“Ag, Co soportados en NaMOR y AlMCM-41 para la Adsorción de Hidrocarburos y Reducción Catalítica de NOx”

Ing. Soledad G. Aspromonte
Tesis presentada como parte de los requisitos de la Universidad Nacional del Litoral, para la obtención del grado académico de:

DOCTORA EN INGENIERÍA QUÍMICA

En el campo de la Catálisis Heterogénea

Directora de Tesis: Dra. Alicia V. Boix

Co-Director de Tesis: Dr. Eduardo E. Miró

Jurados de Tesis

Dra. Rosa Torres

Prof. Carlos Gígola

Dr. Adrián Bonivardi

Presentada y defendida el 24 de febrero de 2012
“Cuando vas tras los sueños,
creces con el esfuerzo,
aprendes con el intento y
ganas con la acción.
Jamás renuncies a tus sueños,
ni los dejes atrás.
Búscalos, hazlos tuyos y atesóralos
sin dejarlos jamás escapar.
Y cuando te sientas sin aliento,
vuelve tu mirada a Jesús,
Él siempre te acompaña y protege en silencio”

Susanna Tamaro
En memoria a mi querido papá,
quién ilumina y protege cada uno de mis pasos,

Mario Luis Aspromonte.
ÍNDICE

AGRADECIMIENTOS .. vi

RESUMEN .. vii

CAPÍTULO I. INTRODUCCIÓN Y OBJETIVOS ... 1

I.1. Principales Especies Contaminantes ... 2
 I.1.a. Óxidos de Nitrógeno (NOx) .. 3
 I.1.b. Óxidos de Carbono (COx) ... 4
 I.1.c. Hidrocarburos (HCs) .. 5
 I.1.d. Material Particulado (MP) ... 5

I.2. Principales Fuentes de Emisión .. 6

I.3. Evolución Legislativa .. 9

I.4. Tecnologías Catalíticas para el control de la contaminación en fuentes móviles .. 13

I.5. Objetivos ... 16

I.6. Referencias ... 19

CAPÍTULO II. ESTADO DEL ARTE ... 22

II.1. Reducción Catalítica Selectiva de NOx con HCs .. 23

II.2. Trampas de Hidrocarburos. Procesos de Adsorción/Desorción 27
 II.2.a. Comportamiento de zeolitas y sílices mesoporosas en la adsorción y desorción de hidrocarburos ... 27

II.3. Soportes Catalíticos .. 31
 II.3.a. Zeolitas .. 31
 II.3.b. Materiales mesoporosos ... 35

II.4. Fluidos Supercríticos .. 41
 II.4.a. Método de deposición a través de fluidos supercríticos 44

II.5. Referencias ... 48

CAPÍTULO III. MATERIALES Y MÉTODOS ... 56

III.1. Materiales y Procedimientos de Síntesis .. 57
 III.1.a. Soportes .. 57
 III.1.a.1. Soporte microporoso: Zeolita Na-Mordenita .. 57
 III.1.a.2. Síntesis de soportes mesoporosos: MCM-41 y AlMCM-41 57
 III.1.b. Preparación de catalizadores microporosos .. 59

