Desarrollo de un medio de cultivo de bajo costo para la producción de biomasa potencialmente probiótica destinado a pollos parrilleros

  • Ayelen P. BERISVIL
  • Diego M. ASTESANA
  • Jorge A. ZIMMERMANN
  • Laureano S. FRIZZO
  • Eugenia ROSSLER
  • Analía ROMERO-SCHARPEN
  • Carolina R. OLIVERO
  • María V. ZBRUN
  • Marcelo L. SIGNORINI
  • Gabriel J. SEQUEIRA
  • Silvina DRAGO
  • Lorena P. SOTO
Palabras clave: probiótico, producción de biomása, Lactobacillus salivarius, permeado de suero
  • Ingresos a esta página - 0 veces.
  • Galeras de PDF (English) descargadas - 0 veces.

Resumen

El objetivo de este trabajo fue evaluar diferentes medios de cultivo de bajo costo para la producción de biomasa de 3 cepas potencialmente probióticas de L. salivarius, las cuales podrían ser destinadas a pollos parrilleros en las granjas. Para ello se evaluaron diferentes formulaciones basadas en permeado de suero de queso (WP) suplementado con fuentes nitrogenadas: extracto de levadura (YE) e hidrolizado de suero (WH) y MnSO4.H2O (Mn), MgSO4.7H2O (Mg). El crecimiento de las cepas en estas formulaciones y el costo económico fue comparado con el crecimiento y costo en el medio de cultivo comercial (MRS). L. salivarius DSPV008P no creció adecuadamente en ninguno de los medios evaluados. Por otro lado, la adición del YE y Mn al medio mejoró el desarrollo microbiano de L. salivarius DSPV002P y L. salivarius DPSV011P. El agregado de WH y Mg solo tuvo un efecto positivo en el incremento de la biomasa de L. salivarius DSPV002P. L. salivarius DSPV011P fue la única cepa que desarrolló la misma cantidad de biomasa en MRS y en el medio seleccionado WP + YE 8 g/L + Mn. L. salivarius DSPV011P logró un desarrollo de biomasa de 9.22 Log (UFC/ml) en el medio seleccionado con un costo económico 12 veces menor que en MRS. Aunque el efecto de los suplementos añadidos al medio de cultivo sobre los parámetros cinéticos depende de la cepa, L. salivarius DSPV011P es la cepa con mejores características tecnológicas, capaz de crecer en un medio a base de un subproducto de la industria láctea suplementado con YE y Mn y a un costo mucho menor que en MRS.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguirre-Ezlcauriatza EJ, Aguilar-Yañes JM, Ramirez Medrano A, Alvarez MM. 2010. Producción of probiotic biomass (Lactobacillus casei) in goat milk whey: comparion of batch, continuous and fed-batch culture. Bioresour. Technol. 101: 2837-2844.

Altaf M, Naveena BJ, Gopal R. 2007. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Bioresour. Technol. 93: 498-503.

Amrane A, Prigent Y. 1998. Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling. World J. Microb. Biot. 14: 529-534.

Bedford M. 2000. Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimise subsequent problems. World Poultry Sci. J. 56: 347-365.

Blajman J, Gaziano C, Zbrun MV, Soto L, Astesana D, Berisvil A, Scharpen AR, Signorini M, Frizzo L. 2015. In vitro and in vivo screening of native lactic acid bacteria towards their selection as probiotic in broilers. Res. Vet. Sci. 101: 50-6.

Blajman JE, Olivero CA, Fusari ML, Zimmermann JA, Rossler E, Berisvil AP, Romero Scharpen A, Astesana D, Soto LP, Signorini ML, Zbrun, MV, Frizzo LS. 2017. Impact of lyophilized Lactobacillus salivarius DSPV 001P administration on growth performance, microbial translocation, and gastrointestinal microbiota of broilers reared under low ambient temperature. Res. Vet. Sci. 114: 388-394.

Cui F, Wan C, Li Y, Liu Z, Rajashekara G. 2012. Co-production of lactic acid and Lactobacillus rhamnosus cells from whey permeate with nutrient supplements. Food Bioprocess. Tech. 5: 1278-1286

Dąbrowska A, Babij K, Szołtysik M, Chrzanowska J. 2017. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage. Postep. Hig. Med. Dosw. 71: 952-959.

De Man, J.C., Rogosa, M., Sharpe, M.E. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135.

Duarte, A. 1998. Introducción a la Ingeniería Bioquímica. Ed. Universidad Nacional de Colombia: Bogotá. 198pp.

FAO WHO. 2001. Evaluation of health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. Food and Agricultural Organization of United Nations and World Health Organization Expert Consultation Report. London, Ontario, Canadá.

Hammes WP, Hertel C. Genus I. Lactobacillus. In de Vos P., Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB. (Eds.). 2009. Bergey’s manual of systematic bacteriology (2nd ed.) 3: 465-511.

Hossain MI, Sadekuzzaman M, Ha SD. 2017. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res. Int. 100: 63-73.

Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y. 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian-Australas. J Anim. Sci. 27: 1131-40.

Hugo AA, Bruno F, Golowczyc MA. 2016. Whey permeate containing galacto-oligosaccharides as a medium for biomass production and spray drying of Lactobacillus plantarum CIDCA 83114. LWT - Food Sci. Technol. 69: 185-190.

Hung AT, Lin SY, Yang TY, Chou CK, Liu HC, Lu JJ, Wang B, Chen SY. 2012. Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim. Prod. Sci. 52: 874-879.

Kareba O, Champagnea CP, Jeana J, Gomaa A, Aidera M. 2018. Effect of electro-activated sweet whey on growth of Bifidobacterium, Lactobacillus, and Streptococcus strains under model growth conditions. Food Res. Int. 103: 316-325.

