questioning of the Rozovskii method was of substantial interest in this work.

To test the Rozovskii method, an algorithm based on global coordinates to extract the

helicoidal component from 3D raw ADCP data, and then projected to a local cross plane

has been developed. The proposed methodology frame the data collected from moving

platforms in exactly the same way observers collect their data from fixing frames with

static devices.

Contrary to most published works, the proposed procedure relies on a double bookkeep-

ing algorithm that coalesce ADCP neighboring cells data without resorting to any in-

terpolation routines. Both bookkeeping procedures yield identical results, which helped

to validate the developed tool for processing field data Then, the inherent deviation of

the Rozovskii original rotational scheme was tested with field data coming from two

different fluvial settings, one characterized by an aspect ratio β ? 13, and the other by

β ? 75.

It has been established that despite the capability of the method to project helical

crossflow-looking distributions, its outcome is distorted by a source term that depends

on the streamwise velocity. Previous theoretical results predict this peculiar way of
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projection by the Rozovskii method, now confirmed on experimental grounds. The extra

projection of Rhoads and Kenworthy is not enough to remedy this inherent deficiency.

The error source term is zero once averaged over depth, and it is multiplied by a scale

factor that depends on the mean crossflow intensity, Ut/|U|. Consequently, whenever

the skewness of the depth-averaged primary flow is small, the added error is eventu-

ally not significant, which may explain the longstanding success of the method among

practitioners and researchers.

The Rozovskii procedure is, however, simple and powerful enough for a quick detection

of secondary currents in river bends and confluences. Nevertheless, the method indeed

mixes what it pretends to isolate, which is a pure helical crossflow component dissociated

from the streamwise component. As such, it is no more than a quick tool for diagnosing

the presence of secondary currents in river bends or confluences.





Chapter 4

Flow pattern at a river diffluence

at the alluvial system of the

Paraná River

This chapter presents field and numerical data depicting the flow pattern formed at a dif-

fluence of the Colastiné River, Argentina, where one branch accesses the local harbour.

The harbour has been in decline since the 1970s due to costly maintenance dredging of

the access channel. The objective of this work is thus twofold: to show the persistence

of the flow pattern developed at the diffluence despite recent morphological changes seen

at the site, and to test a possible solution to the access channel sedimentation problem.

Knowledge gained during the execution of the study helped to validate a code developed

to process field data captured with two acoustic Doppler current profilers (ADCPs). The

results confirm that both branches are prone to developing secondary currents. Simula-

tions show that an engineering intervention downstream of the bifurcation can establish

a self-dredging flow reversal along the access channel, turning the actual diffluence into

a confluence.

4.1 Introduction

Santa Fe City is located 476 km northwest from Buenos Aires. The city was declared

“Puerto Preciso” during the Spaniard rule, forcing all ships sailing the Paraná River to

stop by on their way to or from Asunción, Paraguay. It is the furthest inland harbour

within Argentina for oceanic vessels. It was moved several times since the city foundation

in 1573. In 1886, the city located its harbour on the Colastiné River and moved it further

upstream to a new site in 1890 (pts. (a) and (b), respectively, Figure 4.1). Both sites

56
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were flood-prone lowlands. Therefore, an enhanced harbour surrounded by higher lands

was built between 1907-1910, on its current location (pt. (c), Figure 4.1).

An access channel was excavated to link the port with the main channel of the Paraná

River. The flow expansion created at the bifurcation between the access channel and

the Colastiné River outlet induced a continuous sedimentation of the sands carried in

suspension, requiring out periodic maintenance dredging of the external reach of the

access channel, behind the recently formed mid-channel island (Figure 4.1). The harbour

has been in decline since the 1970s due to this additional dredging cost. The situation did

not change much with the privatization of the fluvial waterway that links Santa Fe with

the Atlantic Ocean through the Paraná and the La Plata rivers. Whereas ships sailing

along the waterway pay a toll to the concession company in charge of the maintenance

dredging (Lievens, 1997), the cost of having the access channel fully operational is still

local matter.

In 1998 studies began to find a new place for the Santa Fe harbour, this time on the

main channel of the Paraná River (FICH, 1998). Nevertheless, there is a simple solution

to the long standing sedimentation problem of the access channel mouth that has not

been tested so far. It is technically feasible to sustain a bed shear stress distribution

well above the sedimentation threshold values for sands by reversing the flow direction

along the access channel (by closing the mouth of the South Derivation Channel, right

next the access channel heading (pt. (d), Figure 4.1)).

The hydrodynamics of the study site is also of significant scientific interest in its own

right. Diffluences can steer flow and sediment to either branch controlling the morpho-

logical development of the downstream channels (Federici and Paola, 2003). Nonetheless,

the development of the downstream branches is achieved through a series of interacting

processes that are still poorly understood (Pittaluga et al., 2003; Kleinhans et al., 2008).

Moreover, if the planar turn of the bifurcation is sharp enough, cells of secondary circu-

lations may develop in response to the mechanical imbalance between the local elevation

of the free surface and the centrifugal force induced by channel curvature. The formation

of cross-flow is thus possible if the diffluence branches act as river bends. Whereas this

response can be expected in Y-shaped diffluences (Dargahi, 2004), it is far from being

evident in T-shaped diffluences. In the latter case, the flow should exhibit regions of

acceleration and deflection, with eventual zones of separation and reattachment with a

central core of fluid moving along curved streamlines (Miori et al., 2012). Thus, the

region of convectively accelerated flow should be close to the typical hydrodynamics be-

haviour seen along any river bend. Under these circumstances, the abundant theoretical

(Rozovskii, 1957; Engelund, 1974; Johannesson and Parker, 1989a) and experimental
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research (Bathurst et al., 1979; Dietrich and Smith, 1983) developed for open-curved

flows may carry over to the study of diffluences with sharp turns.

The single cell of secondary currents usually found in flumes and in rivers scales with

channel width B and water depth H , whose behaviour depends on the aspect ratio β =

B/H (Yalin, 1992). Rozovskii (1957), Blanckaert and de Vriend (2004), and Kashyap

et al. (2012) studied bends in flumes with aspect ratios of 13.33, 3.6, and 5.0 − 12.5,

respectively. However, there exists few field studies to date detailing the structure of

helical flows driven by centrifugal forces.

Table 4.1 compiles values of β resulting from the field studies collected by Bathurst

et al. (1979) in the river Severn (UK), by de Vriend and Geldof (1983) in the river

Dommel (The Netherlands), by Dietrich and Smith (1983) in the Muddy Creek (USA),

and by Dinehart and Burau (2005) in the Sacramento river (USA). For the sake of

comparison, data taken by Richardson and Thorne (2001) at the Brahmaputra-Jamuna

River (Bangladesh), and by Szupiany et al. (2009) at the main channel of the Paraná

River (Argentina) are also included. These authors claimed to have detected secondary

currents albeit at river confluences rather than in river bends. The field data shows that

cross-flow circulation driven by curvature develops whenever 10 ≤ β ≤ 15.

In tune with the foregoing issues, this chapter is concerned with the flow pattern devel-

oped at the diffluence of the Colastiné River when rejoining the Paraná main channel,

an aim achieved through field measurements and 2D and 3D numerical simulations. The

objective of this work is thus twofold: to show the persistence of the flow pattern de-

veloped at the diffluence despite recent morphological changes experienced by the site,

and to test a simple solution to the chronic sedimentation problem seen at the access

channel mouth.

Knowledge gained during the execution of the study helped to refine and validate a com-

puter code developed to process field data captured with two acoustic Doppler current

profilers (ADCP). Both, field and numerical results show that the two branches of the

diffluence act like true river bends, and consequently are prone to developing secondary

currents. Field data shows this is indeed the case along the right branch, which was

the only systematically measured branch. It remains to extract the results from the

open-source Telemac system (Telemac-Mascaret Modelling System, 2014), following the

field data treatment, in order to assess the predictive code capability to reproduce the

observed secondary currents.

The following section describes the study site and the collected data, including a brief

description of the in-house software developed to treat the field data. Then, a description

on how and why the right downstream branch of the diffluence acts as a river bend is
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Table 4.1: Some field data from rivers around the world

River B(m) H (m) β

Severn, UK (Bathurst et al., 1979) 12.0 0.90 13.3

Dommel, The Netherlands (de Vriend and Geldof, 1983) 7.0 0.58 12.0

Muddy Creek, USA (Dietrich and Smith, 1983) 5.5 0.50 11.0

Brahmaputra, Bangladesh (Richardson and Thorne, 2001)∗ 450.0 6.00 75.0

Sacramento, USA (Dinehart and Burau, 2005) 130.0 12.00 10.8

Paraná main channel, Argentina (Szupiany et al., 2009)∗ 850.0 15.00 57.0

Colastiné, Argentina (this study) 130.0 10.00 13.0
∗ confluences, whose hydrodynamics is not necessarily equivalent to those observed on
river bends (Rhoads and Kenworthy, 1998a)

Figure 4.1: Location of the study site (encircled). Past, present and proposed future
locations for the Santa Fes harbour (in yellow). Satellite imagery courtesy of INPE

(Instituto Nacional de Pesquisas Espaciais, Brazil).

presented. Finally, a qualitative comparison between simulated results and observed

cross-flow data is given next, to close with the proposed engineering solution to the

access channel sedimentation problem.
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Table 4.2: Fieldwork parameters: zw: water stage above datum at Santa Fe harbour,
Q: access channel discharge, V : vessel bin size and ∆z : ADCP sampling interval

Date zw(m) Q(m3s−1) V (m/s) ∆z(m) ∆t(s)

2004a 11.25 856±98 0.72 0.90 10.00

2006a 11.51 917±101 0.67 0.50 5.00, 10.00

2007a 12.16 663±116 1.36 1.10 10.00

2008a 10.78 622±119 1.15 0.75 10.00

2009a 13.27 1083±126 0.65 0.90 10.00

2010b 12.78 1085±63 1.52 0.25 0.59

2012b 10.57 595±14 1.15 0.25 0.59

a.Sontek RiverSuveyor 1000 kHz

b. TRDI Ro Grande 1200 kHz

4.2 Materials and Methods

4.2.1 Study site

The incoming flow from the Colastiné experiences a sharp turn at the access channel

inlet (Figure 4.2a), which makes it prone to centrifugal effects and, therefore, susceptible

to developing secondary currents. Table 4.2 summarizes the main parameters either

collected or setup during the fieldworks: the river discharge Q and free-surface elevation

zw corresponding to low-medium flow conditions, the vessel velocity V , and the ADCP

sampling volume and time, ∆z and ∆t, respectively.

In the occassion of the field campaign of 2004, the existing mid-channel bar was sub-

merged albeit the water depth was too shallow for sailing over it. On the contrary, the

river stage was higher during the fieldwork of 2006 making it possible to collect data

over the sand bar. Figure 4.2(b) shows the river water levels on the field trip dates, and

during the Landsat imagery dates used to fill the late evolution of the riverbanks.

The field site is within the alluvial system of the Paraná River, a large low gradient

sandy river with a free-surface slope ranging between 3 and 5 cm per kilometer (i.e.

[3 − 5] × 10−5). The Colastiné is an anabranch of the Paraná River with riverbanks

composed of a 4−6 m layer of clay and silt overlying coarse sands (Iriondo, 2007). It is a

typical meandering river with an approximated average water depth, channel width, and

discharge of 6 m, 600 m, and 1700 m3s−1, respectively. About 80-85 % of the Colastiné

and Paraná sediment transport is wash load made of silts and clays barely found in

measurable quantities in the bed (Amsler et al., 2005). The rest is bed-material made

of fine and medium sands predominantly carried in suspension. Figure 4.2(c) depicts

several particle size distribution of bed material collected at the study site. The samples
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are characterized by an average geometric mean size and standard deviationDg = 221µm

and σg = 1.74, respectively.

Figure 4.2(a) summarized the morphology variations of the site in the last 100 years

according to data retrieved from old navigation charts and recent Landsat imagery. The

accretion rate of the wedged-shaped floodplain created between the former Colastiné

course and the newly excavated access channel was about 28 m/year between the years

1913-1928. By contrast, the wedged evolved into a tongue-shaped floodplain at the

slower rate of 12 m/year in the years 1928-1986 and remained stable since then. The

tracked riverbanks displacements yielded an average accretion rate of 19 m/year for

the head of the mid-channel island while the “horizontal bar” of the original T-shaped

diffluence has remained almost unchanged since 1913, with an accretion rate of 4 m/year

at most. The formation of the tongue-shaped right floodplain was part of larger scale

processes attributed to the climate variability of the twentieth century (Amsler et al.,

2005).

