POSIBLE INFLUENCIA DEL SUELO SOBRE LA COMPOSICIÓN
DEL ACEITE ESENCIAL DE "PLUCHEA SAGITTALIS" (LAM.) CABR. *

E. C. J. Talenti**
L. J. J. Priano***
J. A. de Orellana****

RESUMEN

La Pluchea sagittalis (Lam.) Cabr. ("Lusera") pertenece a la familia de las Compuestas. Ampliamente dispersa en el NE argentino, puede ser hallada también en Paraguay, Uruguay y Brasil, en zonas bajas y húmedas cerca de ríos y arroyos.

Las diferencias cuantitativas y cualitativas halladas en aceites esenciales de P. sagittalis recolectadas en dos lugares distantes 300 km entre sí, de N a S en la provincia de Santa Fe, hizo pensar que la razón de tales diferencias podía deberse a la acción de factores climáticos y edáficos, ya que generalmente la composición física y química del suelos condiciona la de las plantas que crecen en él.

* Presentado en la Reunión de Comunicaciones y trabajos Científicos del 29/III/74.
** Fac. de Ingeniería Química - Sgo. del Estero 2829 - Santa Fe.
**** Instituto Nacional de Limnología - José Maciá 1933 - Santo Tomé - (Santa Fe).
Especial consideracióñ merecieron las propiedades edáficas de ambos sitios. Tras la descripción morfológica de los suelos y sus correspondientes análisis en laboratorio se discute la probable acción de los factores edáficos (propiedades físicas, macronutrientes y sus interrelaciones) sobre la composición química del vegetal y la de su aceite esencial.

Puede concluirse que los suelos estudiados presentan grandes diferencias en sus propiedades, mientras que las climáticas no parecen ser trascendentes; los distintos tenores de calcio, magnesio, fósforo, nitrógeno, sodio y potasio son atribuibles a la diversa composición de ambos suelos, especialmente la química. Consecuentemente, si el metabolismo del vegetal ha sido alterado, las diferencias halladas entre sus aceites esenciales podrían atribuirse a la misma causa (distinta composición de los suelos).

Se estima conveniente continuar los trabajos, incorporando nuevos elementos de juicio, tales como estudios sobre aspectos metabólicos de la planta y sobre la dinámica de los oligoelementos.

SUMMARY

The *Pluchea sagittalis* (Lam) Cabr. (or "Lusera") is a plant belonging to the compositae's family, widely distributed in the Argentine NE humid regions, although it could as well be found in Uruguay, Paraguay and Brazil, in humid and low places near rivers and streams.

The different qualitative and quantitative composition of the essential oil of *P. sagittalis*, collected in two different localities apart 300 km from N to S in Santa Fe province (Argentine), moded to think that climatic and edaphic elements could have greatly influenced such compositions, since usually, the chemical and physical soil properties acts on the composition of those plants growing on it. The edaphic properties of both places have been specially considered. After the morphological descriptions of soilds and their corresponding analysis, it came into discussion the probable action of some edaphic factors (physical macronutritive properties and its relationships) upon the chemical composition of the vegetal and of its corresponding essential oil.

It can be concluded that the studies soils present great differences being the climate differences apparently less important than the edaphic ones. The unlike calcium, magnesium, nitrogen, phosphorous, sodium and potassium contents in the plants can be attributed to the diverse soil compositions.

Consequently, being the metabolism of plants also altered, the differences in their essential oil composition could be attributed to the same cause.

It is convenient to continue with this work, adding some new elements to be studied as plants metabolic features and dynamic of the oligoelements.
INTRODUCCION

En este trabajo se comparan los suelos de dos lugares de la provincia de Santa Fe en los cuales -previamente- se habían recolectado plantas de *Pluchea sagittalis* (Lam) Cabr., especie vegetal conocida vulgarmente como "Lusera". En las plantas de ambos lugares (Estación Experimental L. Parodi, distrito Fortín Olmos, departamento Vera y terraza del río Salado, distrito Santo Tomé, departamento La Capital) (TALENTI et al., 1969) se hallaron diferencias en las cantidades y calidades de los componentes de sus aceites esenciales.