- i -
III.1.b.1. Intercambio de Ag\(^+\) en NaMOR ... 59
III.1.b.2. Intercambio de Co\(^{2+}\) en NaMOR ... 59
III.1.c. Preparación de catalizadores mesoporosos ... 60
 III.1.c.1. Incorporación de Ag en MCM-41 y AlMCM-41 mediante
 impregnación a humedad incipiente ... 60
 III.1.c.2. Incorporación de Ag o Co en MCM-41 y AlMCM-41 mediante
 CO\(_2\) supercrítico .. 60
III.2. Técnicas de Análisis y Caracterización ... 66
 III.2.a. Adsorción/Desorción de N\(_2\) a -196 °C ... 67
 III.2.a.1. Determinación del área superficial mediante el método BET 69
 III.2.a.2. Condensación capilar e histéresis ... 70
 III.2.a.3. Determinación del volumen de mesoporos y distribución de
 tamaños de mesoporos ... 71
 III.2.a.4. Determinación del volumen y distribución de tamaños de
 microporos ... 74
 III.2.b. Reducción a Temperatura Programada (TPR) ... 75
 III.2.c. Difracción de Rayos X ... 76
 III.2.c.1. Alto Ángulo (DRX) .. 76
 III.2.c.2. Bajo Ángulo (SAXS) .. 78
 III.2.d. Espectroscopia de Reflectancia Difusa en Ultravioleta Visible
 (DRS/UV-Vis) ... 78
 III.2.e. Espectroscopia Láser Raman (LRS) .. 80
 III.2.f. Espectroscopia Fotoelectrónica de Rayos X (XPS) 81
 III.2.g. Espectroscopia de Emisión Óptica de Plasma Acoplado por Inducción
 (ICP-OES) ... 85
 III.2.h. Absorción Atómica .. 86
 III.2.i. Espectroscopia Infrarrojo con Transformada de Fourier (FTIR) 86
 III.2.j. Microscopía Electrónica de Barrido (SEM/EDX) y mapeo de las
 imágenes SEM .. 87
 III.2.k. Microscopía Electrónica de Transmisión (TEM) ... 88
 III.2.l. Análisis Termogravimétrico (TGA) .. 88
 III.2.m. Medidas Calorimétricas (DSC) ... 89
III.3. Sistemas de Evaluación Catalítica .. 89
 III.3.a. Reducción Catalítica Selectiva de NO\(_x\) con Hidrocarburos 89
 III.3.a.1. Cuantificación de la concentración de los gases 92
 III.3.b. Oxidación Total y Preferencial de CO ... 93
III.4. Sistemas de Adsorción y Desorción ... 94
III.4.a. Estudios de Adsorción y Desorción de Hidrocarburos 94
III.4.a.1. Método dinámico de adsorción y desorción .. 94
III.4.a.2. Determinación de las curvas de ruptura .. 97
III.4.a.3. Desorción a Temperatura Programada (TPD) ... 98
III.4.a.4. Estudio FTIR. Interacción y reactividad de los hidrocarburos adsorbidos 99
III.4.b. Desorción a Temperatura Programada de NO (TPD-NO) 101
III.5. Referencias ... 103

CAPÍTULO IV. CATALIZADORES AGNA/MORDENITA .. 106
IV.1. Caracterización Fisicoquímica .. 107
IV.1.a. Propiedades físicas, químicas y texturales ... 107
IV.1.b. Reducibilidad de las especies de Ag ... 109
IV.1.c. UV-Vis DRS ... 112
IV.1.d. Caracterización superficial ... 114
IV.1.e. Desorción de NO a temperatura programada (TPD-NO) 116
IV.2. Reducción Selectiva de NOx con hidrocarburos ... 118
IV.3. Trampa de Hidrocarburos. Capacidad de Adsorción y Retención 123
IV.3.a. Curvas de Ruptura ... 123
IV.3.a.1. Análisis de la composición química de los catalizadores Ag(x)M 125
IV.3.b. Desorción de C₇H₈ o C₄H₁₀ a temperatura programada 128
IV.4. Estudio FTIR .. 131
IV.4.a. Estabilidad térmica del butano adsorbido en Ag(x)M 133
IV.4.b. Estabilidad térmica del tolueno adsorbido en Ag(x)M 134
IV.4.c. Estabilidad térmica del butano en Ag(x)M en corriente de NO 137
IV.4.d. Reactividad del tolueno en Ag(x)M en corriente de NO 138
IV.4.e. Efecto del agua en las propiedades de adsorción .. 141
IV.5. Conclusiones ... 143
IV.6. Referencias ... 146