Consequently, there seems that whereas the riverbanks experienced a long-term adap-

tation processes, the recent growth of the mid-channel island formed at the bifurcation

obeys short-term processes. The rapidly evolving mid-channel island conforms with the

local divergent planform of the diffluence. Recent changes in the Colastiné hydrology

could have contributed to the island formation. The mean channel width along the

Colastiné has decreased an average of 16-21 % in the years 1977-2009 in response to a

mean river discharge decline of about 16-26 % (Amsler et al., 2005; Ramonell, 2012). If

the mid-channel island formation is the result of the sudden loss of the river transport

capacity at the bifurcation, to the river changing hydrology, or a combination of both

is beyond the scope of this work. Resolving these processes imply having data across a

wide range of spatial and temporal scales, an extremely difficult task due to the required

resources as well as the need to count with an accurate record of topographic data.

The typical one-dimensional (1D) description of a river bifurcation consists of three

branches linked through a node. In this context, the bifurcation angle is defined by the

centerlines of the two downstream branches relative to the upstream channel orientation

(γ = γa + γb, Figure 4.2(d)). Figure 4.2(d) sketches the tracked morphology evolution

of the bifurcation node since 1913. The newly excavated access channel created a Y-

shaped diffluence of the Colastiné River with an initial bifurcation angle γ ? 152◦. With

time, the Colastiné swiftly moved south towards its current morphology accompanying

the evolution of the main channel of the Paraná itself (Amsler et al., 2005). By the

mid 1980s, the bifurcation had evolved to an almost T-shaped diffluence with an angle

γ ? 189◦. The system remained unchanged for years till the turn of the century, when

the mid-channel bar formed right upstream of the diffluence eventually began to emerge.
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Figure 4.2: a) Morphological evolution of the study area, b) water levels with Table
4.2 and Landsat imagery dates, c) grain size distribution, and d) 1D evolution sketch of
the bifurcation node since 1913 (ac: access channel, cr : Colastiné River, tpr : to Paraná
River). Satellite imagery courtesy of CONAE(National Agency of Space Activities,

Argentina).

The mid-channel bar remained under or above water depending on the river hydrology

(Figure 4.2b). From 2008 onwards, the sandbar was colonized by vegetation and recently

evolved to a mid-channel fluvial island used for livestock grazing by local inhabitants.

Nowadays, the hydrodynamics diffluence is driven by the mid-channel island conforming

to a Y-shaped bifurcation with a new angle γ ? 65◦.

4.2.1.1 A note on bifurcation stability

River bifurcations behave as switches that steer the flow and sediment partitioning into

the two downstream branches (Federici and Paola, 2003). Bifurcations are “stable”

if both branches remain open through time, and “unstable” whenever one of the two

downstream branches tends to be abandoned (Pittaluga et al., 2003). Channels upstream

of stable bifurcations are straight, widening towards the bifurcation node. Burge (2006)

reported that bifurcations characterized by greater angles may be inefficient for an even

distribution of water and sediment between both anabranches. In contrast, bifurcations

with smaller angles may remain stable by dividing water and sediment more evenly

(Federici and Paola, 2003).
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Even though the bifurcation seems to be stable, the external reach of the access channel

(behind the mid-channel island) requires periodic maintenance dredging to keep the

waterway operational. It is likely that the recent formation of the mid-channel island

head that divides sediment and water into the downstream branches can also contribute

to the stability of the bifurcation. The accretion rate of the mid-channel island head

was about 19m/year in the period 2002-2012, reducing the former bifurcation angle γ

from 189◦ to the actual 65◦, close to the stable range of 40◦ − 60◦ reported by Federici

and Paola (2003).

4.2.2 Velocity measurements

Data captured with ADCP are routinely used to study 3D flows, and the trend is to re-

peat transects along linear routes to resolve weak cross-stream velocities (Dinehart and

Burau, 2005). In this work, two different ADCP has been systematically used in the

study site; a 1000 kHz RiverSurveyor manufactured by Sontek and a 1200 kHz Workhorse

Rı́o Grande manufactured by Teledyne RD Instruments (TRDI). The proprietary soft-

ware packages RiverSurveyor and ViewADP for the Sontek ADCP, and WinRiver II

for the TRDI ADCP were used for data acquisition and integration with positional in-

formation from satellite data. However, and due to an ongoing effort to develop a set

of in-house routines to process the field data, the present work restricts the analysis

regarding the 3D structure of the flow velocity to data captured with the Sontek ADCP,

whereas flow discharge data analysis is limited to the TRDI ADCP measurements. A

full description of the in-house codes is beyond the scope of this work.

Water velocity and bathymetry data were collected using one of the ADCP in parallel

with a differential Global Positioning System (dGPS) receiver with Real-Time Kinematic

(RTK) technology. The RTK system, sampling at the rate of two positional points per

second, provided accuracies of ±0.02 m in planar and ±0.04 m in vertical direction. A

second serial port to connect a digital 200 kHz Raytheon single beam echo-sounder was

attached to the on-board computer during the surveys.

The down-looking ADCP was mounted on the side of a fiberglass-hull vessel of 6.4 m

in length, when a combined bathymetry and flow velocity field survey were carried out

using the moving boat methodology (Muste et al., 2004). For most of the field works, the

Sontek ADCP was set to a cell size and sampling interval (or ensemble) of 0.75 m and

10 s, respectively, with a boat velocity preferably below 1.5 m/s to obtain reasonably

accurate flow measurements (Szupiany et al., 2007). The TRDI was set up to work

under water mode 1 with a bin size of 0.25 m and a sampling frequency of one ensemble

every 0.59 s (Table 4.2).
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Three types of single-beam bathymetry datasets were collected during the field works

spanning the years 2004-2012. One set of data, designed to guide data-collection op-

erations, corresponded to survey lines covering the study area with an approximate

separation interval of 50 m each. In addition, a separate set of navigation lines, skewed

to the approximately equally spaced transects, were planned to provide independent

measurements of precision and bias. These skewed lines served later on as an indepen-

dent basis to test the adequacy of the interpolated digital bed elevation model (DEM).

A mean depth of 7 m at the navigation channel, and about 3.5 m at the outlet of the

Colastiné River, with a mean channel width of 130 m and 600 m, respectively, were

determined during these measurements. A scour hole with a bed elevation of −6.5 m

was found on the right branch, a short distance downstream from the point of maximum

curvature, in comparison with the ground elevation of about 14 m of the nearby inner

bank (Figure 4.3(a)).

The third set of bathymetry data was pick-up along transects aligned with rays departing

from a virtual centre of curvature, pinpointed over the land surface on the right -inner-

bank side. These rays were drawn in advance to all field works, and the centre of

curvature was determined by fitting a circle to the river plan-form of the inner bank.

The helmsman then followed the drawn transects as closely as possible by tracking the

vessel position in real-time with the dGPS. Nevertheless, in order to verify if the adopted

cross-section orientations were supposedly perpendicular to the primary flow direction,

two floats made with a 1.8 m long and 5 cm-diameter PVC tube and equipped with

Blue-tooth GPS (Garmin 10X) were used to identify depth averaged particle paths at

the sharp turn of the navigation channel inlet. Data from the GPS were logged at 2

seconds interval onto a portable computer (with enhanced Blue-tooth communication of

up to 100 m reach) by using standard navigation software. The floats were released just

100 − 150 m upstream of the Colastiné River’s outlet on March 18, 2009, prior to the

field survey with the TRDI ADCP.

4.2.3 Data analysis

4.2.3.1 Digital bed elevation model - DEM

The ADCP internal compass and tilt sensor (roll/pitch) referred water velocities compo-

nents in terms of East-North-Up (ENU) coordinates. The collected bed elevation data

in ENU coordinates, corrected by the magnetic declination bias, were later converted to

Transverse Mercator (TM) coordinates with the formulas given by Snyder (1926), with

the new World Geodetic as the reference system (WGS 84). For Argentina’s Gauss-

Krüger (TM) coordinates, the origin is the intersection of the South Pole with the
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Figure 4.3: (a) DEM of the study site (ground elevation in metres), (b) Finite element
mesh and surveyed cross-sections (XS) - red line: boat path followed during the water

surface elevation survey.

central meridian of each band, and with a northing of zero. This procedure was packed

in a module, part of a bundled software written in Fortran 95 to merge field data with

point and polyline data from complementary sources (river banks elevations, borderlines

around inner islands, etc.). The bundled comprises the SMS (2000), the visualization

tool Tecplot (2011), and a set of in-house routines described in Vionnet (2010).

This topographic data manager tool allows to alter the outcome of the interpolation from

the scatter data using different criteria, which may guide the user with the continuous

assessment of the DEM generation process. An adaptive tessellation of the domain is

then constructed with a Delaunay triangulation from the scatter point set. This trian-

gular irregular network, linking each scatter point, allows the interpolation of elevation

data using linear base functions onto a regular grid, whose steps-size are defined by the

user. The algorithm defines automatically which node of the regular grid is inside or

outside the computational domain, information used later to pass a 2D Laplacian ker-

nel to smooth out the resulting bed elevation interpolation. This is because the DEM

should represent the bare surface of the river bed with a smooth transition between the

bed and riverbanks whenever possible, in order to avoid convergence difficulties nearby

the boundaries of the computational domain due to contradictory data between bed

elevation and local water depth.

A first DEM was generated with bathymetry data collected only with the echo sounder,

whereas the final DEM was produced with data captured with the echosounder between

4 and 5 May 2010 (Table 4.2), and depth data estimated through the four-beam readings

of the ADCP TRDI, corrected by roll and pictch with the aid of the VMT (Parsons et al.,

2013). Figure 4.3(a) depicts the DEM so obtained.
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4.2.3.2 ADCP data

Occasionally, reported results seem to be vague and open to different interpretations de-

pending on the method used to extract secondary currents from the field data (Rhoads

and Kenworthy, 1999; Lane et al., 1999). Despite this still ongoing controversy within

the scientific community, the vast majority of researchers refer to the so-called Rozovskii

method (see Rozovskii, 1957, p.138) to infer secondary motion. The Rozovskii procedure

isolates the excess (or deficit) of the transverse velocity component relative to the respec-

tive depth-averaged value on any vertical profile. The method accounts for a rotation of

the planar velocity vector with respect to the direction of the depth averaged velocity

vector. However, the procedure depends upon having zero net secondary discharge at

the vertical, a condition normally used to close the mathematical problem posed by the

set of governing equations (Engelund, 1974), albeit unrealistic in practical situations.

Dinehart and Burau (2005) proposed a two steps method to isolate secondary currents:

first, a bend-crossing plane of velocity vectors from ADCP data is derived, and second,

elements of the backscatter intensity planes are used to guide an interactive alignment

of the averaged velocity grids previously obtained. They found the bend-crossing plane

through a section-straightening procedure, where the velocity ensembles are spatially

translated to a straight line defined by a mean crossing line fitted along multiple tran-

sects.

The procedure adopted here for post-processing the field data involves two steps: the use

of proprietary software in the first place and then in-house routines to get the transverse

velocity field. In other words, filtered 3D flow data was first exported into spreadsheet

files written in ASCII format with the proprietary program ViewADP Sontek (2004) or

WinRiver II TRDI (2007), and later loaded into a Fortran 95-based software package

called read aDcp for further processing and visualization. The procedure after read aDcp

allows users to integrate primary and secondary velocities from one or more surveyed

cross-sections with the DEM, in turn generated with the routines described in Vionnet

(2010).

The 3D velocity field data is projected with a procedure similar to that proposed by

Dinehart and Burau (2005). Secondary currents were computed with (or without) the

zero net cross-stream discharge constraint. The code decomposes both the horizontal-

two dimensional or depth-averaged (2DH) velocity field, and the full 3D vectors into

tangential (along the cross-wise plane) and normal (along the stream-wise plane) com-

ponents of the absolute velocity relative to the ground, with the addition of the up

component for the 3D case. Finally, both the tangential and up components define the
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vertical-two dimensional (2DV) representation of the flow field along the projected cross-

stream plane, in turn located through an orthogonal least squares fit to all trajectories

navigated by the vessel during the surveys.

4.2.4 Numerical solutions

4.2.4.1 Numerical engine

The suite of numerical codes used in this work belongs to the open source Telemac-

Mascaret system (Hervouet, 2007; Telemac-Mascaret Modelling System, 2014), currently

developed by the research and development department of Electricité de France (EDF)

and the Telemac Consortium. The Telemac-3d module solves either the hydrostatic or

non-hydrostatic continuity and the time-averaged Navier-Stokes equations with a finite

element discretization fully parallelized with the message passing interface paradigm.