Las plantas de ambos sitios mostraron -en cuanto a su composición química- las siguientes analogías y diferencias (TALENTI, PRIANO y ORELLANA, 1972):

Componentes comunes (cualitativamente): taninos, esteroides, fitosteroles, flavonoides y saponinas. Además, no contienen alcaloides, leucoantocianidinas, glicósidos cardiotónicos y glicósidos cianogenéticos. En determinaciones auxiliares se halló: taninos rojos o flovafenos, aceites esenciales, pirocatequina, resorcina, pirogalol y el glucósido cuercitina, sospechándose además la presencia de floroglucina, cumarina y antraquinona. En cambio, no fue posible hallar los ácidos benzoico, salícrico y gélico (TALENTI, PRIANO y ORELLANA, 1972).

Entre los componentes del aceite esencial se ratificó la existencia -en las esencias de todas las plantas- de alcanfor, canfeno y p-cimeno (sustancias halladas anteriormente por Fester y colaboradores (1955) además de nuevos componentes cuya presencia en las esencias estudiadas era desconocida hasta el presente. Dichas sustancias, comunes a todas las esencias obtenidas, son: alfa-pineno, 1,8 cineol (Eucaliptol), linalool, cariofileno, alfa-terpineol, borneol y acetato de geranilo.

Componentes diferenciales: en los aceites esenciales (específicamente estudiados) aparecieron diferencias sustanciales, de tipo cualitativo y cuantitativo, entre las plantas procedentes de ambos lugares ya citados. Se mencionan aquí sólo las cualitativas:

Humuleno y geraniol, sólo fueron hallados en las esencias provenientes de las especies vegetales originarias de Vera.

Beta-pineno, limoneno, acetato de bornilo (y muy posiblemente alfa-tuyeno) fueron identificados sólo en las plantas de La Capital.

La influencia de factores climáticos y edáficos en la composición química de la vegetación natural ha sido analizada por Fester (1963) quien trabajó con plantas aromáticas argentinas. Este autor señaló que la inmensa mayoría de los estudios fitoquímicos versaba preferentemente sobre cultivos de interés agronómico o industrial ya demostrado, por lo que son escasas las diferencias sobre plantas silvestres. Como además, las plantas consideradas suelen ser autóctonas -como en el caso que nos ocupa-no existen antecedentes sobre los tópicos investigados.
PARTE EXPERIMENTAL

GENERALIDADES SOBRE LOS PUNTOS DE ESTUDIO

Clima

Para comparar las características climáticas de los lugares en los cuales se estudiaron los suelos y extrajeron las plantas de Pluchea sagittalis (Lam) Cabr., se tomaron datos de las estaciones más cercanas. Así, la Estación Experimental Lorenzo Parodi se asimiló a Vera y la terraza del río Salado, a Ángel Gallardo. A continuación se transcriben algunos datos fundamentales (Manzi, 1957; Papadakis, 1952).

<table>
<thead>
<tr>
<th></th>
<th>VERA</th>
<th>A. GALLARDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura media anual</td>
<td>19,4</td>
<td>17,9</td>
</tr>
<tr>
<td>Temperatura media del mes más cálido</td>
<td>26,4</td>
<td>25,0</td>
</tr>
<tr>
<td>Temperatura media del mes más frío</td>
<td>13,0</td>
<td>11,4</td>
</tr>
<tr>
<td>Período con heladas (amplitud media)</td>
<td>23/6 - 4/8</td>
<td>19/6 - 15/8</td>
</tr>
<tr>
<td>Precipitación media anual</td>
<td>1.186 mm</td>
<td>1.064 mm</td>
</tr>
<tr>
<td>Coeficiente de humedad anual</td>
<td>0,78</td>
<td>0,82</td>
</tr>
</tbody>
</table>