CAPÍTULO V. CATALIZADORES AG/ALMCM-41 .. 149
V.1. Síntesis y Caracterización Fisicoquímica de MCM-41 y AlMCM-41 funcionalizados con plata ... 150
V.1.a. Soportes MCM-41 y AlMCM-41 ... 150
V.1.a.1. Estudio de la degradación del surfactante mediante espectroscopia infrarrojo con transformada de fourier (FTIR) .. 150
V.1.a.2. Morfología de los sustratos mesoporosos .. 154
V.1.b. Incorporación de Ag mediante impregnación a humedad incipiente 158
V.1.b.1. Propiedades físicas, químicas y texturales .. 158
V.1.b.2. Espectroscopia infrarrojo con transformada de Fourier (FTIR) 162
V.1.b.3. Reducibilidad de las especies metálicas .. 163
V.1.b.4. UV-Vis DRS .. 166
V.1.b.5. Caracterización superficial (XPS) ... 167
V.1.b.6. Morfología determinada mediante SEM y TEM 169
V.1.c. Incorporación de Ag empleando CO\textsubscript{2} supercrítico 175
V.1.c.1. Determinación de los parámetros de operación de la DFSC 175
V.1.c.2. Caracterización fisicoquímica ... 176
V.2. Evaluación Catalítica ... 179
V.3. Trampa de Hidrocarburos. Capacidad de Adsorción y Retención 179
V.3.a. Curvas de Ruptura ... 179
V.3.b. Desorción de C\textsubscript{7}H\textsubscript{8} a temperatura programada 181
V.4. Estudio FTIR .. 182
V.4.a. Estabilidad térmica del C\textsubscript{7}H\textsubscript{8} adsorbido sobre los sustratos mesoporosos ... 182
V.4.b. Estabilidad térmica del tolueno adsorbido sobre Ag(2)AlMCM-41 185
V.4.c. Reactividad del C\textsubscript{7}H\textsubscript{8} adsorbido sobre los sustratos mesoporosos y la muestra Ag(2)AlMCM-41 en presencia de NO .. 186
V.5. Conclusiones ... 188
V.6. Referencias .. 190

CAPÍTULO VI. CATALIZADORES CO\textsubscript{N}AMORDENITA .. 193
VI.1. Reducción Selectiva de NOx con Hidrocarburos 194
VI.2. Trampa de Hidrocarburos. Capacidad de Adsorción y Retención 198
VI.2.a. Curvas de Ruptura .. 198
VI.2.b. Desorción de C\textsubscript{7}H\textsubscript{8} o C\textsubscript{4}H\textsubscript{10} a temperatura programada 200
VI.3. Caracterización Fisicoquímica ... 201
VI.3.a. Propiedades físicas y químicas ... 201
VI.3.b. Reducibilidad de las especies de Co .. 202
VI.3.c. Caracterización superficial ... 203
VI.3.d. Espectroscopia Láser Raman .. 205
VI.3.e. UV-Vis DRS ... 206
VI.3.f. Estudio de las especies carbonosas por XPS y TPO. Efecto del H₂O 208
VI.4. Conclusiones .. 211
VI.5. Referencias .. 212

CAPÍTULO VII. CATALIZADORES CoO₃/ALMCM-41 215
VII.1. Determinación de los parámetros de operación de la DFSC 216
VII.1.a. Determinación de la temperatura de descomposición y deposición 216
VII.1.b. Influencia de la presión y tiempo de descomposición y deposición 221
VII.1.c. Solubilidad del precursor CoCp₂ en scCO₂ 223
VII.1.d. Efecto de los parámetros de operación sobre los soportes mesoporosos... 224
VII.2. Caracterización Físicoquímica .. 225
VII.2.a. Propiedades físicas, químicas y texturales 225
VII.2.b. Caracterización de las especies de cobalto depositadas 229
VII.3. Trampa de Hidrocarburos. Capacidad de Adsorción y Retención 239
VII.4. Evaluación Catalítica ... 239
VII.4.a. Oxidación Total de CO (COTox) .. 240
VII.5. Conclusiones .. 242
VII.6. Referencias .. 244

CAPÍTULO VIII. CONCLUSIONES Y ACTIVIDADES FUTURAS 246
VIII.1. Conclusiones generales ... 247
VIII.1.a. Catalizadores de Ag o Co en NaMordenita 247
VIII.1.a.1. Caracterización fisicoquímica ... 248
VIII.1.a.2. Actividad catalítica en la RCS de NOx 248
VIII.1.a.3. Capacidad de adsorción y retención de hidrocarburos 249
VIII.1.b. Catalizadores de Ag o Co en MCM-41 y AlMCM-41 250
VIII.1.b.1. Caracterización fisicoquímica ... 250
VIII.1.b.2. Actividad catalítica .. 251
VIII.1.b.3. Capacidad de adsorción y retención de hidrocarburos 251
VIII.2. Actividades Futuras .. 251

APÉNDICE ... 253
AGRADECIMIENTOS

A través de estas líneas quiero expresar mi más sincero agradecimiento a todos aquellos que han colaborado directa o indirectamente en la realización de esta Tesis. Sin duda, es mucho el tiempo compartido, las experiencias vividas y como consecuencia de ello, es inevitable el crecimiento académico y humano, que no hubiese sido posible sin la colaboración de numerosas personas.

