El presente trabajo de tesis se enmarca dentro del desarrollo del hidrógeno como vector de energía. Particularmente, se ha estudiado la producción de hidrógeno de alta pureza empleando reactores de membrana en el reformado de etanol con vapor.
Se han sintetizado, testeado y caracterizado catalizadores metálicos soportados en sistemas binarios lantano silicio, empleando rodio o cobalto como metales activos. Los catalizadores frescos y usados en reacción fueron caracterizados empleando diversas técnicas: Adsorción de CO, DRX, LRS, XPS, SEM, TEM, TPO, TPR y Superficie BET. Además, se realizaron medidas de reformado de etanol in-situ en la celda de alta temperatura adosada al LRS.
En los catalizadores de Rh, la formación de carbón parecería ser el fenómeno causante de la desactivación, presentando el catalizador con mayor contenido de lantano un mayor grado de cobertura de la superficie. En el reformado oxidativo de etanol, se observó además la presencia de carbonatos superficiales, los cuales acentuarían la desactivación.
En los catalizadores de cobalto, el Co metálico podría ser la especie activa al reformado de etanol y el Co2+ se encontraría ligado a la remoción de depósitos carbonosos. Las partículas de Co más pequeñas propician la formación de nanotubos de carbón.
El comportamiento de los catalizadores de Rh y Co soportados en La2O3(15)-SiO2, fue estudiado en el reformado de etanol con vapor empleando un reactor de membrana (membrana comercial densa de Pd/Ag). Se obtuviero
Production of ultra pure hydrogen in one step by ethanol steam reforming over Rhodium and Cobalt based catalyst in a membrane reactor was studied.
The rhodium catalyst supported on La-SiO2 systems with different contents of lanthanum were first studied on traditional fixed bed reactor. All studied catalyst were active in the ethanol steam reforming. Among the others, the catalyst with 15% of La2O3 showed the highest hydrogen production per ethanol mol and the highest stability on reaction. The oxygen addition to the reaction mixture was studied. In this conditions, the catalysts suffered from deactivation due to the appearance of surface oxycarbonates species.
Cobalt supported catalyst (La2O3-SiO2) with different Co content, were studied. The surface oxidation state of the cobalt during the reaction could have a strong influence on the activity and stability of the catalysts. Co2+ species may avoid the coke formation during the ethanol steam reforming and could enhance the catalyst stability. While metallic Co species could be related to catalyst activity, leading to higher hydrogen production. Cobalt particle size could have an influence on the kind of deposited carbon. Small Co particles could lead to carbon nanotubes, while over bigger cobalt particles amorphous coke were deposited.
Fresh and used catalysts were characterized by applying the following techniques: XPS, DRX, BET, SEM, TEM, Raman, TPR, TPO and CO adsorption.
Finally, Rh/La2O3-SiO2 and Co/La2O3-SiO2 catalysts were studied on membrane reactors. Several parameters were studied and results similar to the best reported on literature were obtained.