Como puede apreciarse, las diferencias climáticas son de poca magnitud, lo que permitió a Papadakis (1952) incluir a ambos lugares dentro de una misma unidad climática, denominada clima Mesofítico seco. Desde el punto de vista agronómico, sin embargo, tiene mucha importancia el período libre de heladas. Cabe destacar que en Vera este fenómeno es menos frecuente, abarca un lapso menor y las temperaturas, en caso de helar (en la Estación Experimental Lorenzo Parodi) serían ligeramente superiores a las de Santa Fe. Pero este factor, en el caso de Pluchea sagittalis (Lam) Cabr. pierde importancia por caer en un período vegetativo de intensidad prácticamente nula (P. sagittalis florece en marzo).

Los suelos. Características y composición

El suelo de la Cuña Boscosa santafesina donde se encontró gran cantidad de plantas de Pluchea sagittalis (Lam) Cabr. (Lusera), está situado dentro de la Estación Experimental Lorenzo Parodi (distrito Fortín Olmos, departamento Vera), dependiente del Ministerio de Agricultura y Ganadería de Santa Fe.

Como es típico de la zona, los suelos forman allí verdaderos complejos, mezclándose en los localmente denominados "manchones". Por esta razón, el muestreo y descripción se hizo en el mismo medio de crecimiento de las plantas, evitando así el peligro de trabajar con muestras de suelos asociados, de diferente composición.

Toda la región está constituida por estos complejos y asociaciones
CUADRO 1. Descripción del perfil del suelo de la Cueva Boscosa santafesina (del mismo lugar de crecimiento de la Pluchea sagittalis)

<table>
<thead>
<tr>
<th>Horizontes</th>
<th>Profundidad (cm)</th>
<th>Características de los horizontes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0 - 15</td>
<td>Gris (seco) a gris muy oscuro (húmedo) (10 YR 5.5/1; 3/1); franco-arcillo-limoso, con estructura de bloques angulares finos a medios, moderados a fuertes, duro a muy duro, friable, plástico, ligeramente adhesivo, sin concreciones, muy húmedo, abundantes raíces. Límite inferior abrupto, ondulado.</td>
</tr>
<tr>
<td>II</td>
<td>15 - 25</td>
<td>Gris parduzco claro (seco) a pardo grisáceo oscuro (húmedo) (10 YR 5/2; 3/5,2); arcillo-limoso, con bloques angulares, medios, fuertes, duro a muy duro, firme, ligeramente plástico, adhesivo. Con vestigio de barnices, muy húmedo, sin concreciones, abundantes raíces. Existen bolsones con gleyzación, azulados. Límite inferior abrupto, ondulado.</td>
</tr>
<tr>
<td>III</td>
<td>25 - 35</td>
<td>Gris parduzco claro (seco) a pardo grisáceo oscuro (húmedo) (10 YR 6/2; 4/2); arcillo-limoso, con bloques angulares medios, fuertes, duro a muy duro, firme a friable, plástico, adhesivo. Sin concreciones, con vestigios de barnices y moteados escasos, finos y precisos, amarillos (10 YR 7/5); muy húmedo, con abundantes raíces. Límite inferior abrupto, ondulado.</td>
</tr>
<tr>
<td>IV</td>
<td>35 - 50</td>
<td>Pardo grisáceo a gris parduzco claro (seco) a gris muy oscuro (húmedo) (10 YR 5,5/2; 3/1); franco-arcillo-limoso, con bloques angulares y subangulares, finos a medios, moderados a fuertes, duro a muy duro, firme a friable, plástico, adhesivo; sin concrecciones, con barnices moderados, gris muy oscuro (10 YR 3/1), moteados escasos, finos y precisos, amarillos (10 YR 7/6). Muy húmedo, abundantes raíces. Límite inferior claro, ondulado.</td>
</tr>
</tbody>
</table>
CUADRO 2. Composición química y física del suelo descripto en el cuadro 1.