The hydrostatic approximation consists on neglecting the vertical acceleration, diffusion

and source term in the momentum equations. The non-hydrostatic approximation is

based on the pressure decomposition into hydrostatic and hydrodynamic parts, allowing

an accurate computation of the vertical velocity, which is coupled with the whole system

of equations. The solution steps of the hydrostatic 3D version are: i) computation of

the velocity field by solving the advection terms; ii) determination of a new velocity

components by taking into account the diffusion and source terms (intermediate velocity

field); iii) computation of the water depth from vertical integration of the continuity

and momentum equations by excluding the pressure terms; and iv) determination of the

vertical velocity w from the continuity equation and computation of the pressure step

by the Chorin method (Hervouet, 2007).

4.2.4.2 Finite element meshes

The reasons why the finite element method is so successful for studying environmental

problems are well-known: local character of the approximation functions, ability to

treat natural boundary conditions, and ease in handling complex geometrical domains.

However, the generation of an adequate discretization mesh and the estimation of the

solution error are in general difficult tasks, particularly over complex 3D domains.

The so-called a-priori error estimate decides how the computed results deviate from

the exact solution supplying information on convergence rates, but is unable to deliver

quantitative or qualitative error information. A-posteriori error estimates, based upon
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the computed solution, provide more practical accuracy appraisals (Babuska and Rhein-

boldt, 1978). This estimation seeks to evaluate the error in some specific measure, where

the idea is to refine the mesh such that the errors are “equally” distributed over the com-

putational mesh. Nevertheless, this error measure is somehow too abstract and does not

provide users with specific features of the solution.

Consequently, the users usually base their final decision on similar, earlier computations.

A simple rule of thumb is to increase the number of elements to reduce its average size

∆ until the results of successive computations show no perceptible difference.

All triangular finite element meshes used here were produced with SMS (2000) with

the embedded DEM and later exported into the binary Telemac format (called selafin

(Mourad, 2011)). The meshes were fitted along external and internal boundaries where

flow quantities were available (Figure 4.3(b)). The 3D finite element mesh was later ob-

tained by extruding each linear triangle along the vertical direction into linear prismatic

columns that exactly fit the bottom and the free-surface. In doing so, each column can

be partitioned into nonoverlapping layers, requiring that two adjacent layers comprise

the same number of prisms.

4.3 Results

4.3.1 Field data

4.3.1.1 Independent computation of river discharge

Due to intrinsic operational limitations, the ADCP is unable to measure near the bed,

banks, and free surface (Simpson, 2001). For example, the Sontek ADCP employed has

a profiling range capability of 1.2 − 40.0 m, and a cell-size ranging between 0.25 − 5.0

m with a minimum blanking distance of 0.7 m. The distance from the water surface to

the center of the first bin was about 1.3 m approximately [= 0.7 m (blanking distance)

+ 0.2 m (probe submergence) + ∆z/2 (see Table 4.2)]. The blind distance at the top

layer and the “contaminated” bottom layer by side-lobe interference rendered between

55 % and 15 % of unmeasured depth for water columns located in shallow and deep

zones, respectively. However, as it is shown later, the bulk of moving water scanned by

the ADCP was large enough to capture cells of secondary circulation.

The mentioned limitations are overcome by the manufacturer through the utilization of

extrapolation methods, which covers from the one-sixth power-law estimation technique

to fit the vertical velocity profile within the inner portions of the cross-section to the
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ratio interpolation procedure to infer the near-shore flow rates (Sontek, 2004; TRDI,

2007).

Contrary to these techniques, used to infer the flow discharge in real-time situations

(Simpson, 2001), an independent calculation based on different assumptions was devel-

oped to test the in-house code. This a-posteriori estimate is based upon a rather crude

approximation of the flow profiles along the gauged area of the cross-section as well as

on the ungauged portions (free surface, bed and banks). Nevertheless, if the 3D struc-

ture of the loaded velocity field is correctly handled by the in-house code, these new

flow discharge estimates should not be far from the values reported by the proprietary

software.

It suffices to note that whereas the river discharge measured on May 4-5, 2010 (Table

4.2), estimated with the software WinRiver II (TRDI, 2007) was 1085 m3/s on average

with a fractional standard deviation of about 5.8%, the computation with read aDcp

yielded a mean value of 1100 m3/s with a standard deviation of 6.1 %. Sixteen values

of discharges measured along cross-sections XS1, XS3, XS4, and XS5 were selected (see

Figure 4.3(b) for reference locations). The values measured on cross-section XS2 were

ruled out because this transect is affected by recirculating flow nearby the left riverbank.

Both results, the estimated with the proprietary software and the approximated with

the in-house code have similar frequency distributions, with a median of 1100 m3/s (see

Appendix B).

It is seen that the river discharge values obtained with the in-house code bears favourable

technical comparison with the values produced by the proprietary ADCP software. The

comparison can be favourable only if the 3D velocity field is correctly uploaded by the

code. In brief, the in-house code handles the field data in a manner consistent with the

proprietary software and, therefore, it can be deemed appropriated for further processing,

e. g. the isolation of secondary currents.

4.3.1.2 Cells of secondary circulation along the right branch of the diffluence

The experience accumulated when studying helical motion (Rozovskii, 1957; Engelund,

1974; Bathurst et al., 1979; Johannesson and Parker, 1989a) can be well suited to un-

derstand the present flow behaviour as long as the diffluence branches behave as river

bends.

Figure 4.4(a) plots the measured float paths along the diffluence showing a clear flow

partition upstream of the two river branches, with a downstream zone where the water

is either stagnant or circulating weakly (behind the fluvial island). This pattern is
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Figure 4.4: (a) Float paths, (b) Streamlines of the 2DH results of Telemac-2d. Sourse:
Google Earth

reproduced in Figure 4.4(b), which depicts the numerical results of a 2DH calculation

obtained with Telemac-2d. There is a clear correspondence between the observed float

paths and the computed streamlines of the depth-averaged flow.

Some characteristic flow features along the right branch of the diffluence are observed

in Figure 4.4; i) the size and shape of the stagnant water zone behind the fluvial island,

which bounds the water motion along the right branch in such a way that it looks like an

open-water pipe elbow flow, ii) the downstream extension of the detached flow behind

the vortex of vertical axis formed near the curve apex; an unusual flow situation barely

found on the alluvial system of the Paraná River (somehow showing the artificiality of

the channel morphology, excavated at the beginning of the twentieth century), iii) the

convergence of neighboring streamlines as the flow approaches the curve apex, not only

in response to curvature effects but also enhanced by an effective cross-section reduction

due to the vortex presence. It seems then that the curved flow along the right branch

should be prone to the formation of secondary flow. This distinctive flow feature should

be embedded in both the numerical results and the field data, where the former depends

on the ADCP proprietary software, and to a lesser extent, on the used in-house code.

The proprietary RiverSurveyor software Sontek (2004) handles depth-averaged data

across the measured transect without further processing. Thus, after conversion of geo-

graphical positions to TM (Gauss-Krüger) coordinates, the information can be readily

exported onto georeferenced satellite images of the study site for further analysis. Few

transects with the 2DH velocity field measured during the 2004 and 2006 field works (see

Table 4.2) are depicted in Figure 4.5(a) and Figure 4.6(a). A clear flow separation just

downstream of the inner bank apex is observed in both field data, which surely alters

the size and shape of the secondary circulation cell.
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In order to analyze the 3D structure of the flow field, it was necessary to resort to the

in-house code. Upstream of XS2 it is possible to observe two well differentiated flow

behaviour. Figure 4.5(b) shows that the streamwise acceleration and deceleration the

flow must undergo at the outer and inner banks, respectively, along XS1 are so significant

that a net unidirectional flow in the crosswise direction from outer to inner regions must

set up for mass continuity reasons.

A word of caution is required here: Figures 4.5(b) and 4.6(b) correctly depict cross-

section XS1 from left to right riverbanks where the cumulative distance s starts from

zero at the first gauged water column. Data taken on 2006 shows a well defined flow

partition above the sandbar (Figure 4.6(b)), in coincidence with the field and numerical

data shown in Figure 4.4. A left branch width of about 350 m is consistent in both

Figure 4.4(b) and Figure 4.6(b). Thus, Figure 4.5(b) depicts the right branch of XS1

only while Figure 4.6(b) depicts the whole XS1. The difference in the bathymetry shape

is because the boat path surveyed on 2004 was closer to the scour hole present at the

curve apex.

Finally, the single cell of secondary motion is clearly seen in both Figure 4.5(c) and

Figure 4.6(c), captured along XS2 during the field works of 2004 and 2006, respectively.

The secondary circulation is rather intense, with transverse velocities on the order of

0.40 m/s, which represents about 40-50% of the primary flow component.

4.3.2 Numerical simulations

4.3.2.1 Boundary conditions and mesh independency test

At the sidewalls, the velocities tangential and normal to the boundary were set equal

to zero (no-slip condition). At the outlet boundaries, the normal gradients of the flow

velocity were set equal to zero, whereas a free-surface elevation of 10.545 m and 10.526

m at the left and right downstream branches, respectively, were imposed. The inflow

boundary was fixed at Q = 1629 m3/s, and located far upstream to avoid affecting the

solution in the region of interest. The field measurements yielded a closure error less

than 1% in terms of river discharge (Qright = 595 m3/s and Qleft = 1044 m3/s). These

data were measured during the fieldwork of March 2, 2012.

The generation of adequate meshes with successive halved elements is impossible when

unstructured mesh generators are used to discretize the geomorphology depicted in Fig-

ure 4.1. Therefore, and in order to circumvent the limitations mentioned in section 2.4.2,
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Figure 4.5: 2004 Sontek ADCP: (a) ViewADV 2DH velocity vectors, Source: Google
Earth, (b) read aDcp 2DV velocity field on right branch of XS1 (acces channel discharge:

905 m3/s), (c) read aDcp 2DV velocity field on XS2.

four meshes were generated with decreasing “mean” element size ∆ according to

∆ ?
√

2Ω

Ne
, (4.1)

where Ω is the area of the computational domain and Ne the number of elements (Nn is

the number of nodes (Table 4.3)). The first three meshes extended over the larger domain

while the fourth mesh overlapped the shorter computational domain (see Figure 4.1 for

details). The objective was twofold; to show that solutions computed on successive

meshes display no perceptible difference albeit converging to a final state, and to infer

the hydraulic gradient and the proper boundary conditions of the incoming flow into the

smaller domain (Figures 4.1 and 4.3(b)).

All computations were performed over unstructured triangular meshes with 5 layers but

the finer, where 15 layers were used instead. The adequacy of the results were judged

on the basis of the computed flow discharge at the diffluence. Table 4.3 clearly shows

that when the discretization is fine enough, the computed results can be considered

mesh insensitive. The final flow partition of 585 m3/s and 1044 m3/s is well within the

uncertainty range around the mean value of the measured river flow rate (see Table 4.3

and appendix B).
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Figure 4.6: 2006 Sontek ADCP: (a) ViewADV 2DH velocity vectors, Source: Google
Earth, (b) read aDcp 2DV velocity field along the whole XS1 (access channel discharge:

967 m3/s),(c) read aDcp 2DV velocity field on XS2.

For a given initial condition consisting on a constant water surface elevation and velocity

components equal to zero, the steady state was reached after about 100000 time steps

of 0.1 s, corresponding to a physical time of about 2 hours 46’. When ran on eight

processors of a Z600 HP workstation, the typical elapsed time to achieve convergence

was on the order of 35’.

The numerical simulations were performed with a roughness-length representation based

on the Nikuradse coefficient ks = 0.01 m and with a constant turbulence model with

eddy viscosity coefficient νt = 1.0 × 10−5 m2/s. Different values of the hydraulic resis-

tance height ks were used to adjust the observed water surface slope in the streamwise

direction. The adopted value of ks = 0.01 m yielded the best fit between the observed

and computed hydraulic gradient (in both computational domains, large and short).

The values for νt were selected after the recommendations of Vionnet et al. (2004).

4.3.2.2 The 3D flow structure

The right branch of the diffluence exhibits a strong asymmetry of the bed topogra-

phy. The flow along this branch develops zones of acceleration, stagnation, deflection,
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Table 4.3: Mesh independency test

Mesh Nn Ne layers prisms ∆[m] Ql[m
3/s)] Qr[m

3/s)]

1 1006 1585 5 7925 74 994 635

2 2354 4083 5 20415 46 1056 573

3 23224 44534 5 222670 15 1041 588

4 3380 6623 15 99345 13 1044 585

Ql and Qr stand for Qleft and Qright, respectively

separation, and reattachment (Figures 4.4(a), 4.5(a), and 4.6(a)).

Figure 4.7(a) depicts the 3D velocity field along the edges of the computational domain

nearby the outflow boundary representing the inlet to the access channel. The numerical

solution captures the area of stagnant water behind the island, the vertical axis vortex at

the curve apex of the inner bank, and the detached flow downstream of it. The contour

map embedded in Figure 4.7(a) reflects the module of the 3D velocity field, in m/s.