Entre ellas, un profundo reconocimiento a mi directora, Alicia Boix, por haber confiado desde un principio en mí e iniciarme en la investigación, por sus infinitos consejos, su gran generosidad, contención y sabiduría.

A mi co-director, Eduardo Miró, por apoyar cada una de mis decisiones e incentivarme siempre a más, por su generosidad y gran capacidad de alegrar cada uno de los momentos compartidos.

A Ramiro Serra, mi compañero de experimentos y amigo, por su constante sinceridad, lealtad, compañerismo y generosidad.

A la Universidad de Valladolid, principalmente a Esther Alonso, María José Cocero y Álvaro Sastre, por su gran calidez y colaboración durante mi estancia en España.

A mis amigas, Betina Faroldi, Romina Brasca, Carina Fontanini, María Montero, Gabriela Marchiano, Romina Imhoff, Julia Vecchietti y Tamara Benzaquén.

A Juan Manuel Zamaro, Ezequiel Banús, Juan Pablo Bortolozzi, Leticia Gómez, Hernan Decolatti, amigos y compañeros de trabajo, quienes hacen que todo sea sencillo y posible.

A Micaela Albarracín, Emiliano Torselli, Elena Pastor Cavada, Raúl Cian y Franco Van De Velde, por todas las alegrías vividas y compartidas.

A mi abuela Blanca, por sus infinitas oraciones y su compañía. A mis hermanas, Ceci y Luci, por su comprensión, amistad, apoyo y el amor que me brindan en cada uno de sus actos. A mi mamá Blanqui, quien siempre bregó por mi educación, por su ejemplo de amor constante, de conducta, sacrificio personal y trabajo, para alcanzar cada una de nuestras metas.

A Jesús y María, por el don de la Vida, la fortaleza espiritual en los momentos difíciles y la capacidad de disfrutar de la familia, los verdaderos amigos y las cosas lindas de la Vida!

¡Muchas Gracias!
RESUMEN

Actualmente, el crecimiento económico continuo implica un aumento de los contaminantes gaseosos provenientes de procesos de combustión. En consecuencia, las restricciones son cada vez más severas y promueven una investigación continua en búsqueda de nuevas tecnologías. La emisión de óxidos de nitrógeno (NOx), hidrocarburos sin quemar (HCs) y óxidos de carbono (COx), provienen principalmente de fuentes móviles (medios de transporte) y centrales de potencia y plantas químicas.

Los catalizadores de tres vías (TWC) son actualmente utilizados en motores con gasolina para minimizar la contaminación. Sin embargo, presentan poca actividad a bajas temperaturas (durante la puesta en marcha del motor) y baja eficiencia cuando se opera en condiciones de mezcla pobre. El 80% de los HCs se emiten en los primeros minutos después del arranque del motor, por lo que, el control de la emisión de hidrocarburos es un problema ambiental aún no resuelto.

En este trabajo se propone estudiar sistemas catalíticos capaces de entrampar los hidrocarburos durante la etapa inicial de baja temperatura, para luego eliminarlos cuando se alcanzan las condiciones óptimas de funcionamiento del motor. Los materiales zeolíticos y mesoporosos ofrecen un sistema promisorio capaz de acoplar los procesos de adsorción de hidrocarburos y reducción de los NOx en atmósfera oxidante.

En esta Tesis se emplearon, como soportes catalíticos, una zeolita microporosa NaMordenita comercial y materiales mesoporosos MCM-41 y AlMCM-41 sintetizados mediante el método sol-gel. Los metales Ag o Co fueron incorporados por intercambio iónico, impregnación húmeda incipiente o mediante CO2 supercrítico.

Se utilizaron diversas técnicas de caracterización fisicoquímica: Difracción de Rayos X a bajo ángulo (SAXS) y alto ángulo (DRX), Espectroscopías Fotoelectrónica de Rayos X (XPS), Laser Raman (LRS), Infrarrojo con Transformada de Fourier (FTIR) y UV-Vis de Reflectancia Difusa, Reducción a Temperatura Programada (TPR), Microscopía Electrónica de Barrido (SEM) y de Transmisión (TEM).