<table>
<thead>
<tr>
<th>Horiz.</th>
<th>Prof. (cm.)</th>
<th>Arc. u</th>
<th>Granulometría (%)</th>
<th>CO$_3$Ca</th>
<th>C</th>
<th>N</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Limo</td>
<td>Ar. m., f.</td>
<td>Ar. f.</td>
<td>Ar. m.</td>
<td>2-50 u</td>
<td>50-100 u</td>
</tr>
<tr>
<td>I</td>
<td>0-15</td>
<td>32,9</td>
<td>62,3</td>
<td>2,0</td>
<td>2,0</td>
<td>0,8</td>
<td>1,4</td>
</tr>
<tr>
<td>II</td>
<td>15-25</td>
<td>44,7</td>
<td>51,2</td>
<td>1,8</td>
<td>1,8</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>25-35</td>
<td>45,6</td>
<td>50,6</td>
<td>1,7</td>
<td>1,7</td>
<td>0,4</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>35-50</td>
<td>38,6</td>
<td>56,6</td>
<td>2,5</td>
<td>1,8</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>50-80</td>
<td>32,7</td>
<td>62,2</td>
<td>2,5</td>
<td>2,1</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>80-100</td>
<td>38,8</td>
<td>58,0</td>
<td>1,5</td>
<td>1,3</td>
<td>0,4</td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>100-150</td>
<td>41,3</td>
<td>56,5</td>
<td>1,0</td>
<td>0,9</td>
<td>0,3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horiz.</th>
<th>Resist. pasta (Ohms)</th>
<th>Ca/T</th>
<th>Mg/T</th>
<th>Na/T</th>
<th>K/T</th>
<th>H/T</th>
<th>T m.e.</th>
<th>Soluble P$_2$O$_5$</th>
<th>OK$_2$</th>
<th>pH 1:2,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1,750</td>
<td>75,9</td>
<td>17,1</td>
<td>1,2</td>
<td>5,8</td>
<td>-</td>
<td>25,7</td>
<td>830</td>
<td>290</td>
<td>7,0</td>
</tr>
<tr>
<td>II</td>
<td>2,041</td>
<td>62,4</td>
<td>17,7</td>
<td>1,3</td>
<td>4,3</td>
<td>14,3</td>
<td>30,0</td>
<td>200</td>
<td>360</td>
<td>6,3</td>
</tr>
<tr>
<td>III</td>
<td>2,697</td>
<td>69,3</td>
<td>17,0</td>
<td>1,4</td>
<td>4,7</td>
<td>7,6</td>
<td>27,6</td>
<td>180</td>
<td>330</td>
<td>6,4</td>
</tr>
<tr>
<td>IV</td>
<td>2,819</td>
<td>69,9</td>
<td>15,8</td>
<td>1,5</td>
<td>4,9</td>
<td>7,9</td>
<td>26,5</td>
<td>170</td>
<td>340</td>
<td>6,4</td>
</tr>
<tr>
<td>V</td>
<td>2,868</td>
<td>66,9</td>
<td>16,7</td>
<td>1,7</td>
<td>5,9</td>
<td>8,8</td>
<td>23,9</td>
<td>110</td>
<td>430</td>
<td>6,4</td>
</tr>
<tr>
<td>VI</td>
<td>2,430</td>
<td>68,9</td>
<td>15,6</td>
<td>1,4</td>
<td>6,0</td>
<td>7,1</td>
<td>28,3</td>
<td>150</td>
<td>480</td>
<td>6,6</td>
</tr>
<tr>
<td>VII</td>
<td>2,236</td>
<td>70,6</td>
<td>17,3</td>
<td>1,2</td>
<td>5,8</td>
<td>5,1</td>
<td>31,3</td>
<td>530</td>
<td>480</td>
<td>6,9</td>
</tr>
</tbody>
</table>
de suelos, de origen aluvial y evolucionados en condiciones palustres (GOLLAN y LACHAGA, 1939). Las características de los suelos de la zona han sido descriptas, desde los puntos de vista morfológico, físico, químico y genético en un trabajo anterior (FRIANO y ORELLANA, 1971) donde además se incluye un mapa semidetallado de los suelos.

