

HIDROGENACIÓN SELECTIVA EN FASE LÍQUIDA DE 5-HIDROXIMETILFURFURAL A 2,5-BIS(HIDROXIMETIL)FURANO SOBRE CATALIZADORES DE COBRE SOPORTADO

Vogt Natali¹, Zelin Juan¹, Meyer Camilo¹

¹ Grupo de Investigación en Ciencias e Ingenierías Catalíticas (GICIC), INCAPE-UNL-CONICET Facultad de Ingeniería Química UNL Director: Meyer Camilo Codirector: Zelin Juan

Area: Ingeniería

INTRODUCCIÓN

A nivel mundial la biomasa es un recurso renovable y abundante que resulta muy atractivo tanto en el campo científico como industrial. Las dos terceras partes de la misma están constituidas por carbohidratos, y la transformación de estos en compuestos químicos con valor agregado representa una buena alternativa para la obtención de bio-productos que reemplacen derivados de fuentes no renovables.

Esquema 1: Reacciones de hidrogenación a partir de HMF.

Los carbohidratos de seis átomos de carbono (hexosas), como por ejemplo fructosa, glucosa y galactosa pueden ser transformados en compuestos furánicos 2,5-di-sustituidos. Entre ellos podemos mencionar el 5-hidroximetilfurfural (HMF), producido por deshidratación de hexosas, que es considerada una molécula plataforma renovable muy importante (Bicker y col., 2003).

Algunos derivados del HMF se emplean como materia prima para obtener polímeros. Uno de ellos es el 2,5-bis(hidroximetil)furano (BHMF) que es usado en la elaboración de espumas tipo poliuretanos y poliésteres (Gandini y col., 2002). Zeng y col. (2013) han utilizado el BHMF para la obtención de polímeros autocicatrizantes, de mucho interés debido a su amplio campo de posibles aplicaciones industriales. Este BHMF se puede obtener por hidrogenación selectiva del grupo C=O

del HMF (Esquema 1). Los catalizadores basados en metales nobles soportados, por ejemplo Ru y Pt, son los más utilizados para esta reacción (Alamillo y col, 2012). Además de su costo elevado, estos catalizadores presentan baja selectividad a BHMF, obteniéndose también bis(hidroximetil)tetrahidrofurano (BHMTF) y dimetil furano (DMF). Con catalizadores de metales no nobles como Ni, tanto másicos como soportados, se obtuvo baja conversión de HMF y baja selectividad a BHMF, aun empleando altas temperaturas y presiones de H₂ (Nakagua y col, 2010).

OBJETIVOS

Estudiar la influencia de las propiedades físico-químicas y estructurales de catalizadores de cobre, en la hidrogenación de HMF y la selectividad a BHMF. Para ello, se evalúa y analiza el comportamiento catalítico de catalizadores de Cu preparados sobre distintos soportes y por diferentes métodos, en la hidrogenación en fase líquida de HMF.

Título del proyecto: Conversión de carbohidratos derivados de biomasa en compuestos furánicos di-sustituidos empleando catálisis heterogénea. Instrumento: PICT Año convocatoria: 2015 Organismo financiador: ANPCyT Director/a: Dr. Alberto Marchi

EXPERIMENTAL

Preparación y caracterización.

Los catalizadores fueron preparados por: impregnación a humedad incipiente (Cu/SiO₂-I y Cu/Al₂O₃-I), precipitación-deposición (Cu/SiO₂-PD) y co-precipitación (CuMgAI). Los precursores hidratados Cu/SiO₂-I y Cu/Al₂O₃-I se prepararon agregando gota a gota sobre el soporte un volumen exacto de solución acuosa de Cu(NO₃)₂. El precursor hidratado Cu/SiO₂-PD fue preparado mediante el agregado simultaneo de soluciones de Cu(NO₃)₂ y K_2CO_3 , a una suspensión acuosa de SiO₂, manteniendo el pH en 7,2±0,2, a 65 °C y por 2 horas, para finalmente filtrar y lavar. Los sólidos así obtenidos se secaron en estufa a 90 °C y posteriormente se calcinaron en aire a 500 °C durante 2 h. El precursor CuMgAI fue preparado por co-precipitacion a 65 °C y pH=10,0 ±0,2. El precipitado obtenido fue filtrado, lavado y secado en estufa a 90 °C, finalmente se calcinó en N₂ a 500 °C durante 4 h. El contenido de Cu de las muestras calcinadas fue determinado por absorción atómica (AA) usando un espectrofotómetro Perkin-Elmer 3110. La superficie específica (Sg) se determinó por fisisorción de N₂ a -196 °C, en un sortómetro Quantachrome Autosorb I. La identificación de las especies policristalinas presentes en las muestras calcinadas, se llevó a cabo por difracción de rayos X (DRX) empleando un difractómetro Shimadzu XD-1. Los perfiles de

reducción a temperatura programada (RTP) se obtuvieron utilizando un equipo Micromeritics Auto Chem 2920 equipado con un detector TCD y en flujo de $H_2(5\%)/Ar$ (60 cm³·min⁻¹). La dispersión metálica de Cu fue determinada por titulación de N₂O a 90°C, luego de

reducción en flujo de H₂, analizando por espectroscopía de masa con una unidad Balzers Omnistar.