The size and location of the vortex shown in Figure 4.7(a) are in fairly well concordance

with the drawn float paths and with the ADCP measurements (Figures 4.4(a), 4.5(a),

and 4.6(a), respectively). The formation of the separation zone deviates the flow towards

the left bank, at the inlet of the access channel. Nonetheless, the size of the detached

flow area behind the vortex of a vertical axis seems to be better captured by the 2DH

simulation (Figure 4.4(b)) rather than by the full 3D solution. Similar effects have been

noted by Lloyd and Stansby (1997) when comparing 2D and 3D shallow-water numer-

ical solutions of the wake formation behind models of conical islands with laboratory

measurements.

The longitudinal profile of the free-surface shown on Figure 4.7(b), whose trace is detailed

in Figure 4.3(b), reflects part of the flow behavior along the diffluence. The free-surface

is flat behind the mid-channel island, in coincidence with the zone of stagnant water,

and falls sharply on both extremes towards the inlet of the access channel and the main-

channel of the Paraná River. There is a concentrated jump when the water surface,

elevated by the centripetal effects on the outer edge of the left branch, meets the area

of the flat surface behind the island. This area of flat free-surface behaves like a rigid

body since it plays the role of the missing channel wall on the outer bank. There is a

clear correspondence between observed data and numerical results.

Figure 4.8(a) shows the numerical results along the selected surveyed cross-sections

(XS), numbered from 0 (XS0) at the upstream inlet boundary to 5 (XS5) towards the

downstream boundary within the access channel (see Figure 4.3(b) for surveyed XS

locations).
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Figure 4.7: (a) View of the 3D velocity field (measured discharge at the access channel
inlet: [588-602]m3/s (see Table 4.2), simulated: 585 m3/s (see Tabla 4.3)); (b) Free-

surface along the boat path of Figure 4.3(b).

The XS2, a bit downstream of the diffluence, exhibits a flow pattern compatible with

a cell of secondary circulation with transverse velocities on the order of 0.40 m/s, i.e.

about 50% of the primary velocity component. Unfortunately, due to limitations of the

postprocessing interface, it is not possible at this moment to extract the results from

Telemac-3d following the same procedure used to treat the field data. However, and

besides an optical effect due to the 3D projection algorithm used to plot the solution,

the results along XS2 show a significant net unidirectional flow component in the trans-

verse direction from outer to inner regions. It is the mass conservation constraint that

triggers this transverse flow to compensate the accelerated flow that sets up along the

inner regions of the bend. The contour values of the flow module points the region of

accelerated flow.

Finally, Figure 4.9(a) is a plots of the distribution of the 2DH velocity field obtained

from the 3D computations. The solution captures the overall flow pattern inferred from

the float paths shown in Figure 4.4(a). Both numerical and field data show a weakly
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curved flow field with almost parallel streamlines along the left branch.

Figure 4.8: Computed flow patterns at surveyed XS.

4.3.3 A feasible solution to the sedimentation problem of Santa Fe’s

harbour

The cost of the maintenance dredging required to keep the access channel operational

goes off the current ship toll system ruling the navigation of commercial vessels along the

Paraná main channel from Santa Fe to the Atlantic Ocean. This additional cost, afforded

by the Santa Fe Province, has put the local harbour in a disadvantageous position since

the 1970s. Nevertheless, there is one possible solution that could deliver the basis for a

new, cost effective alternative to turning around this disadvantage.

It is technical feasible to close the South Derivation Channel (“Canal de Derivacion Sur”,

pt. (d), Figure 4.1) in order to reverse the flow direction in the access channel. The

partial closure of the South Derivation Channel -an ecological downstream discharge

must be kept- can divert enough water to set up an unidirectional flow through the

external reach of the access channel. The strength of this unidirectional flow should

be able to keep most of the transported sand particles up in suspension. Local people
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reported having witnessed the flow reversal phenomena along the access channel during

some of the extreme floods experienced by the Paraná River on the twentieth century

(Vionnet et al., 2006), albeit there is no record of such inversion.

Figure 4.9(b) sketches the 1D network of the so-called Leyes-Setúbal system, a complex

anabranch system of the Paraná main channel. It has its origin nearby the Colastiné

mouth and receives part of the Colastiné discharge through the access channel. Due

to the lack of systematic discharge records along the Leyes-Setúbal system, it is quite

reasonable to assume a mean flow through it on the order of 2400 m3s−1. Such estimate

is the outcome of assuming an average flow velocity between 0.8 and 1 ms−1 with an

approximated wetted area of 2400-3000 m2 along the Hanging Bridge cross-section (300

m wide and 8-10 m depth, see Figure 4.9(b) for the bridge XS location). Notwithstanding

further hydrological and morphological studies are necessary if the proposed solution is

eventually considered, there seems to be enough water available to divert part of it

through the access channel.

The constructed numerical model with Telemac-3d is the natural starting point to test

the proposed solution. The contour values of the bed shear velocity U∗, computed for

the base state (the scenario reported from Figures 4.7 to 4.9(a)), along with 4 testing

points located within the study area are detailed in Figure 4.9(a). Point A is located

at the access channel mouth, where the strength of the secondary currents is maximum,

point B upstream in the Colastiné River, point C in the middle of the external reach

of the access channel, and point D downstream, on the thalweg of the bifurcation left

branch.

Figure 4.9(a) includes not only the contour values of U∗ in the background but also

the 2DH velocity vectors distribution on top of it. Table 4.4 summarizes the computed

values of U∗ in the testing points when the boundary condition at the outflow of the right

downstream branch is changed from free to a prescribed flow condition. The negative

values of Q stands for the new inflow boundary conditions whereas the positive value

of 585 m3s−1 corresponds to the base scenario. Figure 4.10(a) shows the counterpart of

Figure 4.9(a) when the outflow boundary condition at the inlet of the access channel is

set to the prescribed inflow value Q = −1100 m3s−1.

The large, low-gradient sandy-bed Paraná River moves its bed material as both bedload

and suspended load, albeit suspended load far dominates bedload (Amsler et al., 2005).

Strictly speaking, the separation between both transport modes is not a sharp process.

Nonetheless, two criteria are widely used to estimate the onset of initiation of motion

and initiation of suspension. The criteria used to quantify the onset of motion of grains

of a non-cohesive sediment bed, and the onset of significant suspension of bed material
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Table 4.4: U∗[ms−1] for the different flow scenarios in the access channel

Q[m3s−1] 585 −500 −700 −900 −1100
A 0.019 0.018 0.027 0.035 0.043
B 0.045 0.047 0.047 0.047 0.047
C 0.004 0.056 0.064 0.073 0.081
D 0.047 0.078 0.082 0.087 0.089
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Figure 4.9: (a) Distribution of U∗ and 2DH velocity field for the base state; b) Sketch
of the Leyes-Setúbal system upstream of Santa Fe City.

are the Shields diagram and the Bagnold approximation, respectively. The Shields curve

reads
U2
∗

gRD
= 0.22Re−0.6

p + 0.06× 10−7.7Re−0.6
p , (4.2)

after Brownlie (1981), for any river bed composed of grains of characteristic size D and

submerged specific gravity R, where Rep is a particle Reynolds number defined by the

expression

Rep =

√
gRDD

ν
(4.3)

Here g is the acceleration due to gravity and ν the kinematic viscosity of water that is
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Paraná River 79

approximately 1.0 × 10−6 m2s−1 at 20◦ C. The so-called Bagnold criteria, a standard

rule of thumb commonly accepted to define the onset of significant suspension, is defined

by
U∗
Ws

? 1 , (4.4)

where Ws is the particle fall velocity, usually computed as an empirical function of the

grain diameter, the acceleration due to gravity, and the kinematic viscosity of water.

Now, the prevailing sediment transport modes along the four testing points can be

inferred from a diagram of U2
∗ /gRD vs. Rep. Figure 4.10(b) depicts the threshold

curves defined by equations (4.2) and (4.4) with few isolated points summarizing the

flow conditions of Table 4.4, for a particle size range that goes plus-minus one standard

deviation from the geometric mean size Dg = 221µ m (Figure 4.2(c)). This range covers

almost 70 % of all sediment sizes sampled at the study site, under the assumption that

the grain distribution can be well approximated with a Gaussian function.

The points encircled in Figure 4.10(b) represent the dominant sediment transport modes

for the base flow situation along the testing locations. The prevailing conditions at point

C are of no sediment motion for both ends of the sediment size range considered. Any

particle within that size range that reaches the neighbourhood of C either as bedload

or suspended load is going to remain nearby without moving any further. On the other

testing sites, the prevailing transport mode is suspended for the lower range of sediment

size and mixed for the upper range.

However, the situation changes drastically when the flow along the access channel is

reversed, notably in point C. All sediment particles within the tested range is going to

be transported mostly in suspension except in the vicinity of point A, where bedload

would still be dominant. The situation improves around point D and there are no signs

of changes upstream of the diffluence, in the vicinity of point B. The prevailing bedload

transport condition around point A would deactivate if the actual right branch is closed

up to the mid-channel island. The low values of U∗ (Figure 4.10(a)) between the actual

right riverbank and the mid-channel island clearly shows that the future left branch

-under the flow reversal scenario- would be part of an unstable diffluence (or part of an

evolving confluence). It seems only a matter of time before the river ends up closing the

branch. Consequently, the eventual closure of both the South Derivation Channel and

the actual right branch of the diffluence surely warrant the setup of a self-dredging flow

turning the actual diffluence into a stable confluence node.
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Figure 4.10: a) Distribution of U∗ and 2DH velocity field for Q = −1100m3s−1;
b) Shield’s diagram; the encircled points represent the dominant sediment transport
modes for the base flow situation summarized in Table 4.4 (first column) for the size

range [127-384] um of bed particles.

4.4 Conclusions

Float paths produced on the study site, and numerical results obtained with Telemac,

confirm the presence of a central core of convectively accelerated flow bounded by curved

streamlines along both branches of the diffluence. The flow along the left branch is

smooth, weakly curved, whereas the flow along the right branch exhibit regions of flow

stagnation, separation and reattachment.

Field data captured with the Sontek ADCP, and processed with an in-house code show

that the right branch contains a well defined central cell of secondary currents. Although

absent here, TRDI ADCP data show the same secondary motion. The helicoidal flow

formed along the right branch keeps a scour hole at the access channel mouth. There,

the channel sharp turn provokes the separation of the incoming boundary layer and,
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therefore, the formation of a vertical axis vortex at the curve apex. All these features

are well captured by the 2D and 3D numerical solutions, including the observed free-

surface deflection along the diffluence head whose “piecewise” shape is in tune with the

expected flow behaviour.

River discharge data processed with the in-house software is consistent with the pro-

prietary ADCP software, a required validation step before inferring the presence of sec-

ondary currents.Unfortunately, a unified algorithm to isolate cross-flow from a skewed

discharge produced with either numerical or field data are still lacking. In particular,

no unbiased algorithm is yet available to project the 3D computed velocity field onto se-

lected cross-sections. The mentioned limitation hampers the users to judge the capability

of Telemac-3d to capture secondary currents along river bends. The group is developing

the user interface to extract the numerical data from Telemac-3d to project them onto

any cross-section with the same algorithm embedded in the software developed to treat

field data.

According to the produced field measurements, the hydrodynamics of the studied bi-

furcation has remained essentially unaltered during the observation period. Initially, it

was possible to spot zones of stagnant water around the sand-bar driving the flow along

circular streamlines, a role later occupied by the emerged mid-channel island. However,

and despite the recent changes seen during the study period, the reconstructed mor-

phology of the site along a century-long record establishes the stability of the riverbanks

surrounding the bifurcation node at the access channel mouth. The node initially con-

formed to a Y-shaped bifurcation, later evolved to a T-shaped, and recently underwent

a transitional stage towards a Y-shaped node with a bifurcation angle γ close to the

stability range reported by Federici and Paola (2003). How much of this convergence

is due to recent changes of the Colastiné River hydrology, or to a natural process, is

beyond the scope of this paper.

Finally, the numerical outputs for the flow reversal scenario along the access channel

show that the chronic sedimentation problem experienced by the Santa Fe City harbour

is solvable. The closure of both the South Derivation Channel and the actual right

branch of the diffluence surely warrant the setup of a self-dredging flow (such that most

transported sediment carry in suspension) turning the actual diffluence into a stable

confluence node.

