CARACTERISTICAS LIMNOLOGICAS DEL EMBALSE DE SALTO GRANDE, III: FITOPLANCTON Y SU RELACION CON PARAMETROS AMBIENTALES.*

Rolando Quirós y Laura Luchini
I.N.I.D.E.P.
Casilla de Correo 175
7600 Mar del Plata
Argentina

RESUMEN

El embalse de Salto Grande ($31^{\circ} \mathrm{S} 58^{\circ}$ O) es del tipo río, de brazos múltiples. Presentamos las variaciones observadas en la concentración de pigmentos fotosintéticos durante 14 meses, así como la relación entre distintos subambientes. Realizamos además un análisis de la estructura del fitoplancton en distintas estaciones del embalse.

Las concentraciones de clorofila a fueron mayores en los brazos laterales que en su centro; oscilaron entre 1,2 y $18,4 \mathrm{mg} / \mathrm{m}^{3}$ en la entrada, $0,2-5,7 \mathrm{mg} / \mathrm{m}^{3}$ en la estación de integración y entre 0,2 y $27,1 \mathrm{mg} / \mathrm{m}^{3}$ en las estaciones de centro de brazo, llegando a alcanzar valores de $205 \mathrm{mg} / \mathrm{m}^{3}$ en los extremos de estos últimos.

La comunidad fitoplanctónica (abril 1980-febrero 1981) estuvo caracterizada por un predominio de las Diatomeas excepto en los brazos del Mandisovi y del Gualeguaycito, donde fueron importantes las Cianofitas.

El fitoplancton del embalse estuvo limitado por una turbidez de tipo inorgánica, y determinado fundamentalmente, cualit y cuantitativamente por los regímenes hidrológicos y pluviométricos en la zona y en la cuenca de drenaje.

El embalse actuó, durante el período estudiado, como un sumidero de seston orgánico no-vivo y de biomasa fitoplanctónica.

[^0]
Abstract

SUMMARY Limnological feactures of the Salto Grande reservoir III: Phytoplankton and its relationship with environmental parameters.

The Salto Grande reservoir ($31^{\circ} \mathrm{S} 50^{\circ} \mathrm{W}$) is a river-like reservoir with multiple arms, with a surface of $780 \mathrm{~km}^{2}$ at maximun level and it presents a high inorganic turbidity in the central zone. This paper presents the seasonal variation of the Chlorophyl a and pheopigments content in seven stations of the reservoir sampled bimonthly from February 1980 to February 1981 and in five stations at the end of the arms in a shorter period. The porcentual variation of phytoplankton composition during the priod Abril 1980 to Fe bruary 1981 is also presented with bimonthly sampling. The resulting data are related to the nutrient concentrations in the different subenvironments and with the hidrological cycle of the Uruguay River and the rainfall in the near basin.

The Chlorophyl a concentrations were higher in the lateral arms than in the center of the reservoir and fluctuated between 1,2 and $18,4 \mathrm{mg} / \mathrm{m}^{3}$ at the entrance, $0,2-5,7$ $\mathrm{mg} / \mathrm{m}^{3}$ at the integration station 5 km above the dam and between 0,2 and $27,1 \mathrm{mg} / \mathrm{m}^{3}$ at the lateral arms stations, reading values of $205 \mathrm{mg} / \mathrm{m}^{3}$ at the ends of the arms. The Chlorophyl a concentrations correlate negatively with the water outlet $(P<0,15)$ at the integration station.

The phytoplankton community was caracterized by the dominance of Diatoms (Melosira granulata var. angustissima) through all the samplings with the exception of the arms of Mandisovi and Gualeguaycito in witch the Cianoficea were very important (Microcystis aeruginosa).

Our results indicate that the phytoplankton of the reservoir is limited by the turbidity of inorganic type except at the end of the arms and that is mainly determined by the water turnover in the centre of the reservoir and by the washing effect due to rainfall on the lateral arms.

During the priod considered the reservoir acted as a organic non living seston and phytoplankton biomass sink.

INTRODUCCION

El embalse de Salto Grande es del tipo río, de brazos múltiples, con una superficie de $780 \mathrm{Km}^{2}$ a cota máxima. Una descripción del embalse, de su cuenca de drenaje y de sus principales características físico químicas ya fue publicada1-11. El presente trabajo tiende a complementar la caracterización de los distintos subambientes del embalse para relacionarlos con la distribución de peces ${ }^{10}$.

Observaciones preliminares sobre la estructura del fitoplancton del río Uruguay, previo al embalsado, fueron realizadas por Onna8 (octubre 1976 a setiembre 1977) y por GACA 5 (durante parte de los años 1977 y 1978).

MATERIALES Y METODOS

Establecimos 7 estaciones que denominamos "de embalse" (Fig. 1): I, de entrada; II, de integración; IV, del Gualeguaycito (3 niveles); VI, del Itapeby; VIII, del Mandisovf; X, del Arapey y XII, del Mocoretá. Además, fijamos otras cinco en los extremos de cada brazo (V, VII, IX, XI y XIII) y una aguas abajo (III).

Fig. 1.- Embalse de Salto Grande y ubicación de estaciones de muestreo.

Extrajimos las muetras para determinación de pigmentos fotosintéticos siguiendo el esquema de Quirós y Cuch ${ }^{11}$, filtrando volúmenes de agua (entre 0,3 y 1,0 litro) a través de filtros de fibra de vidrio Whatmann GF/C y con MgCO_{3}, y conservados en la oscuridad y sobre sustancia desecante por períodos de 3-5 días hasta su análisis.

Determinamos las concentraciones de pigmentos según Stauffer et al ${ }^{18}$ usando como solvente una mezcla $1: 1$ de acetona 90% y dimetilsulfóxido alcalinizado con dictilamina. A los filtros le agregamos 30 ml de solvente y los dejamos en la oscuridad por 48 hs a $4^{\circ} \mathrm{C}$. Las determinaciones las hicimos a 665 nm y 750 nm antes y después de acidificar con HCl . Expresamos los resultados como pigmentos totales (Chl eq.), clorofila a (Chl a) y feopigmentos (FEOF).