De acuerdo con los peculiares rasgos del área en cuestión, los suelos asociados tienen una distribución intermitente, aspecto éste que se refleja en la vegetación.

El perfil estudiado en esta oportunidad posee las características que se detallan en los cuadros 1 y 2. Además presenta las siguientes observaciones:

- Hay microrrelieve y el perfil pertenece a una depresión que se encharca periódicamente.
- El suelo, entonces, estaría húmedo la mayor parte del tiempo, con exceso de humedad y gleyzación como proceso dominante.
- El relieve general es muy chato, siendo más importante el microrrelieve que la pendiente general, en cuanto al escorrentío hídrico.
- La permeabilidad aparece como lenta o muy lenta; la vegetación cubre totalmente el suelo.
- La napa se encuentra entre los 7 y 9 metros de profundidad.
- Se detectaron restos de caracoles.

El suelo en cuestión presenta propiedades particulares que, como los restantes de su zona, lo diferencian netamente de los suelos agrícolas del centro y sur de la provincia de Santa Fe.

Por tratarse de un área recién habilitada a la producción, no es posible imaginar el comportamiento de estos suelos bajo cultivo. Sin embargo, de acuerdo con las observaciones morfológicas (cuadro 1) y los datos de laboratorio (cuadro 2) pueden evaluarse ciertas propiedades fundamentales que -sin duda alguna- afectarán su dinámica y la relación suelo-planta.

La descripción del perfil sugiere ante todo difíciles condiciones de drenaje, particularmente agravadas por el microrrelieve. El lugar estudiado se halla en una microdepresión y esto hace que permanezca húmedo aún durante largos periodos sin lluvias.

El agua que logra penetrar, transita con dificultad hacia abajo, como lo expresan las zonas gleyzadas en el horizonte II, los moteados de los horizontes III a VII y las concreciones de Fe y Mn en los horizontes V, VI, y VII. Estos rasgos señalan la presencia permanente de anoxia y consecuentes reducciones, pues el Fe sólo migra en estado ferroso y cuando se oxida, por llegar a áreas de propiedades opuestas, precipita en estado férrico. Algo similar sucede con el Mn.

Los colores grises o grisáceos de casi todos los horizontes tienen también vinculación con síntomas de hidromorfismo.

Las texturas, estructuras y consistencia de cada horizonte, son pro
pias de granulometrías pesadas (con mucha arcilla). Los datos obtenidos en laboratorio señalan tenores de arcilla en los horizontes II, III y IV, que se consideran elevados en cualquier suelo agrícola de zonas situadas más al sur. Es indiscutible que la dificultad de circulación del agua -y consecuentemente del aire- se apoya principalmente sobre los altos porcentajes de arcilla de los horizontes mencionados y del VII, que da la posición topográfica del perfil en cuestión -que le hace recibir más agua que en los sitios altos del microrrelieve- detiene el tránsito vertical de las soluciones, haciendo que los horizontes superiores queden anegados. Es factible que el horizonte VI desempeñe un rol similar.

La estructura está íntimamente vinculada con la textura; de allí su consistencia de dura o muy dura en seco. Es típica de la región y propia de suelos virgenes como el estudiado.

En favor del desarrollo de las plantas que como la Lusera, prosperan en tales condiciones, hablan las propiedades químicas. Excepto el problema de la reducción, las demás pueden aceptarse como favorables para el desarrollo vegetal. La acidez es ligera y alterna con la neutralidad, lo que se considera óptimo. El complejo de intercambio presenta altos tenores de Ca++, lo que resulta favorable para la mayoría de las plantas.