Se presentan estudios de adsorción isotérmica y desorción a temperatura programada, de tolueno o butano, como hidrocarburos aromáticos o lineales, respectivamente; representativos de los contaminantes presentes en los efluentes. También, mediante FTIR se estudió la interacción entre los hidrocarburos adsorbidos y los centros activos,
como así también, la estabilidad térmica en flujo de inerte y reactividad con una corriente de NO diluida en He.

Los catalizadores preparados mediante intercambio iónico mostraron una pequeña fracción de óxido metálico (CoOx/Co₃O₄ o Ag₂O) altamente disperso, en coexistencia con iones Co²⁺ o Ag⁺ intercambiados en los sitios α, β y γ de la mordenita. En cambio, cuando se impregnó plata en los sustratos mesoporosos, se observó la pérdida del ordenamiento hexagonal del soporte original y se identificaron especies Ag° y Ag₂O, junto a iones Ag⁺ vinculados a los grupos silanoles.

La deposición con CO₂ supercrítico representó un método eficaz para incorporar nanopartículas de óxido de cobalto dispersas en los sustratos mesoporosos, con un tamaño inferior a 20 nm. Estas especies no resultaron activas para la RCS de NOx. Sin embargo, se encontró que son activas para la oxidación preferencial de CO en atmósfera reductora.

Los catalizadores Ag- o Co-Mordenita fueron activos y selectivos en la RCS-NOx con tolueno o butano. La presencia de agua en la alimentación tiene un efecto positivo sobre la actividad reductora, porque mantiene la superficie limpia de depósitos carbonosos. Sólo los materiales AgMordenita mostraron una elevada capacidad de adsorción y retención de HCs. Se observó que el tolueno interacciona con el catión a través de los electrones π y mediante los grupos metilo con los oxígenos de la red próximos al catión. El butano sólo lo hace mediante los grupos C-H. De este modo, los catalizadores de Ag intercambiada en NaMOR permiten acoplar la adsorción de hidrocarburos con la RCS-NOx.
Capítulo I

Introducción y Objetivos

Principales Especies Contaminantes

Principales Fuentes de Emisión

Evolución Legislativa

Tecnologías Catalíticas en Fuentes Móviles

Objetivos
I. Introducción.

La contaminación atmosférica puede afectar tanto a escala global (macroecológica) como local (microecológica), pudiéndose situar el origen de la misma en la acción del hombre (antropogénico) o simplemente en causas naturales (telúrico). Un buen número de contaminantes están perfectamente identificados, así como también la forma de interferir en el medio ambiente y los efectos que producen [1].

Los contaminantes introducen ciertos desequilibrios en los ciclos biogeoquímicos (carbono, nitrógeno, oxígeno, azufre, fósforo), los que pueden llegar a provocar reacciones con consecuencias impredecibles para la biósfera y, por lo tanto, para el conjunto de nuestro planeta, amenazando el desarrollo sostenible que garantice la supervivencia, en condiciones adecuadas, de las generaciones futuras.

En este sentido, la actividad humana desde la revolución industrial incrementó la cantidad de gases de efecto invernadero en la atmósfera contribuyendo al calentamiento global. El quemado de combustibles fósiles es una de las principales causas del incremento de hidrocarburos (HCs), óxidos de carbono (COx) y óxidos de nitrógeno (NOx). Actualmente, estos combustibles suministran más del 85 % de la energía empleada en el mundo y no es de esperar que esta situación cambie en el futuro cercano, ya que el crecimiento de la población impulsa el aumento de la actividad industrial. Las estimaciones realizadas para diferentes regiones del mundo, indican que los niveles de emisión seguirán aumentando en las próximas décadas. Se asume que los combustibles fósiles seguirán siendo la principal fuente de energía en los próximos años, tanto para la generación de energía como para el sistema de transporte [2-4].

En este marco, las restricciones a nivel mundial para la emisión de contaminantes son cada vez más estrictas, ya que el objetivo es la estabilización de la concentración de gases de efecto invernadero, para evitar una interferencia antropogénica peligrosa en las próximas décadas. Esto promueve el desarrollo de métodos efectivos para la captura de gases en efluentes de post-combustión que emplean combustibles fósiles, como centrales de potencia y vehículos [5, 6].

I.1. PRINCIPALES ESPECIES CONTAMINANTES

Los compuestos contaminantes tienen características y propiedades fisicoquímicas distintivas que se detallan a continuación.
I. Introducción.