Obtuvimos las muestras de fitoplancton en superficie, sólo en las estaciones denominadas "de embalse", bimensualmente en el período de abril 1980 a febrero 1981. Utilizamos una red cónica convencional de $30 \mu \mathrm{~m}$ de malla, y filtramos volúmenes variables de agua, entre 3 y 10 litros; utilizando como fijador el Lugol modificado ${ }^{20}$. Ejecutamos análisis por el método de la gota de Edmonson ${ }^{20}$ con 600 aumentos, y para determinaciones sistemáticas dudosas, recurrimos a 1000 aumentos en submuestras aparte. Realizamos los recuentos semicuantitativos por barridos columnares sucesivos y totales de la gota, con un mínimo de observación de 100 individuos, efectuando la determinación sistemática a nivel genérico o especffico, cuando consideramos la especie como importante de acuerdo a su representación en la muestra considerada.

Realizamos la comparación de medias y varianzas, así como el análisis de correlación según la metodologia utilizada previamente ${ }^{11}$.

Efectuamos el análisis deagrupamientos(según el coeficiente de correlación de Pearson y según el coeficiente no-métrico ${ }^{22}$) por el método de pares agrupados ${ }^{2}$.

En la comparación de estaciones de centro de brazo con las de extremo respectivas, siempre consideramos los muestreos comunes temporalmente, pues no muestreamos las últimas con igual periodicidad que las primeras.

La información previa disponible sólo nos permitió realizar los análisis comparativos de la estructura del fitoplancton a nivel de género.

RESULTADOS

Distribución de pigmentos.

Encontramos las mayores concentraciones medias de pigmentos en los brazos laterales (Cuadro 1), menor en la estación de entrada l y menor aún en la estación de integración II. Con respecto a las estaciones de extremo de brazo los valores medios en las estaciones IV y VIII fueron menores que en sus respectivos extremos (V y IX), en concordancia con sus entradas temporarias de agua; en las VI y X , las concentraciones medias resultaron mayores que en sus extremos respectivos (VII y XI), y entre las XII y XIII fueron aproximadamente iguales para pigmentos totales, mayor en la XII para feopigmentos y menor para clorofila a.

Cuadro 1

Valores mínimos, máximos y medios de concentraciones de pigmentos totales (Chl eq), clorofila $a\left(\mathrm{Chl} a\right.$) y feopigmentos (Feof) en superficie ($\mathrm{mg} / \mathrm{m}^{3}$), para las trece estaciones (I - XIII) y para el total de muestreos (N) en cada una de ellas (Fig. 2 y 3).

	$\begin{gathered} I \\ N=8 \end{gathered}$	$\begin{gathered} 11 \\ \mathrm{~N}=10 \end{gathered}$	$\begin{gathered} \text { III } \\ N=3 \end{gathered}$	$\begin{gathered} \text { IV } \\ N=8 \end{gathered}$	$\begin{gathered} \text { IV } \\ N=8 \end{gathered}$	VIII $N=8$	$\begin{gathered} x \\ N=8 \end{gathered}$	$\begin{gathered} \mathrm{X} 11 \\ \mathrm{~N}=8 \end{gathered}$
Chl eq	$\begin{gathered} 3.6-18.1 \\ (7.9) \end{gathered}$	$\begin{gathered} 1.0-5.9 \\ (3.7) \end{gathered}$	$\begin{array}{r} 4.0-5 \\ (4.6) \end{array}$	$\begin{gathered} 5.9-30.7 \\ (13.6) \end{gathered}$	$\begin{gathered} 1.9-19.3 \\ (10.4) \end{gathered}$	$\begin{gathered} 4.7-31.4 \\ (15.4) \end{gathered}$	$\begin{gathered} 2.6-19.1 \\ (7.7) \end{gathered}$	$\begin{gathered} 3.4-27.7 \\ (12.6) \end{gathered}$
ChI	$\begin{gathered} 1.2-18.4 \\ (6.0) \end{gathered}$	$\begin{gathered} 0.2-5.7 \\ (3.3) \end{gathered}$	$\begin{gathered} 3.1-5.7 \\ (4.1) \end{gathered}$	$\begin{gathered} 4.5-27.1 \\ (11.2) \end{gathered}$	$\begin{gathered} 0.5-11.2 \\ (6.7) \end{gathered}$	$\begin{gathered} 0.2-26.6 \\ (12.2) \end{gathered}$	$\begin{gathered} 0.7-9.7 \\ (4.3) \end{gathered}$	$\begin{gathered} 0.2-21.0 \\ (8.6) \end{gathered}$
Feof	$\begin{gathered} 0.2-5.9 \\ (2.7) \end{gathered}$	$\begin{gathered} 0.1-3.3 \\ (1.1) \end{gathered}$	$\begin{gathered} 0.1-2.2 \\ (1.2) \end{gathered}$	$\begin{gathered} 2.1-8.3 \\ (4.3) \end{gathered}$	$\begin{gathered} 1.4-10.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 1.5-11.3 \\ (5.8) \end{gathered}$	$\begin{gathered} 0.1-11.2 \\ (4.2) \end{gathered}$	$\begin{gathered} 2.1-10.9 \\ (6.8) \end{gathered}$
	$N=6$	$\begin{array}{r} \text { VII } \\ N=6 \end{array}$	$\begin{gathered} 1 \mathrm{X} \\ \mathrm{~N}=5 \end{gathered}$	$\begin{aligned} & \mathrm{XI} \\ & \mathrm{~N}=5 \end{aligned}$	$\begin{aligned} & \mathrm{XIII} \\ & \mathrm{~N}=5 \end{aligned}$			
Chl eq	$\begin{gathered} 4.3-231.9 \\ (92.1) \end{gathered}$	$\begin{gathered} 0.6-2.7 \\ (1.9) \end{gathered}$	$\begin{gathered} 4.7-31.9 \\ (15.0) \end{gathered}$	$\begin{gathered} 3.3-7.4 \\ (4.4) \end{gathered}$	$\begin{gathered} 1.7-23.4 \\ (9.0) \end{gathered}$			
Chl	$\begin{gathered} 5.7-205.2 \\ (77.6) \end{gathered}$	$\begin{gathered} 0.2-2.1 \\ (1.3) \end{gathered}$	$\begin{gathered} 2.2-27.5 \\ (11.0\} \end{gathered}$	$\begin{gathered} 0.7-3.3 \\ (1.9) \end{gathered}$	$\begin{gathered} 0.3-17.2 \\ (6.2) \end{gathered}$			
Feof	$\begin{gathered} 0.1-62.3 \\ (28.2) \end{gathered}$	$\begin{gathered} 0.1-1.6 \\ (1.0) \end{gathered}$	$\begin{gathered} 0.9=12.1 \\ (5.9) \end{gathered}$	$\begin{gathered} 1.6-4.8 \\ (2.8) \end{gathered}$	$\begin{gathered} 0.3-9.2 \\ (4.0) \end{gathered}$			

Con respecto a las variaciones en las concentraciones de pigmentos totales (análisis del coeficiente de variación, CV) ${ }^{13}$ las estaciones de centro de brazo fueron más variables que la I y ésta más que II; con excepción de la IV, más variable que la II, pero menos que la I. EI mismo patrón se dió para las concentraciones de clorofila a, con la excepción de que la variación en IV fué menor que en I y en II. Para concentración de feopigmentos, la variación en II fué mayor que en la ly es ésta, mayor que en las de centro de brazo; con excepción de la estación X cuya variación fué mayor que en la l.