Actividad catalítica

La hidrogenación de HMF se llevó a cabo en fase líquida, en un reactor discontinuo de acero inoxidable de 500 mL, a 120 °C y una presión de H₂ de 15 bar. Teniendo en cuenta que el HMF y BHMF son poco solubles en solventes polares, se utilizó tetrahidrofurano (THF), como solvente de reacción. Previo a las experiencias catalíticas, las muestras de los diferentes catalizadores (0,5 g) fueron reducidas ex situ en H₂ a 300 °C y luego trasvasadas en atmósfera inerte al reactor conteniendo el solvente y el HMF. El sistema se llevó hasta la temperatura de reacción agitando a 700 rpm, a continuación se ingresó H₂ al reactor hasta alcanzar la presión de trabajo. Las muestras extraídas durante el transcurso de la reacción fueron analizadas con un cromatógrafo de gases Shimadzu GC-2014.

RESULTADOS/CONCLUSIONES

Caracterización fisicoquímica

En la Tabla 1 se resumen los resultadosobtenidos de la caracterización fisicoquímica de las muestras de Cu. Lacarga de Cu en las muestras varió entre 8 y 10 %, excepto en la muestra de CuMgAl que tiene 18% de Cu. La superficie específica (Sg) de Cu/SiO₂-I, Cu/SiO₂-PD y Cu/Al₂O₃-I fue ligeramenteinferior a la de los soportes empleados (SiO₂: 230 m²·g⁻¹ y γ -Al₂O₃: 190 m²·g⁻¹).

Muestra	Cu (% ^p / _p)	S _g (m ² g ⁻¹)	D _{Cu} (%)	L (nm)	Т _{МАХ} (⁰С)
Cu/SiO ₂ -I	11,4	221	2,0	32	290
Cu/SiO ₂ -PD	11,3	225	21	3,3	240
Cu/Al ₂ O ₃ -I	10,0	175	3,0	6,5	260
CuMgAl	17,9	291	11	-	200

Tabla 1. Caracterización fisicoquímica de lasmuestras preparadas en este trabajo.

Esto indica que la adición de Cu por los métodos de impregnación o precipitación-deposición, no modifica significativamente las propiedades texturales de dichos soportes. Por otro lado, la muestra CuMgAl presentó una Sg de 291 m²·g⁻¹, algo mayor que la de las otras muestras.

Los difractogramas de rayos X de las muestras calcinadas se presentan en la Figura 1. Los picos difracción observados de en Cu/SiO₂-I corresponden a una fase policristalina de CuO (PDF 47-254). En la muestra Cu/SiO₂-PD solo se observó el halo amorfo de la sílice, indicando que la fase de Cu obtenida luego de la calcinación es cuasi-amorfa o que los dominios cristalinos formados son menores a 4 nm, límite de detección aceptado para esta técnica. Los DRX de las muestras CuMgAl y Cu/Al₂O₃-I presentan picos de difracción anchos que se corresponden con fases cristalinas de estructuras tipo espinela (MgAl₂O₄ PDF48-1548, Al₂O₃ PDF 29-0063) no

Figura 1. DRX de los precursores calcinados. (a) Cu/SiO₂-I, (b) Cu/SiO₂-PD, (c) Cu/Al₂O₃-I, (d) CuMgAl. \blacktriangle CuO, \blacksquare fase tipo espinela.

observándose la segregación de óxidos metálicos de CuO y/o MgO. Esto indicaría que los cationes Cu²⁺ y Mg²⁺ están altamente interdispersos en la estructura tipo espinela o interaccionando fuertemente con la superficie de la Al₂O₃.

En los TPR y para cada muestra, solo se observó un único pico de consumo de H₂ entre 150 y 350 °C, asignado a la reducción de CuO o especies Cu²⁺. En base a las temperaturas del máximo consumo de H₂ (Tabla 1) se determinó el siguiente patrón de reducibilidad: Cu/SiO₂-I < Cu/Al₂O₃-I < Cu/SiO₂-PD < CuMgAl

La dispersión de la fase metálica de Cu (D_{Cu}) de las muestras, luego de reducción en flujo de H₂ a 300°C, se muestran en Tabla 1. El mayor valor de D_{Cu} fue obtenido con Cu/SiO₂-PD (21%), el cual es dos veces mayor que para la muestra CuMgAl (11%). Cu/Al₂O₃-I presentó una dispersión metálica intermedia (16%), mientras que para Cu/SiO2-I fue un orden de magnitud menor (2%). Con los valores de dispersión metálica se estimó el tamaño promedio de partícula asumiendo partículas cúbicas y utilizando una densidad superficial de átomo de Cu de 1,08 x 10⁻¹⁵ at-cm⁻² (Tabla 1).

Actividad de los catalizadores de Cu.

Todos los catalizadores fueron activos en la hidrogenación de HMF en las condiciones de trabajo empleadas, dando como único producto 2,5-bis(hidroximetil)furano (BHMF), sin embargo, la evolución observada con cada catalizador fue diferente (Figura 2).