Las relaciones calcio/magnesio fluctúan entre 3,5 y 4,5, siendo algo más elevadas que las registradas en suelos de la región pamppeana (2,5 a 3,0).

La presencia de carbonatos -detectada en el primer horizonte- es producto de resíduos de caracoles, lo que evidencia el carácter aluvial e hidromórfico de estos suelos; se estima que, por el porcentaje hallado en laboratorio, los carbonatos pueden influir en la reacción del medio (pH 7), la cual es menos ácida que en el resto de los horizontes reconocidos; otra consecuencia es la saturación cálcica del complejo de intercambio, que alcanza su expresión máxima en dicho horizonte, cuando por lo general, ocurre lo inverso.

No existen sales solubles (cloruros, sulfatos, bicarbonatos) en cantidades apreciables y el sodio de intercambio es bajo. A esto se debe agregar la excelente provisión del suelo en fósforo y potasio. En las condiciones en que se encuentran, pueden suponerse a disposición de los vegetales.

La materia orgánica, sin ser abundante, no escasea. Pero no es posible abrir juicios sobre sus efectos nutritivos, ya que la dinámica del nitrógeno -fundamental para ello- puede verse afectada por los anegamientos y condiciones anaeróbicas, de marcada acción sobre el ciclo del N, y no estudiadas aún en ese suelo.

Descripción del suelo del río Salado (del mismo lugar de crecimiento de la Pluchea sagittalis (Lam.) Cabr.)

En la terraza del río Salado, sobre el distrito Santo Tomás (Dpto. La Capital, Provincia de Santa Fe) se dan dos situaciones: las plantas de Lu-
CUADRO 3. Composición química de los suelos de la Terraza del Río Salado

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Nº 1 (Tacurúes)</th>
<th>Nº 2 (Llano)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad (Cm.)</td>
<td>0-20</td>
<td>0-20</td>
</tr>
<tr>
<td>Carbono (%)</td>
<td>1,28</td>
<td>1,06</td>
</tr>
<tr>
<td>Nitrógeno (%)</td>
<td>0,111</td>
<td>0,098</td>
</tr>
<tr>
<td>Relación C/N</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Resistencia pasta sat. (Omhs)</td>
<td>983</td>
<td>674</td>
</tr>
<tr>
<td>Conduct. ext. sat. (mmhos/cm.25°C)</td>
<td>2,0</td>
<td>2,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salinidad discriminada</th>
<th>m.e.l.</th>
<th>m.e.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloruros</td>
<td>7,6</td>
<td>14,6</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>5,7</td>
<td>9,8</td>
</tr>
<tr>
<td>Carbonatos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicarbonatos</td>
<td>8,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Total aniones</td>
<td>21,5</td>
<td>28,6</td>
</tr>
<tr>
<td>Calcio</td>
<td>3,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Magnesio</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Sodio</td>
<td>19,5</td>
<td>30,0</td>
</tr>
<tr>
<td>Potasio</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Total cationes</td>
<td>24,5</td>
<td>33,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complejo de intercambio</th>
<th>m.e.%</th>
<th>% Ts.</th>
<th>m.e.%</th>
<th>% Ts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcio</td>
<td>5,9</td>
<td>42,2</td>
<td>4,5</td>
<td>36,8</td>
</tr>
<tr>
<td>Magnesio</td>
<td>2,9</td>
<td>20,7</td>
<td>2,2</td>
<td>18,0</td>
</tr>
<tr>
<td>Sodio</td>
<td>3,7</td>
<td>26,4</td>
<td>4,2</td>
<td>34,5</td>
</tr>
<tr>
<td>Potasio</td>
<td>1,0</td>
<td>7,1</td>
<td>0,8</td>
<td>6,6</td>
</tr>
<tr>
<td>Valor "S"</td>
<td>13,5</td>
<td>11,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>0,5</td>
<td>3,6</td>
<td>0,5</td>
<td>4,1</td>
</tr>
<tr>
<td>Valor "Ts" (Suma)</td>
<td>14,0</td>
<td></td>
<td>12,2</td>
<td></td>
</tr>
<tr>
<td>Valor "Ta" (Analítico)</td>
<td>13,2</td>
<td>11,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P₂O₅ (soluble) ppm. 320 100
pH relación 1:2,5 7,5 8,4
sera crecen sobre hormigueros (tacurúes) o a su alrededor.