Las IV, VIII y XII fueron menos variables que sus respectivas estaciones de extremo de brazo; por el contrario, las VI y X lo fueron más que las VII y XI , respectivamente.

La concentración de clorofila a fué mayor en la II, que en lal en los muestreos correspondientes a junio, agosto, octubre de 1980 y febrero de 1981, siendo menor en los restantes. La concentración de pigmentos totales en la I siempre fué mayor que en la II, con excepción de febrero de 1981 en el cual resultaron aproximadamente iguales (Fig. 2).

Fig. 2.- Variación temporal de la concentración de pigmentos totales (Chl eq) en estaciones I a VII en superficie, y estación IV en superficie (S), a media columna (M) y fondo (F).

En la estación IV (brazo del Gualeguaycito) el valor medio de clorofila a fué de $11,2 \mathrm{mg} / \mathrm{m}^{3}$ y el rango de $4,5-27,0 \mathrm{mg} / \mathrm{m}^{3}$, correspondiendo este último valor a agosto 1980 y coincidiendo con un 98% de cianofitas, con la presencia fundamental de Microcystis aeruginosa. El extremo del mencionado brazo (V), presentó los mayores valores encontrados (rango $5,7-205,2 \mathrm{mg} / \mathrm{m}^{3}$). El máximo correspondió a octubre 1980 y el mínimo a febrero 1981, coincidiendo con grandes lluvias en la región.

La estación VIII (brazo del Mandisoví) presentó sus valores máximos en marzo y abril de 1980 y su mínimo en febrero de 1980 con $0,2 \mathrm{mg} / \mathrm{m}^{3}$, aunque el mínimo de pigmentos totales lo presentó en febrero 1981 , con $4,7 \mathrm{mg} / \mathrm{m}^{3}$. Por otra parte, el extremo de este brazo (IX) presentó máximos de clorofila a en agosto y diciembre 1980 y mínimos en junio y octubre 1980, y febrero 1981, coincidiendo estos dos últimos valores con fuertes Iluvias en la región (Fig. 3).

En las estaciones X y XII las concentraciones de pigmentos totales y las de clorofila a siguieron a las de sus extremos de brazo respectivo, siendo éstas las que tienen entradas de agua relativamente importantes (el río Arapey y el río Mocoretá).

Fig. 3-Variación temporal de la concentración de pigmentos totales en estaciones VIII a XIII.

El contenido de feopigmentos osciló entre un 3\% y un 97% de contenido total de pigmentos, según la estación y la época de muestreo.

En la estación IV (muestreada en tres niveles; superficie, media columna y fondo) encontramos, durante febrero, marzo, junio y agosto de 1980, mayores valores de clorofila a en superficie, oscilando (los de media columna) en 0-26\% y los fondo en 0-22\% de los valores de superficie. En los restantes muestreos, los obtenidos en la columna fueron homogéneos o levemente mayores hacia el fondo dependiendo de las condiciones climáticas imperantes (el mínimo de superficie fué el 69% del de fondo).

La concentración relativa de feopigmentos fué homogénea en toda la columna o aumentó hacia el fondo.

En el mes de junio de 1980 realizamos una transecta en el brazo del Gualeguaycito desde el centro del embalse hacia el extremo del brazo. La concentración de clorofila a en el centro del embalse de $4,3 \mathrm{mg} / \mathrm{m}^{3}$, el promedio de la concentración en el centro del brazo (dos muestras costeras y una de centro) fué de $5,3 \mathrm{mg} / \mathrm{m}^{3} ; 169,3 \mathrm{mg} / \mathrm{m}^{3}$ en el extremo del brazo y de $117,6 \mathrm{mg} / \mathrm{m}^{3}$ en la desembocadura del arroyo actual, verificando así que en este brazo la concentración de clorofila aumenta desde el centro del embalse hacia el extremo del brazo y disminuye nuevamente con el movimiento del agua en la boca del arroyo.

Todas las estaciones de brazo presentaron diferencias significativas (Cuadro 2) en medias o varianzas de concentración de pigmentos totales, de clorofila a y de feopigmentos con respecto a la estación de integración II, con excepción de la estación X para clorofila a y la estación de entrada I, para feopigmentos.

Las diferencias de la estación I con respecto a las de centro de brazo fueron sólo significativas en concentración de pigmentos totales con las VIII y XII, y con este última en feopigmentos.

La IV presentó diferencias significativas con su extremo de brazo (V), al igual que la VI con la VII.

Cuadro 2
Diferencias estadisticamente significativas ($+, P<0,05$; ++, $P<0,10$) entre valores medios $\overline{\mathrm{X}}$ y varianzas S en las concentraciones de: pigmentos totales (Chl eq), clorofila $a($ Chl $a) \mathrm{y}$ feopigmentos (Feof)

Las diferencias entre las X y XII y sus respectivos extremos fueron menores, sólo $\operatorname{con} \mathrm{p}<0,10$.

Las diferencias no significativas entre la estación de entrada l y las de centro de brazo podrían ser explicadas por la mayor varianza de la I con respecto a la II.

Del análisis de correlación y agrupamiento por el método de pares agrupados ${ }^{2}$ resultó que, con respecto a clorofila a, la IV se une con la VIII, la I con la VI y con la X , y la II con la XII, agrupándose estas dos últimas con $r=0,22$. Sólo son significativas las correlaciones de I con VI ($\mathrm{r}=0,65, \mathrm{p}<0,05$) y $\operatorname{con} \mathrm{X}(\mathrm{r}=0,60, \mathrm{p}<0,10)$, y la VIII con la II ($r=-0,88, p<0,01$).

