Los genes de la familia OXR (del inglés Oxidation Resistance) fueron descubiertos en una búsqueda de genes capaces de revertir el fenotipo de estrés oxidativo en bacterias. En este trabajo de Tesis nos propusimos estudiar la familia OXR en Arabidopsis thaliana, la cual está constituida por 5 miembros. Decidimos estudiar dos genes de esta familia, AtOXR2 y AtOXR4, que presentaron mayor identidad de secuencia con los reportados en humanos y levaduras. Observamos que las proteínas AtOXR2 y AtOXR4 tienen un efecto de protección en bacterias sensibles al estrés oxidativo. Además, cuando se complementaron levaduras mutantes observamos una reversión en el fenotipo de sensibilidad al estrés oxidativo.
Estudios de localización subcelular demostraron que AtOXR2, y AtOXR4 se localizan en mitocondrias de células de raíz. Por otro lado, el estudio de las regiones promotoras reveló un perfil de expresión similar para ambas proteínas.
Las plantas que sobreexpresan AtOXR2 tienen una estructura radicular más compleja, mientras que plantas deficientes en dicho gen mostraron el fenotipo opuesto. Las plantas que sobreexpresan AtOXR2 llegan a tener 3 veces mas biomasa, y los parámetros de fluorescencia de la clorofila indican que estas plantas son más eficientes en el uso de luz capturada, fijan más CO2, y producen mayor cantidad de semillas que sus pares salvajes. Determinamos que tienen un perfil transcripcional basal similar al de plantas sometidas a situaciones de estrés, y presentan un desbalance hormonal.
La mejora en las propiedades agronómicas permiten pensar en el uso de genes AtOXR para el desarrollo de nuevas tecnologías.
OXR (Oxidation Resistance) family genes were discovered during a search of genes capable of revert oxidative stress phenotype in bacteria. in this Thesis work we focused on Arabidopsis thaliana (Arabidopsis) OXR family. Arabidopsis OXR family is composed by 5 members, and we focused our study in AtOXR2 and AtOXR4, whose sequence identity was the higher when compared to human and yeast. AtOXR2 and AtOXR4 are able to exert a protective effect on sensitive bacteries. Moreover, when ScOXR1 mutant yeast were complemented with mitochondrion-targeted AtOXR2 and AtOXR4 we found a reversion on the oxidative stress sensitivity phenotype.
By means of localization studies on Arabidopsis, we showed that AtOXR2 and AtOXR4 are localized to mitochondria of root cells. Moreover, studies on expression patterns conferred by promoter regions of both genes revealed a similar expression profile.
Plants overexpressing AtOXR2 has a more complex root structure, while we detected that plants deficient in AtOXR2 has the opposite phenotype. When plants overexpressing AtOXR2 grows up they reach three fold more biomass than WT plants, are more efficient in the use of captured light, are able to fix more CO2, and are capable to produce more seeds than WT plants. Transcriptional analysis of plants overexpressing AtOXR2 allowed us to determine that these plants posses a transcriptional profile similar to Arabidopsis plants exposed to stress conditions, and showed unbalanced hormonal content.
Due to improving in properties of agronomic interest that present AtOXR genes, is possible to think about using these as a tool to develop new technologies.