Está demostrado que los "tacurúes", construidos con tierra que las hormigas han extraído de cierta profundidad, poseen una composición diferente que el terreno circundante y pueden sustentar distinta vegetación (Bonetto et al., 1961; Bucher y Zuccardi, 1967).

En el caso que nos ocupa, fue dable observar que las plantas de Lusera crecían preferentemente sobre los hormigueros, donde alcanzaban mayor porte. En las inmediaciones, también se desarrollaban, pero alcanzando menor altura y denotando dificultades para el crecimiento.

Además, la reacción del medio no sería propicia para la actividad de la mayoría de los oligoelementos, los cuales, con excepción del molibdeno, muestran su acción efectiva a pH menores de 6,5. Si se tiene en cuenta que dichos micronutrientes son constituyentes esenciales de las enzimas, catalizadores de las reacciones químicas de transformación que se producen en los vegetales, la carencia condicionada -caso de los suelos que estamos considerando- incidirá en las propiedades químicas de las plantas que allí se desarrollan.

Sin embargo, el pH no es una simple causa, sino más bien una consecuencia de la composición química del suelo. La comparación de los datos de calcio y sodio muestra -aunque dentro de tenores sódicos elevados y considerados inhibitorios en otros suelos- que los de los "tacurúes" poseen más calcio y menos sodio de intercambio que los correspondientes a los de los "llanos".

Las sales solubles están presentes, pero sus tenores no son demasiado nocivos; tal vez contribuyan a normalizar el incremento del pH, que -para los tenores de sodio de intercambio- debería ser más elevado. En lo que hace a las características de las sales, en los "tacurúes" existe un predominio de bicarbonato y en la de los "llanos", de cloruros, sódicos en ambos casos.

En suelos con las características señaladas es dable observar problemas de clorosis férrea, necrosis, deformaciones de las hojas, coloraciones diversas, como así también distintos grados de desarrollo en vegetales de la misma especie. Lo expresado se justifica por la heterogeneidad de los suelos, los cuales, en cortas distancias muestran cambios en sus propiedades, muy especialmente en lo que hace a la composición química.

Por otra parte, no todos los elementos tienen la misma facilidad para penetrar en los vegetales, ni todos los vegetales muestran idéntica afinidad para los elementos químicos. Ratifica lo expuesto la comparación de los datos referentes a la composición química de la Pluchea sagittalis (Lam.) Cabr. -recolectada en los suelos antes descriptos- según puede apreciarse en el cuadro 4.

En efecto, si comparamos los porcentajes de fósforo soluble de los distintos suelos, con los hallados en los vegetales correspondientes, encontramos una estrecha relación, pues a mayores niveles de fósforo -en el suelo- corresponden mayores tenores en el vegetal. Algo similar ocurre con el sodio de intercambio y con el nitrógeno.
Cuadro 4. Composición química de Pluchea sagittalis (Lam.) Cabr.