Con respecto a las concentraciones de feopigmentos, son significativas y positivas las correlaciones de todas las estaciones de centro de brazo con la XII ($p<0,10$) y la de ésta con la $1(r=-0,65, p<0,05)$.

Del análisis de agrupamiento surge que se unen todas las estaciones de centro de brazo, formando las I y II agrupamientos distintos.

Las únicas estaciones de brazo que correlacionaron significativamente con sus respectivas estaciones de extremo fueron las X y la XII, coincidiendo en ser las únicas con entradas de agua permanente y relativamente importantes.

La clorofila a correlaciona positivamente con los feopigmentos en todas las estaciones de los brazos y sus extremos ($p<0,10$), y negativamente en la estación de integración ($p<0,10$) y en la entrada, aunque en esta última no significativamente ${ }^{13}$.

Estructura del Fitoplancton
En las diversas estaciones, computamos un total de 67 géneros (73 entidades), distribuídos de la siguiente forma: Bacillariophyceae (28), Clorophyceae (26), Cianophyceae (5), Dinophyceae (1), Cryptophyceae (1), Euglenophyceae (3), Chrysophyceae (2), Zygophyceae (2). Además, registramos un grupo de Flagelados indeterminados (Fig. 4).

La comunidad estuvo caracterizada por la dominancia de Bacillariophyceae, seguida (en orden de importancia) por Cianophyceae, Crytophyceae y Flagelados, importantes en algunas ocasiones.

En la estación I, durante los meses de junio, octubre y diciembre de 1980 y febrero de 1981, las Diatomeas predominaron con un 70% del total examinado.

En estos meses se comprobó fundamentalmente la presencia de Melosira granulata var. angustissima, típicamente planctónica; mientras que en los meses de junio, octubre 1980 y febrero 1981, también fueron relevantes las especies Nitzschia acicularis, Synedra ulna y Fragilaria construens, contribuyendo ésta última, en gran medida, al porcentaje total computado para el mes de junio.

En el mes de agosto, por el contrario, los valores mostraron una composición del 50% correspondiente a Peridinium (2 especies) y Chilomonas spp.; siendo entre las Diatomeas, la presencia de Cyclotella meneghiniana, la más relevante aparte de M. granulata var. angustissima.

En la estación II, denominada de "integración", fueron nuevamente las Diatomeas (especialmente M. granulata var. angustissima y su f. spiralis) las que contribuyeron en más del 55% del total, durante los meses de muestreos efectuados, excepto en febrero de 1981, donde Peridinium spp. (acompañado nuevamente por Chilomonas spp. y el grupo de los Flagelados) fueron los más importantes. Las Clorofitas, Ankistrodesmus, Scenedesmus spp., aunque esporádicamente representadas, fueron relativamente importantes en junio, agosto y octubre 1980.

Las Cianofitas tuvieron importancia durante junio y agosto 1980 (Microcytis aeruginosa, Anabaena sp. y Raphidiopsis sp.), coincidiendo con los "florecimientos" de Microcystis observados en IV y VIII.

En los muestreos realizados en la estación IV, desde abril y hasta diciembre, estas algas predominan de 47 a 98% (fundamentalmente Microcystis y en menor cantidad

Fig. 4.- Variacion estacional y frecuencia relativa del fitoplancton. DIAT $=$ Diatomeas, CIAN $=$ Cianofitas, DI + CRI $=$ Dinofitas y Criptofitas, EUGL $=$ Euglenofitas, CLOR $=$ Clorofitas, FLAG $=$ Flagelados no determinados.

Anabaena), excepto en febrero 1981 donde las Diatomeas las sustituyeron nuevamente (M. granulata var. angustissima) mostrándose el plancton mucho más diversificado.

La estación VIII, presentó, en cambio, su máximo de Cianofitas, del 82%, en junio 1980 con la presencia dominante de las ya mencionadas algas en la estación anterior.

La predominancia de Diatomeas se dió, en cambio, en abril, agosto, octubre y diciembre 1980, siempre con la variedad de Melosira como la más importante y con el acompañamiento de su f. spiralis. En diciembre 1980 y febrero 1981 fueron importantes constituyentes del fitoplancton Peridinium spp. y Chilomonas spp. Las Euglenofitas, con Euglena spp. especialmente mostraron también importancia en febrero 1981.

La IV (brazo del Itapeby), mostró una clara dominancia de Diatomeas durante los seis muestreos realizados, con la presencia constante de M. granulata var. an尺ustissima (acompañada por su f. spiralis, hasta octubre inclusive). En este ambiente es donde se encontró mejor representada la f. spiralis.

En esta estación, durante agosto 1980, la más numerosa de las Diatomeas fué Fragilaria construens; superó inclusive, a la var. de M. granulata. En la estación I, en junio, ocurrió lo mismo. Fueron los dos únicos casos donde las formas Pennadas adquirieron importancia.

En la estación XII, del Mocoretá, las Diatomeas resultaron ser predominantes en todos los muestreos excepto en febrero 1981, donde Chilomonas spp. y Peridinium spp. las superaron (48%).

Las Cianofitas sólo fueron importantes en junio, cuando contribuyeron con un 17\% del total (siempre con Microcystis y Anabaena).

Las Clorofitas representaron un 12\%, con Cosmarium, en febrero 1981.
El brazo del Arapey (X), mostró una cierta similitud con el Itapeby y con el Mocoretá. Las Diatomeas fueron en él muy numerosas hasta febrero, cuando las Chilomonas, junto a Peridinium, se hicieron relevantes. Las Cianofitas fueron de muy poca importancia, al igual que las Clorofitas que sólo incidieron en agosto.

Comparando las estaciones I y II, para presencia o ausencia de entidades fitoplanctónicas y según diversos índices de similitud, encontramos las mayores diferencias absolutas en diciembre (Cuadro 3).