While the local authorities decided to move the harbour to the point marked (e) in

Figure 4.1, FICH (1998) recommended doing so nearby point (f). The reasons why the

local harbour authorities ignored to explore the South Derivation Channel closure in

occasion of the FICH (1998) studies are not clear to the authors. Around 2008, part
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of the harbour facilities had been turned into a commercial complex gathering a hotel-

casino with a shopping mall. Nevertheless, the commercial complex is far away from the

loading/unloading areas. The closure of the South Derivation Channel could provide not

only the required self-dredging flow along the access channel but also several hundreds

of meters for ship docking and additional space for good’s storage.





Chapter 5

Conclusions

5.1 Conclusions

In the last decades, theoretical as well as experimental research have emerged on circular

open-channel flows with the hope of uncovering part of the mechanisms responsible for

river meandering. Whilst identification of secondary flows may be straightforward in

open-channels with regular geometry and slowly varying plane curvature, it is not so

in the case of natural meandering streams, whose boundaries are loose and irregular.

Indeed, due to the continuously changing planform and variable bed topography, the

hydrodynamics of a natural meandering stream is rather complex. The flow field is

strongly three-dimensional (3D), and in each cross-section of the meandering stream a

cross-flow develops. Thus, on the basic flow there is a superimposed flow in the transverse

direction which occupies the large part of the cross section, whose formation is often

understood in terms of the mechanical imbalance between the local elevation of the free

surface and the centrifugal force induced by channel curvature.

As it was enunciated on the objectives set forth for this thesis, a great effort has been

devoted to the collection of highly accurate field data that supposedly contains helical

flow behavior. It was therefore of paramount importance to verify the capability of the

most popular used method among practitioners and researches to filter the sought flow

behavior from raw data.

This thesis analysed the treatment of field-based observations captured with two ADCPs

in order to isolate secondary circulation from primary skewed flows; the comparison of

methods able to filter helical motion with two theoretical descriptions of the process,

the confirmation of the theoretical predictions with field data, and finally a comparison

between results generated by Telemac-3d a hydrodynamics numerical model and field

data.

83
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In brief, all these topics were embraced in three different albeit related chapters:

i. Chapter 2: on the Rozovskii method to isolate secondary circulation from a skewed

flow,

ii. Chapter 3: a global-referenced grid method to isolate secondary circulation from

a skewed flow, and

iii. Chapter 4: flow pattern at a river diffluence at the alluvial system of the Paraná

River.

The referred method, quite popular among practitioners and researches, is a simple

procedure named after Rozovskii (1957), where the cross-stream component is com-

puted with respect to the mean flow direction at each vertical, forcing by definition a

zero net discharge in outward and inward directions. As a consequence, the secondary

flow strength is determined locally at each individual vertical velocity profile instead of

defining it on the entire cross-section.

It was though that whenever the Rozovskii method takes the correct orientation of the

cross-stream plane, it computes the excess (or deficit) of the cross-component of flow

velocity relative to its respective depth-averaged value. However, the method indeed

computes a sequence of discrete planes oriented perpendicular to the local direction

of the depth-averaged velocity field. Moreover, since the secondary flow structure is

not necessarily perpendicular to the mean vector direction at each faceted plane, the

ambiguities surrounding the cross-plane orientation have long puzzled researchers and

practitioners

Rhoads and Kenworthy (1998a) assumed that part of the method shortcomings could

be circumvented by projecting their field data onto fixed cross-sections. However, their

contribution ignited a controversy that continues to the present days. For that reason,

the questioning of the Rozovskii method was of substantial interest.

It was therefore the purpose of this thesis to contribute to the elucidation of the contro-

versy with the implementation of two simple close flow solutions that exhibit cross-flow

behavior. It was then established that despite the Rozovskii procedure is able to de-

compose the flow field in a helicoidal component and an zero depth-averaged error term,

the cross-flow has distortion along the vertical entirely proportional to the streamwise

velocity component.

Thus, eventhough the Rozosvskii method delivers vertical cross-flow-looking distribu-

tions, the profile indeed blends the sought crosswise velocity component with the un-

wanted streamwise velocity component. Nevertheless, and on the good side, the method
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is able to indentify the presence of secondary currents, if any, at extremmly low cost (in

terms of the computing power required).

An alternative method to treat the field data and to “project” the cross-flow was devel-

oped accordingly. The procedure adopted for post-processing the field data involved two

steps: the use of proprietary software in the first place and then in-house routines to get

the transverse velocity field. In other words, filtered 3D flow data was first exported into

spreadsheet files written in ASCII format with proprietary programs, and later loaded

into a fortran 95-based software package called read aDcp for further processing and

visualization.

The procedure after read aDcp allows users to integrate primary and secondary velocities

from one or more surveyed cross-sections with the DEM, in turn generated with the

routines described in Vionnet (2010). The 3D velocity field data is projected with a

procedure similar to that proposed by Dinehart and Burau (2005). Secondary currents

are computed with (or without) the zero net cross-stream discharge constraint. The code

decomposes both the horizontal-two dimensional or depth-averaged (2DH) velocity field,

and the full 3D vectors into tangential (along the cross-wise plane) and normal (along

the stream-wise plane) components of the absolute velocity relative to the ground, with

the addition of the up component for the 3D case.

Both the tangential and up components define the vertical-two dimensional (2DV) rep-

resentation of the flow field along the projected cross-stream plane, in turn located

through an orthogonal least squares fit to all transects navigated by the vessel during

the surveys.

The treatment of field data performed in Chapther 3 with the proposed procedure was

highly consistent with the theoretical conclusions of Chapter 2, i.e., Rozovskii adds to

the helical component an error term proportional to the streamwise velocity. On the

contray, the algorithm based on ENU coordinates isolates extremely well the secondary

circulation. It is worth to mention that the implemented procedure relies on two sepa-

rated though equivalent algorithms, one “dissipative” since data is lost as it goes on and

the other “conservative” where all and energy single depth-cell data is kept in memory.

Moreover, the data processing is highly consistent with the discharges values delivered by

the proprietary software. All these assurances guaranted the quality and consistency of

the presented results, which allowed the estimation of the cross-sectionally distribution

of the Rozosvskii relative error.

Finally, Chapter 4 revisits the study area where field data have been consistently col-

lected all along these thesis years. There, the thesis presented field and numerical data

depicting the flow pattern formed at a diffluence of the Colastiné River, where one
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branch accesses the local harbour. The harbour has been in decline since the 1970s due

to costly maintenance dredging of the access channel. The objective of the Chapter was

therefore twofold: to show the persistence of the flow pattern developed at the diffluence

despite recent morphological changes seen at the site, and to test a possible solution to

the access channel sedimentation problem.

Knowledge gained during the execution of the study helped to validate a code developed

to process field data captured with two acoustic Doppler current profilers (ADCPs). The

results confirm that both branches are prone to developing secondary currents. Simula-

tions show that an engineering intervention downstream of the bifurcation can establish

a self-dredging flow reversal along the access channel, turning the actual diffluence into

a stable confluence. Last but not least, the experimental data presented in Chapter 4

was collected with a Sontek ADCP, showing the consistency of the projected cross-flows

with those captured with the TRDI ADCP. Since the postprocessing procedures were

essentially the same for both data sets, it may be concluded that the presented results

are, among other issues, device independent.

Four key aspects are novel in this work: i) the extension of the classical Engelund

solution, ii) the established theoretical result showing that Rozosvskii is indeed an ill-

conditioned method, iii) the development of an alternative projection method to treat

ADCP data (consistent with the theoretical framework discussed before), and iv) the

engineering solution showing that by no means is necessary to relocate the Santa Fe

harbour at the incredible cost of 180 millions of USD.





Appendix A

Supplemental material

A.1 Conceptual model

The single cell of cross-stream circulation is well understood. However, it is appropriated

to highlight first the salient aspects of known works on curved open channel flows (Ro-

zovskii, 1957; Engelund, 1974). Subtle aspects can be found in more elaborated works

(Johannesson and Parker, 1989a; Blanckaert and de Vriend, 2003).

The long wave approximation reduces the fluid motion in vertical direction z to a me-

chanical balance between gravity and pressure, yielding the hydrostatic pressure distri-

bution g + ρ−1∂p/∂z ? 0, where g is the acceleration of gravity, ρ the fluid density, and

p the fluid pressure. Then, the cross-stream circulation cell can be explained in terms of

a local imbalance between the centrifugal force and the pressure gradient in transverse

direction. With reference to Figure A.1, if (r, θ, z) are the cylindrical coordinates in

radial, azimuthal, and upward directions, respectively, the radial velocity component,

ur, occurs in planes perpendicular to the primary-flow component, uθ, and is originated

by the centrifugal acceleration u2
θ/r due to channel curvature.

Then, and according to Engelund (1974), the reduced set of equations governing the

flow on curved open channel is

∂ (rur)

∂r
+

∂uθ
∂θ

= 0 (A.1)

−g
∂zw
∂r

+
u2
θ

r
+ ?

∂2ur
∂z2

= 0 (A.2)

gS + ?
∂2uθ
∂z2

= 0 , (A.3)

where zw is the elevation of the free surface above datum, ? is the eddy viscosity coeffi-

cient -assumed constant- and S is the longitudinal channel bed slope which satisfies the

87
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Figure A.1: Skectch of curved open-channel flow.

Figure A.2: The super-elevation phenomena.

geometric constraint Sr = S0R, where S = −dzb/rdθ such that S0 represents the slope

along the channel centre at r = R. Here, zb is the bed elevation above datum.

Direct integration of Eq.(A.3) yields a parabolic distribution for uθ, resolved by Engelund

(1974) after assuming a free-slip velocity at the bed level. Then, since the stream-wise

velocity component, uθ, varies from zero or nearly so at the bed to a maximum value at

or near the surface, centrifugal effects are greater near the surface and less intense toward

the bed. It is seen from Eq.(A.2) that the centrifugal force is mostly counterbalanced by

the radial pressure gradient, which has been assumed to be dominated by a hydrostatic

balance. Therefore, the radial pressure force is manifested as a local hydraulic gradient in

radial direction, ∂zw/∂r, giving rise to the well-known transverse elevation phenomenon

of the free surface (Figure A.2).

It is clear that the balance of both forces can hold only for a certain single element,

situated somewhere close to the central portion of the water column and moving with a

velocity equal to, say, uPθ (Rozovskii, 1957; Falcon, 1984). For particles moving near the

upper portion of the water column with velocity uθ > uPθ , the centrifugal force will be

greater than the hydrostatic pressure gradient. These particles will be conveyed in radial

direction, away from the centre of curvature. On the contrary, particles situated in the

lower portion of the water column, for which uθ < uPθ , will be moving toward the centre

of curvature (Figure C-4). From continuity considerations, a non trivial vertical velocity
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component uz will develop simultaneously with the radial component, and the velocity

field will acquire a complex 3D helical flow pattern round the river bend (Engelund,

1974; Bathurst et al., 1979).

The aforementioned description is due to (Rozovskii, 1957), and later reviewed by (En-

gelund, 1974) and (Johannesson and Parker, 1989a). A difficulty arises whenever the

cross-stream is to be captured in the field, where the turbulent flow is far from being

uniform and the bed geometry is irregular.

A.2 About curved flows

The flow of water in open-channel bends has attracted the consideration of scientists

and engineers for many years. It turns out that the appearance of a transverse slope

and of transverse circulation gives rise to considerable changes in the velocity structure

of a stream at a river or channel bend. Owing to the redistribution of velocities over

its width, there appear in the stream zones with increased velocity, where erosion of the

bottom takes place, and zones with decreased velocities, where the deposition of sediment

occurs. Transverse circulation gives rise to transverse displacement of sediment, and as

such, its knowledge is relevant for the proper design of water intakes, dredging and bank

protection works.

For a broad stream (whose width is much larger than its average depth), the walls

(banks) of the channel only direct the stream and cause bending of the streamwise flow.

Influence of the stream’s friction against the banks is only manifested in a comparatively

narrow strip near both sides of the channel, whereas it is practically unnoticed in the

rest of the cross section. It is therefore relevant to estimate the order of magnitude of

the various terms -or mechanisms- entering into the governing equations in order to find

a simpler, albeit solvable system that retain the salient features of curved flows.

