

EPR EN UN COMPLEJO DE CU(II) Y CO(II) DE ALTO SPIN

Kemmerer Axel¹

¹Departamento de Física - Facultad de Bioquímica y Ciencias Biológicas - UNL Directora: Ana Laura Pérez Codirector: Carlos Dante Brondino

Área: Ciencias Exactas

INTRODUCCIÓN

El estudio de la estructura electrónica y las propiedades magnéticas de compuestos de metales de transición paramagnéticos como Cu(II), Co(II), Fe(III), es un área que tiene relevancia en química bioinorgánica, magnetismo molecular (Mrozinski, 2005) y en los últimos años en spintrónica (Timco y col., 2009). La espectroscopía de Resonancia Paramagnética Electrónica (EPR), especialmente aplicada a monocristales, es muy útil para relacionar el magnetismo con la estructura de los caminos químicos que comunican los iones en la red cristalina. Esta información es relevante ya que puede extenderse al estudio de procesos de transferencia electrónica en enzimas redox.

El ión Cu(II) es un metal de transición con configuración $3d^9$ (S=½) y de gran relevancia biológica ya que participa en el sitio activo de diversas enzimas redox, como por ejemplo la nitrito reductasa, la tirosinasa, la catecol oxidasa, proteínas de transporte como la hemocianina y proteínas de transferencia electrónica como la pseudoazurina (Ferroni y col., 2014).

Si bien la participación del ión Co(II) en biología es menor respecto a otros iones como Cu(II), Zn(II) o Fe(II/III), existen algunas metaloproteínas que contienen Co(II), como por ejemplo la enzima metionina sintetasa (Frey, P. A.; Hegeman, A. D. 2007), las proteínas prolidasa, glucosa isomerasa, nitrilo hidratasa, lisina-2,3-aminomutasa, metilmalonil-CoA-carboxitransferasa, entre otra (Kobayashi, M.; Shimizu, S. 1999).

A diferencia del Cu(II) que solo puede estar en una única configuración de espín (S=1/2), el Co(II) es un ión de transición $3d^7$ que puede presentarse bajo la forma de bajo (S=1/2) o alto spin (S=3/2) dependiendo de la relación entre la energía del campo cristalino y la energía de apareamiento de los electrones. Dado que Co(II) en su estado de alto spin contiene 3 electrones desapareados y que sus propiedades espectroscópicas son muy sensibles a su entorno de coordinación, es un buen candidato para preparar complejos inorgánicos simples que sirvan para entender las propiedades electrónicas y magnéticas como así también las interacciones de intercambio J en sistemas que contienen metales de transición de alto espín.

En este trabajo se sintetizó y cristalizó un complejo puro de Co(II) con ácido picolínico (piridina-2-ácido carboxílico) y se generó un sistema isoestructural dopado con Cu(II) en una relación molar 1 Cu(II) : 10 Co(II). Se utilizó como ligando al ácido picolinico, que presenta grupos carboxilatos y nitrógenos piridinicos con una gran capacidad quelante. Se ha propuesto que la relevancia y

1

Título del proyecto: Caracterización fisicoquímica de cadenas de transferencia electrónica en metaloenzimas redox con aplicaciones biotecnológicas. Instrumento: PIP 112 201501 00550 Año convocatoria: 2015-2017 Organismo financiador: CONICET Director/a: Carlos Dante Brondino

actividad fisiológica del ácido picolinico y sus derivados pueden atribuirse a su habilidad para formar complejos con metales de transición en los seres vivos (Aliev y col., 1988). En estos complejos los iones metálicos están conectados por diferentes tipos de uniones químicas, típicas de las que aparecen en metaloproteínas involucradas en procesos de transferencia electrónica.

OBJETIVOS

Sintetizar y cristalizar sistemas inorgánicos de iones Co(II) con ligandos de bajo peso molecular de relevancia biológica, como el ácido picolínico. Determinar la estructura cristalina de los complejos cristalizados.

Estudiar las propiedades electrónicas del ión Cu(II) y Co(II) mediante EPR en muestras policristalinas y en monocristales orientados con el fin de evaluar la estructura electrónica de ambos iones y las interacciones que aparecen entre ellos.