Del análisis de agrupamiento (Fig. 5) según el coeficiente no-métrico (D), en los cinco muestreos y para las siete estaciones (tomando los límites $D=0,40$ y $D=0,50$), resultó que en junio de 1980 la ll se agrupó fundamentalmente con las de los brazos, en coincidencia con T_{w} relativamente alto y $\overline{\mathrm{ppn}}$ regulares; en agosto lo hizo con la I , las VI, X y XII al $\mathrm{D}=0,50$ y no se agrupó al $\mathrm{D}=0,40$ en coincidencia con un T_{w} medio y ppn bajos; en octubre no agrupó al $D=0,40$ y lo hizo con X y XII al $D=0,50$, con T_{w} bajo y ppn altas en ese mes. En diciembre agrupó con IV al $D=0,40, y$ con éste, el VI y, X, y I, al $\mathrm{D}=0,40$ y con todas las estaciones al $\mathrm{D}=0,50$ en coincidencia con T_{w} medio y ppn altas. Durante este último muestreo el volumen del embalse fue aumentado desde 3700 a 5300 Hm^{3} y así el efecto total sería el de un llenado parcial con salida controlada.

Si consideramos los agrupamientos mayores, en todos los muestreos la estación de integración II se agrupó con la entrada I, salvo en junio de 1980 cuando el tiempo medio de permanencia fué alto (mayores diferencias relativas).

En los cinco muestreos las estaciones IV y VIII nunca agruparon con la I, ni la IV con la VI, como tampoco la II con la VII.

Obtuvimos el mismo patrón de agrupamiento aplicando el coeficiente de distancia como índice de similitud.

Efectos ambientales:

Del análisis de correlación lineal de factores ambientales en el embalse ${ }^{13}$, resultó que en la entrada al embalse (I) las concentraciones de pigmentos totales y de clorofila a correlacionaron negativamente con el caudal medio mensual de entrada (QE) y positiva-

Fig. 5.- Dendrogramas correspondientes al análisis de agrupamientos según el índice nométrico D .

mente con el tiempo medio de permanencia $\left(\bar{T}_{W}\right)(p<0,05)$ pero no fue significativa con la concentración de feopigmentos. Por otra parte en la ll la correlación con el caudal medio de salida ($\overline{\mathrm{Q} S}$) fue positiva, y negativa con el $\mathrm{T}_{\mathrm{W}}(\mathrm{p}<0,10)$ al igual que en la III, aguas abajo. En la estación X (brazo del Arapey) las correlaciones con QE y T_{W} fueron similares a la de entrada del río Uruguay al embalse (I), posiblemente debido a su régimen hidrológico similar.

En las IV y VIII la correlación positiva con el \bar{T}_{W} y negativa con el $\overline{\mathrm{Q}}$ S sólo la verificamos para los feopigmentos ($p<0,05$).

Las lecturas del disco de Secchi (LS) correlacionaron positivamente con las concentraciones de pigmentos, en forma lineal o potencial, en las estaciones VIII y $X(p<0,05)$, I y XII $(p<0,10)$ y IV $(p<0,15)$. En la II, la LS correlacionó negativamente con la clorofila a $(p<0,10)$. Esto podría explicarse por el efecto negativo del \bar{T}_{W}, que por otra parte afecta positivamente a la LS.

La turbidez correlacionó positivamente en las V, XI y XIII, pero sólo significativamente en la $V(\mathrm{p}<0,10)$.

La temperatura sólo correlacionó positivamente en las estaciones VI, X y XI ($p<0,05$).

Las precipitaciones en la zona ($\overline{\mathrm{ppn}}$) tuvieron un efecto negativo sobre la concentración de clorofila a en la IV ($r=-0,58, p<0,10$), IX ($r=-0,77, p<0,10$), XI ($r=-0,40$, $p<0,15), X(r=-0,46, p<0,15) ; X I(r=-0,55, p<0,20)$ y también correlacionaron negativamente, aunque con menor nivel de significación en las I y VIII.

La concentración de feopigmentos correlacionó negativamente con las $\overline{\mathrm{ppn}}$ en las estaciones IV y XII $(p<0,05)$, VIII y IX $(p<0.10)$ y negativamente, aunque no significativamente en las VI, X y XII; positivamente en la II, al igual que los pigmentos totales ($\mathrm{p}<0.05$).

Realizamos el análisis de correlación con la concentración de nutrientes en forma lineal y potencial. Debido a que determinamos $\mathrm{P}-\mathrm{PO}_{4}$ y $\mathrm{N}-\mathrm{NO}_{3}$ sólo en cinco y cuatro de los ocho muestreos respectivamente, sólo hallamos correlación negativa y significativa con $\mathrm{P}^{-} \mathrm{PO}_{4}$ en las IV y VI, aunque ésta fué negativa en todas las estaciones del embalse, excepto la VIII, no significativamente. Las concentraciones de $\mathrm{N}-\mathrm{NO}_{3}$ correlacionaron negativamente en las II y IV ($\mathrm{p}<0,10$), siendo negativas y no significativas en las X y XII. La clorofila a correlacionó positivamente con $\mathrm{N}-\mathrm{NO}_{3}(\mathrm{p} \leq 0.05)$ en la I, pero esto podría ser explicado por la correlación positiva entre $\mathrm{N}-\mathrm{NO}_{3}$ y $\mathrm{Q} E$ en dicha estación.

La sflice reactiva (SiR) correlacionó negativamente en las estaciones VI y X ($p<0.01$) ambas de margen uruguaya, y, positivamente, en las VII, XI y XIII.

El carbono inorgánico total (CI) correlacionó positivamente con la concentración de clorofila a en las estaciones VIII, XII y XIII ($\mathrm{p}<0.01$) y negativamente en la VI ($p<0.05$).

En los brazos más abiertos, y de menor recambio de agua (que por lo tanto sufren el efecto de los vientos con mayor intensidad), el porcentaje de feopigmentos en superficie correlacionó positivamente con la velocidad media del viento en el día del muestreo, en el brazo del Gualeguaycito con $r=+0,37(n=7, p<0,20)$, del Mandisoví, $r=+0,41$ ($n=7, p \quad 0,20$) y del Ytapeby, $r=+0,62$, $(n=7, p<0,10)$.

DISCUSION
Prácticamente, a través de todos los muestreos realizados (excepto en VIII y IV) las Diatomeas fueron numéricamente las más importantes. Sólo las reemplazaron las Cianofitas en VIII y IV, que llegaron, en ocasiones, a formar verdaderos "florecimientos" de M. aeruginosa, acompañada en ocasiones, aunque en menor densidad por Anabaena sp.

En las estaciones de los brazos, en la época de lluvias altas, la proporción de Microcystis disminuyó, con dos mínimos absolutos en la correspondiente al Mandisoví en los meses de mayor precipitación (octubre 1980 y febrero 1981) y un mínimo en la estación del Gualeguaycito (febrero 1981). En la estación II la proporción de Microcystys cayó prácticamente a cero en los meses de mayor recambio de agua, coincidiendo con lluvias altas; predominando por lo tanto el efecto de lavado en dicha estación. Lo anterior indicaría un efecto desfavorable de la velocidad del agua sobre este alga más que un lavado diferencial.