A word of caution is required here; a brief compilation of the main results posted by

Rozovskii (1957) and Engelund (1974) are given in this report, and textual citations

from their work were occasionally extracted but not explicitly marked. Care should be

exerted in case part or all the following material is submitted for publication elsewhere.
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A.2.1 Governing equations

The equations of motion for an incompressible fluid, averaged in the sense of Reynolds

and written in cylindrical coordinates (r, θ, z), are:

∂ur
∂t

+ u · ∇ur −
u2
θ

r
= −1

ρ

∂p

∂r
+ νt

(
∇2ur −

ur
r2

− 2

r2
∂uθ
∂θ

)
(A.4)

∂uθ
∂t

+ u · ∇uθ +
uruθ
r

= − 1

ρr

∂p

∂θ
+ νt

(
∇2uθ +

2

r2
∂ur
∂θ

− uθ
r2

)
(A.5)

∂uz
∂t

+ u · ∇uz = −1

ρ

∂p

∂z
− g + νt∇2uz (A.6)

∇ · u =
1

r

∂ (rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 , (A.7)

where u = (ur, uθ, uz) is the velocity vector with components in (r, θ, z) directions,

respectively (Figure A.3), p is the pressure, ρ is the fluid density, g is the acceleration

due to gravity, and νt is the eddy viscosity, assumed here constant. Above, the advective

and the Laplace operators are given by

u · ∇ ≡ ur
∂

∂r
+

uθ
r

∂

∂θ
+ uz

∂

∂z
(A.8)

∇2 ≡ 1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
, (A.9)

respectively. If it is possible to assume that in case of bend of enough length, the

stream tends to some stable state in which the velocity distribution in all sections is the

same and independent of the coordinate θ, and if it is further assumed that the vertical

component of velocity is rather small in comparison with uθ and ur, which is a valid

assumption in case of broad channels (i.e., away from the channel banks, uz ? 0), the

restriction of continuity reduces to

1

r

∂ (rur)

∂r
? 0 → ur =

const

r
(A.10)
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z
zw

zb

h

ur

uz

uθ

p0

r θ

-g

Figure A.3: Reference system for flow in open channel bends.

ur
∂ur
∂r

− u2
θ

r
= −1

ρ

∂p

∂r
+ νt

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+

∂2ur
∂z2

− ur
r2

]
(A.11)

ur
∂uθ
∂r

+
uruθ
r

= − 1

ρr

∂p

∂θ
+ νt

[
1

r

∂

∂r

(
r
∂uθ
∂r

)
+

∂2uθ
∂z2

− uθ
r2

]
(A.12)

0 ? −1

ρ

∂p

∂z
− g (A.13)

The last equation leads to a hydrostatic pressure distribution for a constant pressure

p0 acting above the free surface, since upon integrating with respect to z, and with

reference to Figure A.3, the following result is obtained

∫ p0

p
dp = −ρg

∫ zw

z
dz

p = p0 + ρg (zw − z) (A.14)

Consequently, the lateral and longitudinal pressure gradient can be estimated, under

the assumption that zw = h(r) + zb(θ), where zw and zb are the free surface and bed

elevations above datum and h is water depth, as

− 1

ρ

∂p

∂r
= −g

∂zw
∂r

= −gSr (A.15)

− 1

ρr

∂p

∂θ
= −g

r

∂zw
∂θ

= gSθ (A.16)

Above, Sr and Sθ are the lateral and longitudinal slope of the free surface, both defined

positive and given by

Sr =
∂zw
∂r

, Sθ = −1

r

∂zw
∂θ

= −∂zw
∂l

(A.17)
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Now, and since the motion can be considered approximately two-dimensional, the drop

in free surface level ∆zw along the flow for all concentric circles is one and the same,

while the length of a particle path ∆l = r∆θ increases with the radius r. Therefore, the

longitudinal slope can be expressed by the formula

Sθ =
Iθ
r

, Iθ = −∆zw
∆θ

(A.18)

where Iθ is the drop of the free surface per unit angle of turning. For a two-dimensional

flow, the value of Iθ is one and the same for all streamlines. Later on, some caution will

be exerted with the sign of Sθ, and correspondingly of uθ

A.2.2 Reduced set of governing equations

Under the assumption of gentle turning, it is possible to derive an expression for the

uniform flow in longitudinal direction defined in terms of the so-called friction velocity

u2
∗ = ghSθ (A.19)

The mean flow velocity is then known to be given by

um
u∗

=
1√
cF

= cZ , (A.20)

where cF and cZ are the friction and Chezy coefficients, respectively. Since

um =
1

h

∫ zw

zb

uθdz = cZu∗ , (A.21)

the following dependence should be expected for uθ

uθ ∼ cZ
√

ghSθ

∼ cZ

√
ghIθ
r

, (A.22)

known as the Kozhevnikov’s formula, according to Rozovskii (1957), page 93.

In order to evaluate the size of each term of the governing equation, it is convenient to

introduce the following dimensionless variables

y =
r

h0
, ζ =

z − zb
h0

, u =
uθ
U

, v =
ur
U

, (A.23)

for same given depth and fluid velocity reference values, h0 and U, respectively. Then,

upon their introduction into the system of simplified equations of motion, (A.11)-(A.12),
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the following set is obtained

r − direction : v
∂v

∂y
− u2

y
= − 1

Fr2
Sr +

1

Re

[
1

y

∂

∂y

(
y
∂v

∂y

)
+

∂2v

∂ζ2
− v

y2

]
(A.24)

θ − direction : v
∂u

∂y
+

uv

y2
=

1

Fr2
Sθ +

1

Re

[
1

y

∂

∂y

(
y
∂u

∂y

)
+

∂2u

∂ζ2
− u

y2

]
, (A.25)

where the dimensionless coefficients Fr and Re are known as the Froude and the Reynolds

numbers, respectively, the latter based upon the eddy viscosity coefficient instead of the

kinematic -or molecular- viscosity

Fr =
U√
gh0

, Re =
Uh0

νt
(A.26)

If the scales were properly chosen, the relevance of each term should be reflected by the

coefficient in front of it. For example, the Paraná River is characterized by Fr∼ 0.1, and

Re∼ 150 − 200, considering U ∼ 1 ms−1and estimating the eddy viscosity with the aid

of the expression

a =
u∗h0

vt
, a ? 13.04 (A.27)

νt = 0.077u∗h0 ? 0.1u∗h0

where proper values of h0 and Sθ for that river are h0 ? 10 m and Sθ ? 5 × 10−5. It

follows that u∗ =
√

gh0Sθ ? 0.07 ms−1. Consequently, each term will compete within

the balance of forces according to the following weight

inertia ∼ O(1)

gravity ∼ O(102)

diffusion ∼ O(10−2) ,

where the big Oh notation indicate order of magnitude. It is clear then that the flow is

driven by gravity, with an increasing competition between inertia and turbulent diffusion

to a lesser extent, albeit with a weaker contribution from the latter. It is therefore

relevant to decide which term within each mechanism is dominant, taking into account

the dependence with r of ur ∼ r−1 and uθ ∼ r−1/2, i.e.

v ∼ y−1 , u ∼ y−1/2 (A.28)
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Starting thus with the equation of motion in r−direction

v
∂v

∂y
∼ y−1

(
−y−2

)
= −y−3

u2

y
∼ y−1

(
y−1/2

)2
= y−2

1

y

∂

∂y

(
y
∂v

∂y

)
∼ y−3 (A.29)

∂2v

∂ζ2
∼ y−1

v

y2
∼ y−3 ,

whereas for the equation of motion in θ−direction

v
∂u

∂y
∼

(
y−1

)
(
−y−3/2

2

)
= −y−5/2

2

vu

y
∼ y−1

(
y−1

) (
y−1/2

)
= y−5/2

1

y

∂

∂y

(
y
∂u

∂y

)
∼ y−5/2

4
(A.30)

∂2u

∂ζ2
∼ y−1/2

u

y2
∼ y−5/2

Large values of y are usually attained in broad channels, characterized by the ratio

h0/B ? 1, where B is the channel width. Consequently, and neglecting terms that

decrease faster than y−2, the dominant balance of forces in (A.24)-(A.25) is reflected by

the following reduced system

0 ? 1

Fr2
Sθ +

1

Re

∂2u

∂ζ2
(A.31)

−u2

y
? − 1

Fr2
Sr +

1

Re

∂2v

∂ζ2
(A.32)
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A.2.3 Boussinesq solution

A.2.3.1 Reduced system

Going back to physical variables, the reduced system (A.31)-(A.32) is written as

0 = gSθ + νt
∂2uθ
∂z2

(A.33)

−u2
θ

r
= −gSr + νt

∂2ur
∂z2

(A.34)

The transverse velocity component, under the assumption of two-dimensional (2D) flow

(∂θ → 0), must satisfy the condition of zero transverse discharge. From continuity

uz|z=zw
− uz|z=zb

=

∫ zw

zb

∂uz
∂z

dz = −
∫ zw

zb

1

r

∂ (rur)

∂r
dz

= −
(
1

r

∂

∂r

)
r

∫ zw

zb

urdz ,

and given the fact that the vertical component of velocity must approximately satisfy

the condition of null particle displacement at both bounding surfaces, bottom and free

surface, it follows ∫ zw

zb

ur dz = 0 , (A.35)

stating that for a 2D flow, any transverse displacement of mass must be absent from the

problem. Boussinesq (1868) was the first to solve the aforementioned system, which is

treated next, and hereby called “laminar solution” according to Rozovskii (1957).

A.2.3.2 Laminar solution

If the aforementioned system is subjected to the non-slip condition at the channel bot-

tom, and the stress free condition at the free surface, i.e.

uθ = ur = 0 at z = zb ,
∂uθ
∂z

=
∂ur
∂z

= 0 at z = zw (A.36)

For a given column of water, its local water depth is a function of r only, i.e., h = h(r).

It is convenient then to introduce the following normalized vertical coordinate

ζ =
z − zb

h
, ζ = ζ(r, θ) , (A.37)
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such that the reduced set (A.33)-(A.34) becomes

0 = gSθ +
νt
h2

∂2uθ
∂ζ2

(A.38)

−u2
θ

r
= −gSr +

νt
h2

∂2ur
∂ζ2

, (A.39)

with the boundary conditions (b.c.) modified accordingly

uθ = ur = 0 at ζ = 0 ,
∂uθ
∂ζ

=
∂ur
∂ζ

= 0 at ζ = 1 (A.40)

The equation of motion in θ−direction is easily integrated w.r.t. ζ

0 = A+ gSθζ +
νt
h2

∂uθ
∂ζ

Applying the b.c. at ζ = 1

0 = A+ gSθ +
νt
h2

0 → A = −gSθ

Integrating again

0 = B + Aζ + gSθ
ζ2

2
+

νt
h2

uθ

Applying the b. c. at ζ = 0

0 = B + A0 + gSθ0 +
νt
h2

0 → B = 0

The solution is then

uθ = λ
(
2ζ − ζ2

)
, λ =

gh2Sθ

2νt
(A.41)

The equation of motion in r−direction is also easily integrated w.r.t. ζ, since the trans-

verse slope is not a function of ζ. Squaring the solution for uθ and plugging it into

(A.39), i.e., the equation of motion in r−direction,

gSr =
λ2

r

(
4ζ2 − 4ζ3 + ζ4

)
+

νt
h2

∂2ur
∂ζ2

(A.42)

Integrating and applying the b.c. at ζ = 1

gSrζ + A =
λ2

r

(
4ζ3

3
− ζ4 +

ζ5

5

)
+

νt
h2

∂ur
∂ζ

gSr + A =
λ2

r

(
4

3
− 1 +

1

5

)
+

νt
h2

0 → A =
8λ2

15r
− gSr



Appendix A Supplemental material 97

Integrating again and applying the b.c. at ζ = 0

gSr
ζ2

2
+ Aζ + B =

λ2

r

(
ζ4

3
− ζ5

5
+

ζ6

30

)
+

νt
h2

ur

gSr0 + A0 + B =
λ2

r
0 +

νt
h2

0 → B = 0

Finally,

ur =
gSrh

2

2νt

(
ζ2 − 2ζ

)
+

λ2h2

rνt

(
8ζ

15
− ζ4

3
+

ζ5

5
− ζ6

30

)
(A.43)

The restriction of zero transverse flux is used now to determine the transverse slope

∫ 1

0
ur dζ =

[
gSrh

2

2νt

(
ζ3

3
− ζ2

)
+

λ2h2

rνt

(
4ζ2

15
− ζ5

15
+

ζ6

30
− ζ7

210

)]1

0

Sr =
24

35

λ2

rg
(A.44)

Plugging this solution into the expression (A.43) for ur

ur =
λ2h2

rνt

(
− 16

105
ζ +

12

35
ζ2 − 1

3
ζ4 +

1

5
ζ5 − 1

30
ζ6
)

=
a4νt
4r

(
− 16

105
ζ +

12

35
ζ2 − 1

3
ζ4 +

1

5
ζ5 − 1

30
ζ6
)

(A.45)

Note that the transverse slope result can be rewritten as

Sr =
24

35

g2h4S2
θ

4grν2
t

(A.46)