Kwon S, Lee PC, Lee EG, Chang YK, Chang N. 2000. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolizate. Enzym. Microb. Technol. 26: 209-215.

Lavari L, Ianniello R, Páez R, Zotta T, Cuatrin A, Reinheimer J, Parente E, Vinderola G. 2015. Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT - Food Sci. Technol. 63: 322-330.

Lazzi C, Meli F, Lambertini F, Bottesini C, Nikolaev I, Gatti M, Sforza S, Koroleva O, Popov V, Neviani E, Dossena A. 2013. Growth pro¬motion of Bifidobacterium and Lactobacillus species by proteinaceous hydrolysates derived from poultry processing leftovers. Int. J. Food Sci. Technol. 48: 341-9.

León-de la O DI, Calderón-Yépez B, Martínez-Ballinas I, Sánchez-Herrera E.M, Zulatto-Lobato AC, Camacho-

Hernández I, Arredondo-Villanueva AL, Salgado-Brito R. 2013. Formulation and optimization of an economic broth culture for Lactobacillus with probiotic potential isolated from pulque. Investigación Universitaria Multidisciplinaria: Revista de Investigación de la Universidad Simón Bolívar 12: 133-144.

Lew LC, Gan CY, Liong MT. 2012. Growth optimization of Lactobacillus rhamnosus FTDC 8313 and the production of putative dermal bioactives in the presence of manganese and magnesium ions. J. Appl. Microbiol. 114: 526-535.

Liao SF, Nyachoti M. 2017. Using probiotics to improve swine health and nutrient utilization. Anim. Nutr. 3: 331–343.

Macedo MG, Lacroix C, Gardner NJ, Champagne CP. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J. 5: 419-426.

Manca de Nadra MC. 2007. Nitrogen metabolism in lactic acid bacteria from fruits: A review. En: A. Méndez-Vilas, editor. Communicating current research and educational topics and trends in applied microbiology. Formatex. Pp. 500-510.

Madigan MT, Martinko JM, Parker J. 2004. Biología de los microorganismos. 10a ed. Prentice Hall. Madrid, España. 991 pp.

Mikelsaar M, Sepp E, Štšepetova J, Hütt P, Zilmer K, Kullisaar T, Zilmer M. 2015. Regulation of plasma lipid profile by Lactobacillus fermentum (probiotic strain ME-3 DSM14241) in a randomised controlled trial of clinically healthy adults. BMC Nutr. 1: 1-27.

Niba AT, Beal JD, Kudi AC, Brooks PH. 2009. Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates. Trop. Anim. Health Pro. 41: 1393–1407.

Nielsen PM, Petersen D, Dambmann, C. 2001. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66: 642-646.

Raccach M. 1985. Manganese and lactic acid bacteria. J. Food Protect. 48: 895-898.

Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. 2014. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef. Microbes 5: 33-43.

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17: 7-15.

SENASA. Resolución 294/2015. 2015. http://www.senasa.gov.ar/senasa-comunica/noticias/nuevas-pautas-tecnicas-para-la-elaboracion-de-productos destinados-la-alimentación-de-animales.

Shenderov BA. 2012. Gut microbiota indígena y epigenética. Microbial Ecol. Health Dis. 23: 75-85.

Soto LP, Drago SR, Frizzo LS, Diaz A, Gonzalez R, Rosmini MR. 2006. Efecto de hidrolizados proteicos sobre el crecimiento de Lactobacillus casei DSPV 318T. II Simposio Internacional de Bacterias Lácticas. Primer encuentro Red BAL Argentina, San Miguel de Tucumán, Argentina.

Trigueros DEG, Fiorese ML, Kroumov AD, Hinterholz CL, Nadai BL, Assuncao GM. 2016. Medium optimization and kinetics modeling for the fermentation ofhydrolyzed cheese whey permeate as a substrate for Saccharomycescerevisiae var. boulardii. Biochem. Eng. J. 110:71-83.

Vázquez S, Crosa MJ, Rey F, Lopretti M. 2009. Viabilidad del uso de suero de quesería como base del medio de cultivo de la cepa nativa probiótica Lactobacillus paracasei HA9-2. INNOTEC 4: 10-4.

Vinderola CG, Bailo N, Reinheimer JA. 2000. Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res. Int. 33: 97-102.

Weymarn N, Hujanen M, Leisola M. 2002. Production of D-mannitol by heterofermentative lactic acid bacteria. Process. Biochem. 37:1207–13.

Wood BJB, Holzapfel WH. 1995. The genera of lactic acid bacteria. 1st Edition. Blackie Academic & professional. 398 pp.

Zacharof MP, Lovitt RW, Ratanapongleka K. 2009. Optimization of Growth Conditions for Intensive Propagation, Growth Development and Lactic Acid Production of Selected Strains of 'Lactobacilli'. In: Engineering Our Future: Are We up to the Challenge?: 27 - 30 September 2009, Burswood Entertainment Complex. Barton, ACT: Engineers Australia

Zapata JE, Hoyos M, Quinchía LA. 2005. Kinetic parameters of growth of Saccharomyces cerevisiae affected by a varying magnetic field of low intensity and high frequency. Vitae 12: 39-44.

Publicado
2020-12-23
Cómo citar
BERISVILA., ASTESANAD., ZIMMERMANNJ., FRIZZOL., ROSSLERE., ROMERO-SCHARPENA., OLIVEROC., ZBRUNM., SIGNORINIM., SEQUEIRAG., DRAGOS., & SOTOL. (2020). Desarrollo de un medio de cultivo de bajo costo para la producción de biomasa potencialmente probiótica destinado a pollos parrilleros. FAVE Sección Ciencias Veterinarias, 20(1), 1-9. https://doi.org/10.14409/favecv.v20i1.9978