Con respecto a las Diatomeas, la mejor representada fue M. granulata var. angustissi$m a$, en algunos casos acompañada por su f. spiralis. La entidad madre, M. granulata, por el contrario fue de presencia esporádica. Sólo en los brazos del Arapey y Itapeby se presentó con mayor regularidad. No existió un patrón único de variación estacional para todo el embalse.

Entre la estación II y el resto de los brazos encontramos una similitud en cuanto a presencia de conjuntos de aparición súbita, como el que agrupa a los pequeños flagelados no determinados (notorios en febrero 1981, estación II). En el resto de los brazos aparecieron también durante el mismo mes y, en menor proporción, en octubre y diciembre (X, XII y VIII) o con muy leve presencia en junio (IV), como si existiera una verdadera "inoculación" de los brazos hacia el centro del embalse; puesto que estas algas estuvieron totalmente ausentes durante el período estudiado, en la estación I (Fig. 4).

Onna ${ }^{8}$ (río Uruguay previo al embalsado) encontró que ciertas Diatomeas, estuvieron uniformemente representadas; nosotros lo constatamos muy raramente. La única coincidente, en cuanto a presencia constante, fue el género Melosira, (de hábitos planctónicos).

GACA5 mencionó como de presencia constante (además de Melosira) otros dos géneros: Synedra y Surirella, aguas arriba de Concordia. En nuestros análisis ambos géneros
aparecieron esporádicamente, especialmente el último.
Pediastrum y Coelastrum, que en 1977-78 fueron clasificados como de presencia constante en el río Uruguay, junto a Dictyosphaerium (1977-78), resultaron ser también de presencia esporádica. Este último especialmente, aparació sólo seis veces en el total de los muestreos procesados, a un año del embalsado.

Si hacemos un paralelo entre la diversidad genérica encontrada por Onna8 previo al embalsado, comparando Monte Caseros y Federación con las actuales de I y II se nota claramente que mientras la diversidad se mantiene prácticamente constante en cuanto a Diatomeas en la entrada (I); en la estación de integración (II) la diversidad está actualmente muy por debajo de los datos previos al embalsado (24 para Federación y 13 para integración), no incidiendo la presencia de Pennadas. En las otras clases de algas la relación se mantiene aún constante.

En cuanto al río Arapey y el Itapeby, transformados actualmente en brazos del embalse, pareciera notarse una leve diferencia en diversidad genérica, siendo por un lado menor para el primero y más alta para el segundo.

No hallamos factores que expliquen cuantitativamente la variación espacial en la composición del fitoplancton, especialmente la gran abundancia de M. aeruginosa en el brazo del Gualeguaycito y, en menor medida, en el del Mandisoví; aunque sí, sobre su variación temporal.

Los distintos subambientes del embalse ${ }^{11}$ se comportaron en forma diferente frente a los distintos parámetros físico-químicos. En las estaciones VI y X , donde predominan las Diatomeas, observamos una relación inversa entre la clorofila a y la SiR , indicando un posible consumo por el aumento del fitoplancton, y una relación positiva con la temperatura. Las relaciones SiR:P- PO_{4} fueron, para todas las estaciones de embalse, superiores a 100:1 (indicada por Holm y Armstrong ${ }^{6}$ como limitante para Si). Las relaciones N total a P total fueron superiores a 15-17:1, o, en el peor de los casos, nunca inferior a $9-10: 1$, (sugeridas por Sakamoto ${ }^{16}$ como indicadora de limitación por (N). Sólo en el brazo del Mocoretá puede quedar alguna duda sobre el nutriente limitante, ya que la relación $N: P$ inorgánico fue de $5: 1$ o menor ${ }^{17}$. Por lo tanto podemos concluir que si algún nutriente de los considerados fue limitante; éste fue el P.

Considerando las relaciones fósforo-clorofila recopilados por Nicholls y Dillon7 y colocándonos en la posición más desfavorable, es decir en el modelo de Bridges ${ }^{7}$ para el Lago Eire, las concentraciones medias de clorofila estimadas con el modelo para las estaciones I y II quedan muy por debajo de nuestros valores medios, al igual que en la XII. Esto, sumado a las relaciones positivas con la lectura del disco de Secchi, indicarían que en el embalse un factor limitante de la producción de fitoplancton es la turbidez de origen inorgánico, dependiendo su mayor o menor influencia de la interrelación con los factores climáticos e hidrológicos que analizaremos más adelante.

Los resultados obtenidos en la estación II tienen tendencia a agruparse con los de los brazos en lo que a presencia o ausencia de entidades se refiere, en períodos de menor recambio de agua (T_{W} bajo) y precipitaciones regulares o bajas en la cuenca media e inmediata y a agrupar con lal en los períodos de mayor entrada de agua, dependiendo del régimen de lluvias su mayor o menor similitud con los brazos.

Aunque las mayores diferencias absolutas entre la entrada y la salida las encontramos en diciembre y octubre 1980, la interrelación con los brazos, el régimen de precipitaciones en la cuenca inmediata, el régimen hidrológico del río Uruguay y el de los ríos afluentes de menor importancia, el Mocoretá y el Arapey, pudieron provocar los patrones de agrupamiento presentados (Fig. 4).

Dependerá del menor o mayor recambio de agua en el centro del embalse que el fitoplancton típico del río Uruguay a la entrada del embalse se vea más o menos desfavorecido ${ }^{15}$, y dependerá del régimen de precipitaciones en la cuenca inmediata el mayor o menor efecto del "inóculo" de los brazos sobre el centro del embalse ${ }^{19}$, y que éste se vea

Cuadro 3

Valores de tiempo medio de permanencia mensual (T_{w}); tiempo medio de permanencia durante el muestreo (T_{w}); precipitaciones medias en las cuencas inmediata y media ($\overline{\mathrm{ppn}}$); número de entidades en común (N); coeficiente de distancia no- métrico (D), y coeficiente de Jaccard (J), entre estaciones I y II.