=
24

35

u4
∗h

2

4gr

a2

u2∗h2
=

6a2u2
∗

35gr

=
6a2hSθ

35r
=

6a2hIθ
35r2

, (A.47)

where use of (A.18), (A.19), and (A.26) have been made. Then, for a channel with a

rectangular cross-section and flat bottom (zb = 0), it follows that Sr = dh/dr

dh

h
=

6a2Iθ
35

dr

r2
, (A.48)

whose solution is

ln
h

h0
=

6a2Iθ
35

∫ r

r0

r−2dr =
6a2Iθ
35

r−2+1

−2 + 1

????
r

r0

h

h0
= eχ(1−

r0
r ) , χ =

6a2Iθ
35r0

? 6a2

35

(
− ∆zw

r0∆θ

)
(A.49)
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A.2.3.3 Engelund solution Modified

From the reduced system proposed by Engelund (1974) (A.38)-(A.39). Assuming the

existence of a self-similar solutions, where the balance of forces are locally valid in the

center of the channel section, away from the banks

uθ
U

= F (ζ) ,
ur
U

=
h

r
(G(ζ) + J(ζ)) , Sr = α

U2

gr
= α Fr2

h

r
, (A.50)

where U is a reference velocity, e.g., the longitudinal flow velocity at the free surface,

and α is a shape factor very close to unity. The reduced system proposed by Engelund

(A.38)-(A.39) becomes

0 = gSθ +
νt
h2

∂2uθ
∂ζ2

→ 0 =
gSθh

2

νtU
+ F ?? (A.51)

−u2
θ

r
= −gSr +

νt
h2

∂2ur
∂ζ2

→ α − F 2 = ?(G?? + J ??) , J ?? = 0 , ? =
νt
Uh

,(A.52)

subject to the following boundary conditions

ρνt
h

∂uθ
∂ζ

????
ζ=0

= τb → F ?(0) =
u2
∗h

νtU
, F (1) = 1, J ? (1) = G? (1) = 0 , J ? (0) =

u2
∗hr∗

aνtU

(A.53)

which represent the condition that the shear stress must be equal to the bed shear at

bed level, uθ must attain the free stream velocity at the free surface, i.e., uθ = U , and

ur must be stress-free at the free surface, respectively. Here a = 13.04 (Appendix A.2)

and r∗ =
URb
U∗

.

A word of caution is required here since Engelund (1974) set the origin of his reference

frame at the free surface, z? = 0, positive downwards, i.e., the bottom is at z? = h.

Consequently, and with reference to Figure A.4, the conversion between both system

can be achieved if a point located at position z = zb + b, or z? = h − b, is considered.

From here, the equality b = h − z? = z − zb is obtained. It follows

− z?

h
=

z − zb
h

− 1

ζ ? = 1− ζ , ζ ? =
z?

h
(A.54)

Integrating now the equation of motion in θ−direction, i.e., Eq.(A.50)

F ? +
u2
∗h

νtU
ζ = A ,
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Figure A.4: Conversion between Engelund’s vertical coordinate and current system.

and after applying the b.c.(A.53), the constant of integration is given by

u2
∗h

νtU
= A

Integrating the differential equation once again

F +
u2
∗h

νtU

ζ2

2
= Aζ + B ,

whereas the b.c. at the free surface provides now the result

1 +
u2
∗h

2νtU
=

u2
∗h

νtU
+ B

B = 1− u2
∗h

2νtU

Thus

F +
u2
∗h

νtU

ζ2

2
=

u2
∗h

νtU
ζ + 1− u2

∗h
2νtU

=
u2
∗h

2νtU
(2ζ − 1) + 1

F +
u2
∗h

2νtU

(
1− 2ζ + ζ2

)
= 1 ,

and finally

F (ζ) = 1− u2
∗h

2νtU
(1− ζ)2 (A.55)

This solution can be rearranged if Eq.(A.27) is taken into account, with h in place of

h0. Then

F (ζ) = 1− β (1− ζ)2 , β =
a

2

u∗
U

,
a

2
? 6.5 , (A.56)
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which is the solution given by Engelund (1974) , with 1− ζ replaced by ζ ?, as mentioned

previously.

Eq.(A.55) represents indeed the velocity defect law. From (A.50), Eq.(A.55) can be

rewritten as

uθ
U

− 1 = − u2
∗h

2νtU
(1− ζ)2

uθ − U

U
= − u2

∗h
2νtU

(1− ζ)2

U − uθ
u∗

=
a

2
(1− ζ)2 , a =

u∗h
νt

, (A.57)

and it can be shown that the value a = 13.04 represents the best fit of the parabolic

profile to the law of the wall in the upper 90% of the water layer (Vionnet, 2009).

Turning the attention now to the equation of motion in r−direction

?G?? = α −
[
1− β (1− ζ)2

]2

= α − 1 + 2β (1− ζ)2 − β2 (1− ζ)4

Integrating once

?G? + A = (α − 1) ζ + 2β

∫
(1− ζ)2 dζ − β2

∫
(1− ζ)4 dζ

= (α − 1) ζ − 2β

∫
t2 + β2

∫
t4dt , t(≡ ζ ?) = 1− ζ → dζ = −dt

= (α − 1) ζ − 2β
t3

3
+ β2 t

5

5

= (α − 1) ζ − 2β

3
(1− ζ)3 +

β2

5
(1− ζ)5

The b.c. (A.53) at the free surface yields

?0 + A = (α − 1) + 0 + 0 → A = α − 1

Thus

?G? = − (α − 1) + (α − 1) ζ − 2β

3
(1− ζ)3 +

β2

5
(1− ζ)5

= − (α − 1) (1− ζ)− 2β

3
(1− ζ)3 +

β2

5
(1− ζ)5 (A.58)
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Integrating again

?G+ B = (α − 1)

∫
tdt+

2β

3

∫
t3dt− β2

5

∫
t5dt

= (α − 1)
t2

2
+

2β

3

t4

4
− β2

5

t6

6

=
(α − 1)

2
(1− ζ)2 +

β

6
(1− ζ)4 − β2

30
(1− ζ)6 (A.59)

The constant B is now evaluated after imposing the restriction of zero flux in radial

direction, i.e., Eq.(A.35)

∫ zw

zb

urdz =
1

h

hU

r

∫ 1

0
G(ζ)dζ = 0

= −U

r

∫ 0

1
G (t) dt = 0

∫ 1

0
G(ζ)dζ = −

∫ 0

1
G (t) dt (A.60)

Consequently,

?

∫ 1

0
Gdζ + B =

(α − 1)

2

∫ 1

0
(1− ζ)2 dζ +

β

6

∫ 1

0
(1− ζ)4 dζ − β2

30

∫ 1

0
(1− ζ)6 dζ

0 + B = − (α − 1)

2

∫ 0

1
t2dt− β

6

∫ 0

1
t4dt+

β2

30

∫ 0

1
t6dt

=
(1− α)

6
t3 − β

30
t5 +

β2

210
t7
????
0

1

=

[
0−

(
(1− α)

6
− β

30
+

β2

210

)]

B =
(α − 1)

6
+

β

30
− β2

210
(A.61)

The radial velocity drift solution is obtained integrating , i.e., Eq.A.52 and after applying

the b.c (A.53), finally

J(ζ) =
2βr∗
a

(A.62)

The last b.c. used by Engelund (1974) is obtained by considering the influence of a

rough bottom. According to Rozovskii (1957) , the condition Sr = αU2

gr given by (A.50)

will not be fulfilled in case of a rough bottom, since from (A.34) the proper balance of
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forces acting upon of water column is

1

h

∫ zw

zb

gSrdz =
1

h

∫ zw

zb

u2
θ

r
dz +

1

h

∫ zw

zb

∂

∂z

(
νt

∂ur
∂z

)
dz

Sr =
1

gr

∫ zw

zb

u2
θ dz +

1

ρgh
ρνt

∂ur
∂z

????
zw

zb

Sr = α0
u2
m

gr
− τr0

ρgh
, (A.63)

where α0 is a shape factor. Thus, for a rough bottom, the influence of τr0 can not be

neglected. For that case the following b.c. can be used

ur
uθ

????
z=zb

=
ρνt

∂ur
∂z

??
z=zb

ρνt
∂uθ
∂z

???
z=zb

(A.64)

In terms of its physical interpretation, the direction of the resistance forces due to the

rough bottom acting against the stream must coincide with the direction of bottom

velocity (in opposite sense). According to Rozovskii (1957) , this b.c. was originally set

forth by Makkaveev (Rozovskii, 1957) , page 49. In terms of the normalized variables

given by (A.50), the above b.c. becomes

Uh
r [G(0) + J(0)]

U F (0)
=

νt
h

∂
∂ζ

[
Uh
r [G(ζ) + J(ζ)

]???
ζ=0

u2∗
G(0) + J(0)

F (0)
=

νtU

u2∗h
G?(0) =

νt
u∗h

U

u∗
G?(0)

=
1

a

U

u∗
G?(0)

where (A.27) was considered. Now, taken into account (A.56), the above b.c. can be

finally written as
G(0) + J(0)

F (0)
=

1

2β
G? (0) ,

or equivalently
?[G(0) + J(0)]

F (0)
=

1

2β
?G? (0) (A.65)

From (A.56), (A.58), and (A.59), the following expressions are easily obtained

F (0) = 1− β

?G? (0) = (1− α)− 2β

3
+

β2

5

?G(0) = −B +
(α − 1)

2
+

β

6
− β2

30

J(0) =
2βr∗
a
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Consequently, the b.c. (A.65) is now evaluated as

2β (?[G(0) + J(0)]) = F (0)
(
?G? (0)

)

2β

(
−B +

(α − 1)

2
+

β

6
− β2

30
+

2βr∗
Rea

)
= (1− β)

(
(1− α)− 2β

3
+

β2

5

)

2β

(
− (α − 1)

6
− β

30
+

β2

210
+

(α − 1)

2
+

β

6
− β2

30
+

2βr∗
Rea

)
= (1− β)

(
(1− α)− 2β

3
+

β2

5

)

2β

(
(α − 1)

3
− β

30
+

β2

210
+

β

6
− β2

30
+

2βr∗
Rea

)
= (1− α) (1− β)− 1

5
β3 +

13

15
β2 − 2

3
β

2β

3
(α − 1)− 2

105
β2 (3β − 14) +

4β2r∗
Rea

= (1− α) (1− β)− 1

5
β3 +

13

15
β2 − 2

3
β

(α − 1)

(
1− 1

3
β

)
=

2

105
β2 (3β − 14)− 1

5
β3 +

13

15
β2 − 4β2r∗

Rea
− 2

3
β

= −1

7
β3 +

3

5
β2 − 4β2r∗

Rea
− 2

3
β

Rearranging

α − 1 =
− 2

3β + (35 − 4r∗
Rea

)β2 − 1
7β

3

1− 1
3β

, (A.66)

or

α =
1− β + (35 − 4r∗

Rea
)β2 − 1

7β
3

1− 1
3β

(A.67)

Eq.(A.67) is actually the result reported by Engelund (1974) except by the factor 4β2r∗
Rea

attributed to the lateral drift J(ζ). Finally, from (A.4), (A.11) and (A.13), the expression

for ur is

ur
U

=
h

r

Uh

νt

[
− (α − 1)

6
− β

30
+

β2

210
+

(α − 1)

2
(1− ζ)2 +

β

6
(1− ζ)4 − β2

30
(1− ζ)6

]
,

(A.68)

where the expression ?G has been multiplied by ?−1 = Uh/νt.

Finally, the coefficient β is related the Chezy resistance coefficient, since from (A.21)

um =
1

h

∫ zw

zb

uθdz = U

∫ 1

0
F (ζ)dζ

= U

∫ 1

0

[
1− β (1− ζ)2

]
dζ

cZu∗ = U(1− 1

3
β) ,

and from the definition of β given by (A.56)

cZ =
6.5

(
1− 1

3β
)

β
, (A.69)
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which is the expression posted by Engelund (1974) , albeit with a misprint (the factor

1/3 is missing). Alternatively, it is better to express the above result in terms of the

Chezy coefficient

β =
1

1
3 +

cZ
6.5

(A.70)

A.2.4 Engelund slip-velocity method

Ignoring the bed mobility effects existing in any alluvial stream, the bottom of an open-

channel behaves as a generating drag boundary that slows down the overlaying flow,

thus creating a velocity defect from the “outer velocity” V . Expressing the constant

eddy solution of Engelund given by (2.20) in the form

V − U0
θ

U0∗
=

a

2
(1− ζ)2 , (A.71)

obtained after invoking (2.10) for R0/R ? 1 and replacing β from (2.15), it is thus

questionable whether the foregoing velocity defect expression can achieve a good fitting,

in the least square sense, with the most widely accepted law of the wall

V − U0
θ

U0∗
= −2.5 ln ζ . (A.72)

Consequently, forming the following functional with a as free parameter

J(a) =

1∫

λ

[a
2
(1− ζ)2 − (−2.5 ln ζ)

]2
dζ , (A.73)

the stationarity condition with respect to a, dJ/da = 0, leads to the result

a =

−5
1∫

λ

[
(1− ζ)2 ln ζ

]
dζ

1∫

λ

(1− ζ)4 dζ

=

−5
{
− 11

18 +
[(1−λ)3−1]

3 lnλ+ λ − λ2

2 + λ3

9

}

(1−λ)5

5

(A.74)

Picking arbitrary values for λ (e.g. λ = 0.05 value fits the upper 95% of the profile),

the values listed in Table A.1 are obtained . Therefore, for the value of a corresponding

to λ = 0.1 the slip-velocity at the channel bed U0
θ (Zb) = v(0)V seems to satisfy the

following scaling in (A.71).
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Table A.1: Values of a and the corresponding eddy viscosity magnitude.

