INFORMACIÓN QUÍMICA DE ARGIUDOLES DEL CENTRO DE SANTA FE (ARGENTINA)¹ I) NITRÓGENO Y FÓSFORO EXTRACTABLE

PILATTI, M. A.² & GRENON, D. A.³

RESUMEN

A fin de conocer la riqueza edáfica de nutrimentos en el horizonte A $(0-30~{\rm cm})$ de Argiudoles del centro de Santa Fe en el lapso 1998 a 2002, se analizan numerosos datos de fósforo extractable (P) y de las formas nitrogenadas: Nitrógeno Orgánico Total (Nt), Nitrógeno Pasivo (Np), Nitrógeno Activo (Nac), Nitratos (N-NO $_3$) y Amonio (N-NH $_4$). Se estudia la distribución estadística de la población de datos, se agrupan por categoría según su tenor y se dan orientaciones acerca del número de submuestras necesarias para obtener una muestra representativa con determinada exactitud.

El Nt presenta una distribución poblacional normal (569 lotes), concentrándose el 66% entre valores de 1200-1600 g Mg⁻¹ con un promedio de 1424 g Mg⁻¹. Se estima una extracción del 27% de la reserva de nitrógeno del suelo, equivalente a 2085 kg N ha⁻¹. Para lograr una exactitud del 5% se debe componer una muestra con 36 submuestras. El Np, fracción estable del Nt, tiene distribución normal, presentando una relación directa con Nt (R²=0,85) y un promedio de 1250 g Mg⁻¹. Se advierte que es posible que una parte del Np —evaluado por fraccionamiento granulométrico- tenga una tasa de "turnover" superior al supuesto y, por lo tanto, sea una fuente de N para los cultivos. El Nac, responsable mayoritario de la nutrición de los cultivos por mineralización, no tiene distribución normal presentado los valores más frecuentes en el intervalo 101-250 g Mg⁻¹ (65% de los datos), mostrándose sensible para diferenciar usos del suelo. De las formas solubles del nitrógeno del suelo disponible para el cultivo, N-NO₃ y N-NH₄, se informa sobre su valor medio, desvío y distribución en el perfil. También se presenta el efecto de prácticas de manejo del suelo sobre el Nt y sus fracciones, destacándose que más del 70 % de los casos evaluados presentan prácticas agotadoras.

Del análisis de 661 casos de P surge que no tiene distribución normal; el 57% se concentra entre los valores de 11 y 30 g Mg⁻¹, con un promedio de 25 g Mg⁻¹. Un 25% de los lotes presentan un agotamiento del 74% del P contenido en su condición natural. Se proponen 4 categorías de lotes según su riqueza en P. En promedio en la zona se habrían exportado con la producción agropecuaria—al menos -134 kg de P ha⁻¹. Se debe componer una muestra con 20 submuestras para obtener un dato analítico con una exactitud del 20% y una precisión del 95%. También se muestra la distribución de P en todo el perfil de suelo.

Palabras claves: Argiudoles, fracciones nitrógeno edáfico, fósforo extractable, agotamiento, distribución poblacional, tamaño de muestra.

Manuscrito recibido el 1º de octubre de 2007 y aceptado para su publicación el 19 de febrero de 2008.

^{1.-} Facultad de Ciencias Agrarias (UNL). (3080) Kreder 2805, Esperanza, provincia de Santa Fe. Email: mpilatti@fca.unl.edu.ar. Trabajo subsidiado por Secretaría Política Universitarias (2006): "Potencialidad y vulnerabilidad de la base de recursos naturales del departamento Las Colonias (Santa Fe, Argentina)" y UNL CAI+D (2006).

^{2.-} Ing. Agrónomo, M.Sc. en Riego y Drenaje, profesor Asociado de Edafología, FCA (UNL).

^{3.-} Ing. Agr., DCSI, Profesor Asociado de Agromática, FCA (UNL).

SUMMARY

Chemical information of argiudolls of the center of Santa Fe (Argentina). I) nitrogen and extractable phosphorus.

In order to know the nutriments contents in the A horizon (0 - 30 cm) of Argiudolls of the center of Santa Fe from 1998 to 2002, several data of extractable phosphorus (P) were analyzed. Also it is shown different pools of nitrogen: Total Organic nitrogen (Nt), Passive Nitrogen (Np), Active Nitrogen (Nac), Nitrates (N-NO₃) and Ammonium (N-NH₄). In this work the statistical distribution of the data is studied. Data is grouped for category according to its tenor, and orientations are given about the number of necessary sub-samples to obtain a representative sample with certain accuracy.

The Nt presents a normal distribution (569 plots), with 66% of values varying from 1200 to 1600 g Mg-1, with an average of 1424 g Mg-1. We estimate an extraction of 27% of the reservation of nitrogen, equivalent to 2085 kg N har-1. To achieve an accuracy of 5% each sample should be composed with 36 sub-samples. The Np, the stable fraction of the Nt, has normal distribution, showing a direct relationship with Nt (R2=0,85), and an average of 1250 g Mg-1. It has to be remarked that part of the Np - evaluated by granulometric separation – probably has a turnover rate greater than to that it is supposed and, therefore, it may be a source of N for the crops. The Nac, mainly responsible of the crop nutrition trough mineralization, doesn't have normal distribution. The most frequent values (65% of the data) are in the range 101-250 g Mg-1, being sensitive to identify different soil management. The average values, their deviation, and distribution in the profile of N-NO₃ and N-NH₄ are also shown. The effect of different soil management systems on the Nt and its fractions is discussed. Data indicates that more than 70% of the evaluated cases were submitted to degrading practices.

661 cases of P were analyzed, indicating that P doesn't have normal distribution, with 57% of data varying from 11 to 30 g Mg⁻¹, and an average value of 25 g Mg⁻¹. 25% of plots present an exhaustion of 74% of the P that soils have in their natural condition. It is proposed 4 categories of soils according to their P content. It is estimated that 134 kg of P ha⁻¹ were exported with the agricultural production. A soil sample should be composed for 20 sub-samples to obtain data with an accuracy of 20% and a precision of 95%. The P distribution in the soil profile is also shown.

Key words: Argiudolls, fractions of nitrogen, extractable phosphorus, exhaustion, data distribution, sample size.