F.				N	D	J
6/80	11.9	31.6	115	15	0.41	0.41
*/80	10.3	11.	59	14	4.42	a.4)
10.80	9.1	6.7	<no	12	4.43	0.14
12/80	8.7	4.8	119	8	0.60	0.36
2/80	9.2	13.9	256	15	0.42	0.41

favorecido o no, dependerá nuevamente del menor o mayor recambio en el período y en el centro. Así el resultado neto sería que en períodos de alto recambio de agua y bajas precipitaciones el fitoplancton del río Uruguay se vería desfavorecido en menor proporción y así debería esperarse un aumento en la estación de integración con respecto a los períodos de menor recambio. En éstos, podría desarrollarse o no un fitoplancton típico de aguas leníticas dependiendo del régimen de lluvias y de la interrelación con otros factores ambientales ${ }^{21}$.

Por otra parte, es lógico esperar que en el centro del embalse, debido a que presenta extensos períodos de mezcla turbulenta y gran turbidez inorgánica ${ }^{11}$, y por lo tanto una relación profundidad de mezcla: profundidad de compensación para el fitoplancton, mayor que en el río, se vea desfavorecido en su crecimiento ${ }^{4}$.

Realizando un balance de entradas y salidas de pigmentos totales en el embalse, para el período estudiado, se encontró que los flujos de entrada (J_{I}) y salida ($J_{\|}$) de pigmentos totales (concentración de pigmentos por caudal medio mensual correspondiente) correlacionaron con $\mathrm{r}=+0,82$ ($\mathrm{p}<0,01$) (Fig. 6); los residuos de la regresión en función del caudal de entrada fueron positivos a caudales de entrada altos, salvo en un punto, correspondiendo a los muestreos en los cuales las diferencias entre las concentraciones de entrada y salida fueron menores, es decir a caudales de entrada altos la regresión subestima el flujo de pigmentos en la salida. Los residuos de la regresión vs. las precipitaciones medias mensuales indican que a mayores precipitaciones, salvo en un punto, la recta de regresión subestima el flujo de pigmentos en la salida.

Una relación similar, aunque no significativa se cumple con los flujos de entraday salida de clorofila, verificándose que a mayores caudales de salida, los residuos de la regresión son mayores, indicando con cierta probabilidad que a mayor recambio, y por lo tanto a mayor velocidad del agua, el fitoplancton del río Uruguay se vería menos desfavorecido. En los meses de mayores lluvias las desviaciones son positivas indicando un posible efecto de lavado del fitoplancton de los brazos hacia el centro del embalse, sin embargo el flujo de clorofila a en la salida sólo correlaciona con las precipitaciones con un $\mathrm{r}=+0,32$ ($\mathrm{p}<0,20$).

Los flujos de entrada y salida de feopigmentos correlacionan positivamente, $r=+0,60(p<0,10)$ y el flujo de salida, con las precipitaciones, con $r=+0,60(p<0,05)$. La recta de regresión subestima los flujos de salida a caudales de entrada altos y precipitaciones elevadas; ésto indicaría una menor sedimentación del seston orgánico no-vivo a altas velocidades del agua en el centro del embalse y un efecto de lavado de los brazos hacia el mismo.

Introduciendo las precipitaciones medias mensuales como segunda variable independiente en la regresión del flujo de pigmentos totales en la salida, se obtiene:

$$
J \|=-1025+0,64 J \mid+6,16 \overline{\mathrm{ppn}} ; \mathrm{R}^{2}=0,81
$$

con los flujos expresado en $\mathrm{Kg} /$ día y las ppn en $\mathrm{mm} / \mathrm{mes}$, explicando un 81% de la varia-

Fig. 6.- Relación entre flujos medios de pigmentos totales de salida (J_{II}) y de entrada (J_{I}), y residuo de la regresión (e_{i}) vs. caudal de entrada medio mensual (\bar{Q}_{I}), y vs. precipitaciones medias en las cuencas media e inmediata ($\overline{\mathrm{pp}} \mathrm{n}$)
ción en el flujo de salida. Además Jl y ppn explican el 70\% de la variación de la concentración de pigmentos en la estación II.

Considerando las concentraciones de pigmentos como medias para el mes correspondiente, el flujo medio de salida (\bar{J} II) de clorofila a, fue un 14% menor que el de entrada ($\left.\bar{J}_{I}\right)\left(J_{I}=1667 \mathrm{Kg} /\right.$ día; $J_{I I}=1434 \mathrm{Kg} /$ día $)$ y la concentración media un 53% menor. JII de feopigmentos fue un 34% menor que $J_{I}\left(J_{I}=2824 \mathrm{Kg} / \mathrm{d}\right.$ ía; $\bar{J}_{I I}=1878 \mathrm{Kg} / \mathrm{d}$ ía) y la concentración media un 45% menor. Lo anterior indicaría que el embalse, aún no considerando otras entradas, actúa como un sumidero de seston vegetal no-vivo, y que considerando la cantidad de clorofila a, como un correlato de biomasa, el embalse actuó en el período estudiado como sumidero de fitoplancton.

CONCLUSIONES

El embalse de Salto Grande presentó ambientes claramente diferenciados por el fitoplancton, (cuali y cuantitativamente).

Los brazos laterales presentaron, en promedio, valores de contenido de clorofila a mayores que la entrada al embalse, y ésta mayor que en la estación de integración, aguas arriba de la represa. Por otra parte la estación de salida, aguas abajo, en el período muestreado en común, presentó valores similares a los de la estación de integración.

La entrada de fitoplancton al embalse se vió favorecida en los períodos de menor recambio de agua y la salida en los meses de recambio mayor; ésto último se debería a dos factores, un menor efecto negativo de la disminución de la velocidad del agua sobre el fitoplancton típico del río Uruguay aguas arriba, y a un lavado del fitoplancton de los brazos hacia el centro del embalse por efecto de las lluvias que coincidieron con los períodos de mayor recambio de agua. Las lluvias afectarían, negativamente al fitoplancton de los brazos laterales por un efecto de lavado y por perjudicar, en los brazos con entradas de agua intermitentes, las especies fitoplanctónicas típicas de ambientes leníticos.

En lo que respecta a la similitud del fitoplancton de la estación de integración con respecto al de la de entrada y al de los brazos laterales, parece existir cierta tendencia a que estos últimos tengan mayor influencia relativa en períodos Iluviosos, mientras que la entrada influiría en períodos de alto recambio de aguas y lluvias bajas.