<table>
<thead>
<tr>
<th>Procedencia de la muestra</th>
<th>Contenido de nutrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potasio (K⁺)</td>
</tr>
<tr>
<td></td>
<td>m.e.%</td>
</tr>
<tr>
<td>I Dpto. Vera. Est.</td>
<td>86,4</td>
</tr>
<tr>
<td>Exp. Lorenzo Parodi</td>
<td></td>
</tr>
<tr>
<td>II Dpto. La Capital.</td>
<td>23,2</td>
</tr>
<tr>
<td>Río Salado (tacurúes)</td>
<td></td>
</tr>
<tr>
<td>III Idem (llano)</td>
<td>22,0</td>
</tr>
</tbody>
</table>

Por el contrario, el calcio no presenta tal relación, pues los análisis indican que -a menores porcentajes de calcio intercambiable en el suelo- corresponde una mejor asimilación por el vegetal.

Este hecho que se da en los suelos sodicos del presente estudio, parecería indicar que dicha asimilación tiende a compensar la mayor entrada del sodio (VERETTONI, 1962).

El caso del potasio es diferente de los anteriores, ya que con porcentajes similares en los diferentes complejos de intercambio, tuvo distinto aprovechamiento por el vegetal.

También se puede observar que la suma de los cationes de cada muestra permanece prácticamente constante, pese a las variaciones de algunos de ellos. Pero, de estos cationes, el magnesio casi no varía. El cambio más brusco corresponde al potasio, que pasa de 86,4 en I, a 23,2 y 22,0 en II y III respectivamente. Sin embargo, la disminución del contenido potásico es compensada por incrementos en los porcentuales de sodio y calcio. El primer caso (sustitución de potasio por sodio) puede explicarse sobre la base de experiencias de otros autores (RUSSELL y RUSELL, 1959) quienes afirman que el sodio puede sustituir al potasio, bajo ciertas condiciones, en la composición del vegetal y en sus funciones.

La sustitución de potasio por calcio, en cambio, se basaría sobre el conocido antagonismo existente entre ambos. En los dos casos, la composición cationica del vegetal proviene, pese a la selectividad natural de las plantas para nutrirse de la dispar composición cationica del suelo y -por ende- de sus soluciones.

CONCLUSIONES

Al comparar los suelos de dos lugares distintos de la Provincia de Santa Fe - Rep. Argentina (Est. Exp. Lorenzo Parodi, Dpto. Vera y terra...
za del río Salado, Dpto. La Capital) distantes unos 300 km. en línea recta de Norte a Sur, de donde previamente se habían tomado muestras de la compuesta *Pluchea sagittalis* (Lam.) Cabr. se pudo comprobar:

a) Que los suelos correspondientes a ambos lugares presentan grandes diferencias en sus propiedades físicas y químicas.

b) Que las plantas colectadas en dichos sitios mostraron distintos contenidos de calcio, magnesio, sodio, potasio, fósforo y nitrógeno.

c) Que, en trabajos previos, se hallaron diferencias cualitativas en la composición de los aceites esenciales de las plantas mencionadas.

d) Que las características climáticas entre ambos lugares resultan bastante similares, lo que permite descartar una influencia significativa del clima sobre el material vegetal considerado en el presente estudio.

e) Sobre la base de estas comprobaciones puede suponerse que las propiedades de los suelos de los lugares reconocidos han tenido decisiva influencia en la composición química y en la calidad de los aceites esenciales correspondientes a la compuesta *Pluchea sagittalis* (Lam.) Cabr.

f) Si bien se ha atribuido al suelo la responsabilidad en las diferencias de la composición química del vegetal, no es posible definir cual es el elemento (o los elementos) que intervienen en la alteración del metabolismo que lleva a la formación de distintos aceites esenciales. En este sentido debe hacerse notar que no se conoce la fisiología de la planta en cuestión, como así tampoco el proceso que lleva a la formación de los aceites referidos.

g) Se sugiere complementar el conocimiento del tema tratado con experiencias programadas con parámetros controlados.

AGRADECIMIENTO

Los autores agradecen al Téc. en Suelos Rodolfo Brandi, la ejecución de los análisis que figuran en el cuadro 4.

BIBLIOGRAFÍA