METODOLOGÍA

Mediciones de EPR

Se realizaron mediciones sobre muestra poli- y monocristalinas de los dos compuestos utilizando un espectrómetro Bruker EMX Plus a la frecuencia de microondas de banda X (~9.5 GHz) y en un rango de temperaturas de 4 K a temperatura ambiente. Para las mediciones en monocristales orientados, se determinó previamente la morfología del cristal usando un microscopio goniométrico Carl Zeiss para conocer el hábito del crecimiento del cristal. Posteriormente se montó el monocristal sobre un cristal cúbico de KCI (que define un sistema de referencia ortogonal *xyz*), y este se apoyó sobre un pedestal cilíndrico solidario a un goniómetro, el cual se introdujo en la cavidad resonante del espectrómetro de EPR, y se adquirieron espectros de EPR desde 0º a 180º cada 10º, en los planos cristalinos *ab*, *c*a* y *c*b* para ambos compuestos. Se determinó la posición central B₀ de las resonancias observadas y se calculó el factor *g* para cada orientación, utilizando la ecuación

$$g = \frac{hv}{\mu_B B_0} \tag{1}$$

donde μ_B es el magnetón de Bohr, *h* la constante de Planck y *v* la frecuencia de microondas. La variación angular del factor g^2 fue ajustada con la ecuación

$$g^{2}(\theta,\varphi) = g^{2}_{xx}sen^{2}\theta cos^{2}\varphi + g^{2}_{yy}sen^{2}\theta sen^{2}\varphi + g^{2}_{zz}cos^{2}\theta + 2g^{2}_{xy}sen^{2}\theta cos\varphi sen\varphi + 2g^{2}_{zx}sen\theta cos\varphi cos\theta + 2g^{2}_{zy}sen\theta sen\varphi cos\theta$$
(2)

en la cuál θ representa el ángulo que forma el campo magnético **B** con la proyección del eje cristalino *c* (*c**) y φ el ángulo que forma la proyección del campo magnético **B** en el plano *ab* con el eje *a*, respectivamente. Los espectros de EPR fueron ajustados por cuadrados mínimos utilizando derivadas de funciones Lorentziana para el compuesto puro de CoPic y derivadas de funciones Gaussiana para el sistema isoestructural dopado con Cu(II).

RESULTADOS

Estructura cristalina y molecular

En la Fig. 1 se muestran los difractogramas de polvo obtenidos por Difraccion de Rayos X (DRX) que indicaron estructuras ya reportadas en la Base de Datos Cristalográficos de Cambridge (CCDC).

CoPic cristaliza en el grupo espacial monoclínico P21/n con parámetros de red a,b,c = 9.790(2),5.1300(10),14.520(3) Å, α = γ = 90° y β =90.41°. En la Fig. 2 se muestra al ion Co (II) en un entorno octahédrico levemente distorsionado coordinado a dos átomos de oxígeno de agua (O2 y O2B), dos átomos de oxígeno carboxílicos (O1 y O1B) y dos átomos de nitrógeno (N1 y N1B) pertenecientes a las piridinas del ácido picolínico.

por

agua.

determinó

una

comunicadas

Los diferentes iones Co(II) están unidos por dos puentes de hidrogeno simétricos, cada uno con topología -Co-O2...O1-Co- (dCo-Co, 5.130 Å), lo que da lugar a cadenas de iones Co (II) a lo largo del eje cristalino *b*. Estas dos cadenas de Co(II), relacionadas

C₂

por

se

cálculos

rotación

alrededor del eje b, están

interacciones puentes de

hidrógeno con moléculas de

CuCoPic

por

Fig. 2. Coordinación octahédrica del ión Co(II) en el CoPic.

computacionales que el entorno de coordinación del Cu(II) es similar al entorno del compuesto puro (CoPic). Los enlaces del ión Cu(II) con ambas moléculas de agua (O2 y O2B) sufren estiramiento por efecto Jahn-Teller. **EPR**

Fig. 4. Espectros de EPR del monocristal de CuCoPic en los tres planos de cristal, *ab*, *c*a* y *c*b*.

En la Fig. 3A se observan los espectros de EPR de polvo del complejo CoPic

Fig. 1. Difractograma de polvo de los sistemas CoPic y CoPic (experimental) y CuCoPic.