Debe considerarse que el éxito de los "inóculos" provenientes de la entrada o de los brazos sobre la composición del fitoplancton en la estación de integración, y por lo tanto, sobre el del río Uruguay aguas abajo, no depende sólo de la cantidad y composición que pasa al centro del embalse, sino también de las condiciones que encuentre en este último, hasta llegar a la zona cercana a la presa.

Aparte de las condiciones hidrológicas y climáticas, la turbidez inorgánica mostró ser un factor limitante de importancia de la producción del fitoplancton para este embalse. Las concentraciones de nutrientes parecerían no tener un efecto limitante de importancia, aunque de ellos, el fósforo sería el limitante.

No pudimos encontrar un factor que de cuenta cuantitativamente de la variación espacial de Microcystis; posiblemente su desarrollo en los brazos del Mandisoví y del Gualeguaycito se produce desde el extremo de los brazos hacia el centro del embalse. En estos se encontraron 9,12 los mayores valores de materia orgánica en la columna de agua, entradas de agua intermitentes y valores de oxígeno disuelto bajos en determinados períodos. Por otra parte, ambos brazos tuvieron en general una turbidez inorgánica elevada. Se darían así las condiciones más favorables, remarcada por Fogg^{3} para el crecimiento de Microcystis ${ }^{14}$. Estas condiciones no se dieron en la entrada del embalse, en la estación de integración, ni en los brazos del Mocoretá y el Arapey debido a su mayor recambio y, por lo tanto, mayor velocidad del agua. Por otra parte, el extremo de brazo del Itapeby no presentó las condiciones ya señaladas como favorables para este género.

Las recomendaciones dadas por Vollenweider ${ }^{21}$, con respecto al modelado del embalse de Salto Grande son en general correctas, es decir, modelarlo como una serie de reactores secuenciales mixtos considerando los brazos laterales como unidades distintas con su propio régimen.

AGRADECIMIENTOS

Este trabajo fue financiado en parte por la Comisión Técnica Mixta de Salto Grande. Agradecemos a todo el personal que colaboró en su realización; especialmente al Lic. Simón Cuch, al Técnico Qco. Hugo Senone y al Sr. Enrique Rodriguez por su colaboración en las tareas de campo y laboratorio.

BIBLIOGRAFIA

1.- CTM Salto Grande, 1978. Environmental implications of the Salto Grande hydroelectric development project for multiple purporses. Rep. Nro. 1. UNDEP Project No FP/1000-78-02 (1326). 504 p .
2.- Davis, J.C. 1973. Statistics and Data Analysis in Geology, J. Wiley, New York: 550 p.
3.- Fogg, G.E. 1969. The physiology of an algal nuisance. Proc. R. Soc. Lond. B Biol. Sci 173: 175-189.
4.- Fogg, G.E. 1980. Phytoplanktonic primary production (p. 24-25). En R.S.K. Barnes y K.H. Mann (eds), Fundamentals of Aquatic Ecosystems, Blackwell, London.
5.- GACA, 1978. Discusión de resultados de la evaluación sistemática de la calidad de las aguas del río Uruguay en el área de Salto Grande. Grupo Calidad de Aguas, Comisión Técnica Mixta de Salto Grande. 5° RDA/78/1.2:16 p.
6.- Holm, N.P. y D.E. Armstrong, 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr., 26: 622-634.
7.- Nicholls, K. H. y P.J. Dillon, 1978. An evaluation of phosphorus - chlorophyll - phytoplankton relationship for lakes. Int. Rev. ges Hydrobiol., 63: 141-154.
8.- Onna, A. 1978. Estudios fitoplanctónicos en el río Uruguay y sus relaciones con la calidad de las aguas. 5^{0} Congreso Argentino de Saneamiento. Santa Fe, 14-20 mayo 1978.
9.- Quirós, R. 1981. Distribución de nutrientes en el embalse de Salto Grande. Comunicación a la IX Reunión Argentina de Ecología. Bariloche, 19-24 de abril de 1981. Argentina.
10.- Quirós, R., B.L. Prenski y C. R. Baigún, 1981. Relaciones entre resultados de ensayos de captura y factores ambientales en el embalse de Salto Grande. Simposio sobre Desarrollo y Explotación de Lagos Artificiales. COPESCAL - FAO, 30 Nov. - 1ro. Dic., Santo Domingo, República Dominicana.
11.- Quirós, R. y S. Cuch. (en prensa). Características limnológicas del embalse de Salto Grande. I: Cambios estacionales de ciertos parámetros físico-químicos. Ecología, 7.
12.- Quirós, R y S. Cuch, (inédito). Características limnológicas del embalse de Salto Grande. II: Distribución de nutrientes.
13. Quirós, R., S. Cuch y H. Senone. (inédito). Campaña limnológica en el embalse de Salto Grande. Febrero de 1981-Febrero de 1982. Resumen de datos y análisis de correlación. INIDEP.
14.- Reynolds, C. S. 1973 . Growth and buoyancy of Microcystis aeruginosa Kutz. emend. Elenkin in a shallow eutrophic lake. Proc. Soc. Lond B. Biol. Sci. 184: 29-50.
15.- Ridley, J. E. y J. A. Steel, 1976. Ecological aspects of river impoundments. En B. A. Whitton (ed) River Ecology, Blackwell, London, 725 p.
16.- Sakamoto, M. 1966. Primary production by the phytoplankton community in some Japanese Lakes and its dependence on lake depth. Arch. Hydrobiol., 62: 1-28.
17.- Schindler, D.W. 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr., 23: 478-486.
18.- Stauffer, R. E., G. F. Lee y D. E. Armstrong, 1979. Estimating Chlorophyll Extraction biases. J. Fish. Res. Board Can. 36: 152-157.
19.- Talling, J. F. y J. Rzóska, 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol., 55: 637-662.
20.- Vollenweider, R. A. (ed), 1974. Primary production in aquatic environment. IBP Handbook NO 12. Blackwell. London: 225 p.
21.- Vollenweider, R. A., 1980. Consultoria al Instituto Nacional de Ciencia y Técnica Hfdrica. (INCYTH) Argentina (tipeado): 17 p .
22.- Williams, W. T., J. M. Lambert y G. N. Lance, 1966. Multivariate methods in plant ecology. V: Similarity analysis and information-analysis. J. Ecol., 54: $427-$ 445.

[^0]: * Trabajo presentado en las I Jornadas de Ciencias Naturales del Litoral, 19-22 agosto 1981, Santa Fe. Contribución no 414 del INIDEP.