λ 0.100 0.050 0.010

a 13.040 13.567 14.605
?0 0.077U0

∗H0 0.074U0
∗H0 0.068U0

∗H0

V − U0
θ (Zb)

U0∗
? 6.5 (A.75)

Inferring now V from the logarithmic law of the wall, the following expression to estimate

U0
θ (Zb) is obtained (Engelund, 1974; Johannesson and Parker, 1989b)

r∗ =
U0
θ (Zb)

U0∗

= 2.+ 2.5 ln

(
H0

Ks

)
, (A.76)

where Ks is a typical bed roughness height that characterizes the contribution from

skin and bedform resistance. Thus, a constant eddy viscosity model of ?0 ? 0.077U0
∗H0

means that the parabolic profile (A.71) fits the upper 90% of the log-law profile.

Finally, it is relevant to relate r∗ with the Chezy coefficient, defined by (2.26) and usually

estimated with the aid of the Keulegan recommendation (Parker, 2004)

Cz = 2.5 ln

(
11H0

Ks

)
. (A.77)

Thus, combining (A.76) with (A.77) yields r∗

r∗ = Cz − 4 , (A.78)

which is the expression used to compute the modified helicoidal flow component u(ζ)

depicted in Figure 2.2.a and the total lateral component j(ζ)+u(ζ) plot in Figure 2.2.b.

A.2.5 Flow round a flat plate

The conjugate complex velocity u − iw representing the flow in the z = x + iς plane

round a flat plate of length 4c, with centre at the origin, and exposed to an inclined

free-stream (u∞, w∞) with circulation γ (counter-clockwise positive), is

u − iw = u∞ − i
(
w∞z +

γ

2π

) (
z2 − 4c2

)−1/2
, (A.79)

where i is the imaginary unit. Then, the uniqueness of
(
z2 − 4c2

)−1/2
is achieved by

specifying a “cut” along |x| ≤ 2c corresponding either to the physical barrier presented
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by a plate, or to the velocity discontinuity through a vortex sheet of size 4c and strength

γ.

As simple as it is to represent the stream function and the velocity field in terms of

the conformal transformation to elliptical-coordinates (Batchelor, 1967), it is extremely

tedious to do so in Cartesian coordinates. Nonetheless, after some algebra, it is possible

to express the velocity field in terms of Cartesian coordinates (x, ς) as (Vionnet, 2011)

u = u∞ +
[
w∞ [ςf(x, ς)− xh(x, ς)]− γ

2π
h(x, ς)

] 1

d(x, ς)
,

w =
[
w∞ [xf(x, ς) + ςh(x, ς)] +

γ

2π
f(x, ς)

] 1

d(x, ς)
, (A.80)

where the function h, f and d are defined in (2.40) and (2.41). The limiting case

(u∞, w∞) = (0, 0) and γ ?= 0 is commonly cited in the literature. Then, it is possi-

ble to see that the functions f, h and d reduce, when ς = 0, |x| ≤ 2c, to

d = (4c2 − x2) , f = 0 , h = sgn(ς)
√
4c2 − x2 , (A.81)

such that the flow velocity on the upper and lower sides of the vortex sheet has equal

magnitude but opposite sign

u|ς=±0 = − sgn(ς)γ

π
√
4c2 − x2

, w = 0 , |x| ≤ 2c. (A.82)

It is always possible to pick the value of γ to remove the singularity at either one of

the points z = ±2c (Batchelor, 1967). However, the composition of the 1D downstream

flow velocity with the 2D cross-circular flow, in turn transported by the 1D component,

can deliver the sought helical behaviour (see Figure 2.4.b) if the grid used for computing

(A.80) avoid the singular points.





Appendix B

Independent computation of river

discharge

If the vessel path encloses a region Ω of boundary ∂Ω, characterized by the unit tan-

gent vector t = (tx, ty) ≡ (δx/δs, δy/δs) and the negative unit normal vector n− =

(−δy/δs, δx/δs), obtained through a 90o counterclockwise rotation from t, where the

positive direction of t points in the direction of increasing arc-length (s+) when the

path is traversed in the counterclockwise direction (such that the interior of the en-

closed region Ω is on the left), a simple relation for the mass continuity can be derived.

In the absence of any sources or sinks, the mass conservation constraint for a shallow-

water flow of depth-averaged horizontal velocity U = (U, V ) and water layer thickness

H reads ∇ · HU = 0, which can be converted into a line integral along four pieces of

the boundary ∂Ω: one across the channel going from left to right bank (which provides

the sought discharge Q), two along both river banks (equal to zero due to the non-flux

condition), and the final one across the channel in reversed direction (equal to −Q), i.e.

Q =

∫ B

0
(HU) · n+ ds ?

n∑

j=1

Fj ∆sj , (B.1)

where n refers to the number of ensembles or vertical profiles measured by the ADCP

along the polyline (transect) of length B (not necessary equal to the channel width),

∆sj the separation distance between the j-th and j+1-th ensembles (or profiles) and

Fj = (UH ty − V H tx)j , ∆sj = (∆sj−1 +∆sj) /2 , j = 1, . . . , n (B.2)

Above, ∆s0 and ∆sn are the specified user distance from both river banks to the first

and last measured ensemble respectively, and U·n+ = Un represents the outward normal

of the depth-averaged flow component (Figure B.1(a)).
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The ADCP setup divides each water column into nb depth cells, variable along the tran-

sect according to the local water depth. In turn, the ADCP determines the magnitude

and direction of the flow velocity at each depth cell, whose geographical coordinates ENU

equates with the local planar and vertical (x, y, z) coordinates. Therefore, if (u, v, w)

are the local planar and vertical velocity components estimated by the ADCP at the

barycentric point (x, y, z) of each depth cell, the 2DH flow velocity components adopted

here at every ensemble along the transect are

U =

∑nb
i=1 ui

nb + 1
, V =

∑nb
i=1 vi

nb + 1
, (B.3)

which results from imposing the no-slip condition at the river bed. Moreover, the use

of the equation (B.3) in (B.2) implicitly assumes that the upper layer of unmeasured

water (due to blanking distance and transducer draft) and the bottom layer moves with

the mean velocity U = (U, V ) (Figure B.1(a)). The trapezoid rule for approximating

the definite integral (B.1) amounts to estimate the lateral unmeasured portions of the

cross-section as Qleft = F1∆s0/2 and Qright = Fn∆sn/2 (Figure B.1(b)).
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Figure B.1: River discharge as computed by read aDcp. a) variable arrows: actual
velocity measurements, constant arrows: mean velocity according to equation (B.3)
projected in normal direction, b) frequency distribution computed by the proprietary

software and by the in-house user interface.

It must be clear that the procedures implemented in the in-house code to approximate

the surface-nearest and bed-nearest velocity values within an ADCP profile, and the

discharge values near the river banks as well, differ greatly from the one-sixth power-law

and the ratio interpolation methods embedded in the proprietary software (Simpson,

2001; Sontek, 2004; TRDI, 2007). Nevertheless, Figure B.1(b) shows that the river

discharge values computed with read aDcp and with the proprietary ADCP software

compare favourably well as explained in the text.
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In any real-time data collection situation, the differential distance traversed by the boat

in the elapsed time δtj is δsj = Vbδtj , where Vb is the mean vessel velocity in the time

period δtj . Consequently, the above expression for the river discharge can be rearranged

into the scalar triple product

Q =

∫ T (B)

0
(UH × tVb) · k dt , (B.4)

where k is the unit vector in the upward direction, t the time, and T (B) the elapsed

time required to traverse the transect path along the cross-section. A similar equation

comprises the moving-vessel methodology for measuring total discharge using an ADCP

(Simpson, 2001; TRDI, 2007). Here, the expression (B.1) is used instead to verify if the

actual cross-section data were surveyed from the left bank to the right bank (Q < 0), or

vice-versa (Q > 0).For the latter case, the ADCP surveyed data is reversed, so both left

and right banks are correctly located when observing data from upstream to downstream

as it is customary in fluvial hydraulics. In the meantime, equation (B.1) also provides

an independent estimate of the river discharge.





Appendix C

The Rozovskii method as rotation

coordinates

If the Rozovskii method is treated as a strict rotation, some considerations must be

taken into account:

• the vector Um (2DH) is not necessarily ⊥ to the XS, i.e, in most situations φ ?=
θ + π/2,

• the resultant transformation matrix rotates in counterclockwise direction (θ in-

stead of −θ, (Strang, 1988, p. 122)),

• however, it is possible to see that Eq.(2.46) implied a negative definited cross-

velocity, i.e., Vs < 0,

• to correct that deficiency, and with reference to Figure C.1, it is posible to set a

positive defined Vs in the sense of Rozovskii if U is projected in directions ⊥ and

? to Um, or equilently, in directions (s, p), respectively

Vs = |U|sin(φ − ϕ) ,

Vp = |U|cos(φ − ϕ),

or equilently,

Vs = |U|(sinφ cosϕ − cosφ sinϕ) , (C.1)

Vp = |U|(cosφ cosϕ+ sinφ sinϕ). (C.2)
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=(Ux,Uy)
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Figure C.1: Rozovskii rotation direction ⊥ (s) and ? (p) to Um.

On the other hand, and from Figure C.1

Ux = |U|cosφ = |U|cos(δ + π/2),

Uy = |U|sinφ = |U|sin(δ + π/2) ,

or equilently,

Ux = −|U|sinδ(< 0) , (C.3)

Uy = |U|cosδ(> 0) , (C.4)

which leads to [
Vs

Vp

]
=

[
sinφ −cosφ

cosφ sinφ

] [
Ux

Uy

]
. (C.5)

• The first equation, Vs = sinφUx − cosφUy, is exactly Eq.(2.47) of this Thesis.

• Seeing now this whole thing as a rotation, and for the extreme case where φ =

θ + π/2, the above matrix defines a rotation in clockwise sense, because sinφ =

sin(θ + π/2) = cosθ and cosφ = cos(θ + π/2) = −sinθ. This is,

[
sinφ −cosφ

cosφ sinφ

]
→

[
cosθ sinθ

−sinθ cosθ

]
. (C.6)

which is a matrix that sends the basis vectors (0, 1) and (1, 0) to (sθ, cθ) and (cθ,−sθ),

respectively (Strang, 1988, p. 122)), interpreted with respect to the base (0, 1) and

(1, 0)). However, if the Rozovskii transformation is taken as new coordinates, the trans-

formation maps (x, y) into (s, p) as intended.

Note:

Vs =

[
|U|sin(φ − ϕ) > 0

|U|sin(ϕ − ?φ) < 0
(C.7)
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the alluvial system of the Paraná River. Journal of Applied Water Engineering and

Research 2 (2), 140–156.

Mourad, F. (2011). personal communication.



Bibliography 116

Muste, M., K. Yu, and M. Spasojevic (2004). Practical aspects of adcp data use for

quantification of mean flow characteristics. part i: moving-vessel measurements. Flow

Meas. Instrum. 15, 1–16.

Oberg, K. and D. Mueller (2007). Validation of streamflow measurements made with

acoustic doppler current profilers. J. Hydraul. Eng. 133 (12), 1421–1432.

Parker, G. (2004). 1D Sediment Transport Morphodynamics of Rivers and Turbidity

Currents. St. Anthony Falls Lab., Univ. Minnesota: NCED - National Center for

Earth-suface Dynamics. ebook; http://vtchl.uiuc.edu/people/parkerg.

Parsons, D. R., J. L. Best, S. N. Lane, O. Orfeo, and R. J. Hardy (2007). Form rough-

ness and the absence of secondary flow in a large confluence-diffluence, ŕıo paraná,
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Tecplot (2011). Userś Manual for Tecplot 360TM Version 2011. WA, USA.

Telemac-Mascaret Modelling System (2014). Webpage.

Thomson, J. (1876). On the origin of winding rivers in alluvial plains. Proceedings of

the Royal Society 25, 5–8.
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