La mayor velocidad inicial de hidrogenación (r_{HMF}^0) se alcanzó con Cu/SiO₂-PD, mientras que el catalizador Cu/SiO₂-I mostró un valor de r_{HMF}^0 unas veinte veces menor. La mayor actividad de Cu/SiO₂-PD respecto a Cu/SiO₂-I puede atribuirse a las nanopartículas (3-5 nm) de Cu⁰ altamente dispersas sobre la sílice obtenidas por el método PD. La actividad catalítica de Cu/Al₂O₃-I y CuMgAl fue de 2 a 2,5 veces menor que la de Cu/SiO₂-PD. Esto se puede explicar en base a que Cu/Al₂O₃-I y CuMgAl poseen menor dispersión metálica que Cu/SiO₂-PD, y a la fuerte adsorción del HMF sobre los sitios ácidos y básicos presentes en la superficie de estos catalizadores. En consecuencia, el patrón de actividad inicial (r_{HMF}^0) sigue la tendencia: Cu/SiO₂-PD > Cu/Al₂O₃-I > CuMgAl > Cu/SiO₂-I.

Figura 2. Conversión de HMF en función del tiempo para los catalizadores basados en Cu. 120 °C, 15 bar de presión de H_2 y THF como solvente. Cu/SiO₂-PD, Cu/Al₂O₃-I, CuMgAI, Cu/SiO₂-I. En cuanto a la conversión (X_{HMF}), con CuSiO₂-PD se alcanzó una X_{HMF} del 95% a los 60 minutos de reacción, mientras que la conversión a las 2 horas de reacción para los 3 restantes catalizadores fue: 60% para Cu/Al₂O₃-I, 43% para CuMgAl y solo 10% para Cu/SiO₂-I. Por lo tanto el patrón para la X_{HMF} a las 2 horas de reacción es similar al obtenido para (r_{MMF}^0).

En todos los casos, la selectividad a BHMF fue superior al 96%, por lo que el patrón para el rendimiento en BHMF es el mismo que el obtenido para la conversión de HMF (Tabla 2). La hidrogenación selectiva del grupo C=O, frente a los enlaces C=C, del anillo furánico (Esquema 1), se puede explicar en base a la adsorción preferencial de HMF sobre el Cu a través de su grupo C=O. Como sugieren Bertero y col. (2008), esta adsorción está favorecida por la repulsión entre los orbitales d del Cu y el anillo insaturado, en este caso el anillo furánico de HMF.

Finalmente, empleando diferentes catalizadores basados en Cu se logró hidrogenar selectivamente el 5-hidroximetil-furfural (HMF) a 2,5-bis(hidroximetil)furano (BHMF). El catalizador más activo resultó ser Cu/SiO₂ preparado por el método de precipitación-deposición. La alta actividad y el rendimiento en BHMF obtenidos con este catalizador se

atribuye a la presencia, sobre un soporte de muy baja acidez como la SiO₂, de nanopartículas de Cu metálico de 3 a 5 nm. Cuando el Cu se soporta sobre óxidos con sitios ácidos y/o básicos, como Al_2O_3 y óxidos mixtos de Mg-Al, se tiene una alta dispersión de Cu metálico pero que resulta menos activo. La fuerte adsorción del reactivo sobre los sitios ácidos y/o básicos que se encuentran en la interfase con las nanopartículas de Cu metálico dificultaría el acceso del H₂ a los sitios activos.

Muestra	r ⁰ _{HMF} (g⋅hmol ⁻¹)	Х _{нмғ} (%)	η _{внмғ} (%)	S _{BHMF} (%)
Cu/SiO ₂ -I	0,05	10	9,1	99
Cu/SiO ₂ - PD	1,00	99	98	99
Cu/Al ₂ O ₃ -I	0,47	61	60	98
CuMgAl	0,40	43	41	97

Tabla 2. Velocidad inicial de hidrogenación de HMF (r_{HMF}^0), conversión de HMF (X_{HMF}), rendimiento en BHMF (η_{BHMF}) y selectividad a BHMF (S_{BHMF}) a 2 h de reacción.

BIBLIOGRAFÍA BÁSICA

Alamillo R., Tucker M., Chia M., Pagán-Torres Y., Dumesic J., 2012. The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chemistry,14, 1413. Bertero N.M., Apesteguía C.R., Marchi A.J., 2008. Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO₂ catalyst. Applied Catalysis A: General, 349, 100.

Bicker M., **Hirth J.**, **Vogel H.**, 2003. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chemistry, 5, 280.

Gandini A., **Belgacem M.N.**, 2002. Recent Contributions to the Preparation of Polymers Derived from Renewable Resources. Journal of Polymers and the Environment, 10, 105.

Nakagawa Y., **Tomishige K.**, 2010. Total hydrogenation of furan derivatives over silica-supported Ni– Pd alloy catalyst. Catalysis Communications, 12, 15.

Zeng C., Seino H., Ren J., Hatanaka K., Yoshie N., 2013. Bio-Based Furan Polymers with Self-Healing Ability. Macromolecules, 46, 1794.