Fig. 3. A) Espectros de EPR de polvo del complejo CoPic en Banda X en un rango de temperaturas de 4 a 130K. B) Espectros de EPR de monocristal de CoPic (líneas negras) y simulaciones de mínimos cuadrados (líneas roias).

medidos en Banda X a 4 K (a), 10 K (b), 20 K (c), 30 K (d), 40 K (e), 50 K (f) 70 K (g), 90 K (h), 110 K (i) y 130 K (j) en condiciones no saturantes. En el panel B se muestran espectros representativos de EPR de monocristal del CoPic (líneas negras) obtenidos en el plano *ab* del cristal a 10 K con el campo magnético a 15º del eje cristalino *a* (superior) y en el plano cristalino c^*a a 165º del eje c^* (inferior). Las líneas rojas representan las simulaciones de mínimos cuadrados

para los espectros experimentales utilizando dos derivadas de funciones lorentzianas (superior) y una única derivada lorentziana (inferior).

Para el compuesto dopado CuCoPic se realizaron mediciones de EPR en banda X y a temperatura ambiente en muestras poli y monocristalinas. En la Fig. 4 se muestra la variación angular de los espectros de EPR de monocristal en los tres planos cristalinos *ab*, *c*a* y *c*b*. A partir de las variaciones angulares realizadas en los tres planos cristalinos de ambos compuestos, se calcularon las componentes del tensor **g** para cada sistema usando la ecuación 2.

CONCLUSIONES

Los espectros de EPR de polvo de ambos compuestos son típicos de Co(II) y Cu(II), respectivamente. CoPic muestra un espectro típico de Co(II) de alto espin en coordinación octaédrica donde los iones Co(II) no equivalentes se encuentran colapsados por intercambio. En el compuesto dopado CuCoPic se observa un espectro axial típico de Cu(II) en coordinación octahédrica, con estructura hiperfina resuelta en el g_{II}.

CoPic y CuCoPic presentan dos sitios magnéticamente no equivalentes por celda unitaria, observándose dos líneas de resonancia en los planos ab y c^*b , y una única línea de resonancia en el plano c^*a en la variación angular. Debido a que los iones Cu(II) están relativamente aislados entre sí, se observa estructura hiperfina resuelta en la mayoría de las orientaciones medidas a lo largo de los tres planos cristalinos.

La variación angular del factor g en las mediciones de EPR de monocristal para el ión Cu(II) en el compuesto CuCoPic confirmó el reemplazo del ión Co(II) por un ión Cu(II) en una relación 1Cu(II):10Co(II), permitiendo obtener las componentes del tensor **g** para el ión Cu(II) en este sitio, interactuando con iones Co(II) vecinos.

BIBLIOGRAFÍA

Aliev, Z.G.; Atovmyan, L.O.; Saratovskikh, E.A.; Krinichnii, V.I.; Kartsev, V.G., 1988. Synthesis, structure, and spectral characteristics of copper complexes with picolinic acid derivatives. Phys. Chem. Bull. Acad. Sciences USSR: 37, 11, 2246-2252.

Ferroni, F. M.; Marangon, J.; Neuman, N. I.; Cristaldi, J. C.; Brambilla, S. M.; Guerrero, S. A.; Rivas, M. G.; Rizzi, A. C.; Brondino, C. D., 2014. Pseudoazurin from Sinorhizobiummeliloti as electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers. Journal of Biological Inorganic Chemistry. 19, 913-921.

Frey, P. A.; Hegeman, A. D. (2007). "Enzymatic Reaction Mechanisms" Oxford University Press, ed., pp. 670–677.

Kobayashi, M.; Shimizu, S. (1999) "Cobalt proteins" Eur. J. Biochem. 261: 1-9.

Mrozinski, J., 2005. New trends of molecular magnetism, Coord. Chem. Rev. 249 (15), 2534–2548.

Timco, G. A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R. J., Muryn, C. A., McInnes, E. J. L., Ghirri, A., Candini, A., Santini, P., Amoretti, G., Affronte, M., Winpenny, R. E. P., 2009, Engineering the coupling between molecular spin qubits by coordination chemistry, Nature Nanotechnology, 4, 173-178.