I.1.a. Óxidos de Nitrógeno (NOx).

De los siete óxidos de nitrógeno existentes (óxido nítrico, dióxido, trióxido, tetróxido, pentóxido y sesquióxido de N₂), sólo el NO, NO₂ y N₂O₄ tienen cierta estabilidad. Por ello, el término de óxidos de nitrógeno, representado como NOx, se utiliza para designar la mezcla de los tres. Los otros son inestables, porque se descomponen en NO₂ y O₂, o bien, forman ácido nítrico y agua, como consecuencia del contacto con aire [7].

El N₂O₄ es un dímero del NO₂, coexistiendo uno con otro en distintas proporciones según sea la temperatura empleada. El NO₂ es un líquido pardo amarillento a temperatura ambiente. En estado gaseoso tiene una coloración pardo-rojiza, es muy volátil, de olor irritante y se disuelve en agua porque reacciona con ella. El NO₂ es un oxidante muy fuerte, y participa como comburente frente a materiales combustibles. Reacciona con el agua dando una mezcla de ácidos nítricos y nitrosos. En seco, no ataca a los metales, pero en presencia de humedad puede formar ácido nítrico. Tanto el NO como el NO₂ pueden reaccionar en forma violenta, con riesgo de inflamación y/o explosión con compuestos como boro, óxido de cloro, hidrocarburos, fosfina, olefinas, nitrobenzeno, amoníaco, sulfuro de carbono, hidrocarburos halogenados, entre otros. A temperaturas inferiores a -10 ºC se polimeriza en su dímero N₂O₄ coexistiendo ambos; mientras que, al aumentar la temperatura el dímero se disocia. El N₂O₄ es un gas amarillo pálido que puede condensar a temperatura ambiente. Su densidad es mayor que la del aire y se disuelve bien en agua [8].

Por su parte, el NO es un gas incoloro e inodoro a temperatura ambiente y poco soluble en agua. Es ligeramente más denso que el aire y soluble en sulfuro de carbono. Además, si bien es un compuesto poco reactivo, se combina rápidamente con el oxígeno del aire para formar NO₂, incluso a 25 ºC [9].

Como se mencionó anteriormente, existen diversas fuentes de emisión de los NOx: escapes de los automóviles (principalmente diesel y de mezcla pobre), combustión del carbón, petróleo o gas natural y, procesos como la soldadura por arco, galvanoplastia y grabado de metales. Una vez liberados al aire, los NOx forman contaminantes secundarios a través de reacciones fotoquímicas, como por ejemplo el PAN (nitrato de peroxiacetilo), formando de este modo, el smog fotoquímico o niebla, típica de las zonas con gran concentración de vehículos a motor [10].
I. Introducción.

Los niveles bajos de NOx en aire pueden irritar los ojos, nariz, garganta, pulmones y, posiblemente, causar tos, falta de aliento, cansancio y náuseas. Mayores concentraciones pueden producir rápidamente quemaduras, espasmos y dilatación de los tejidos de la garganta y las vías respiratorias superiores, reduciendo la oxigenación de los tejidos del cuerpo y produciendo acumulación de líquido en los pulmones.

I.1.b. Óxidos de Carbono (COx).

Los dos contaminantes primarios son el monóxido de carbono (CO) y dióxido de carbono (CO2). El CO es un combustible y agente reductor de gran importancia industrial. Es un gas incoloro, insípido, inodoro, parcialmente soluble en agua y muy tóxico. Se obtiene por combustión incompleta de compuestos de carbono, madera y aceite. Sin embargo, la fuente principal del CO son los motores de combustión interna.

El efecto dañino, potencial y principal de este contaminante lo constituye su afinidad para combinarse con la hemoglobina dando lugar a una disminución en la entrega de oxígeno a los tejidos. Sin embargo, el CO se combina unas 10 veces menos que el oxígeno con la hemoglobina y se disocia unas 2200 veces menos que el oxígeno de la hemoglobina, lo que significa que la afinidad química de la hemoglobina por el CO es 220 veces mayor que por el oxígeno [11]. El grado de toxicidad del CO depende de la concentración y del tiempo de exposición del individuo. Normalmente, puede variar entre un dolor de cabeza (200 ppm de CO, 3 h) hasta la muerte (4000 ppm, minutos) [12].

Por otro lado, el CO2 es un gas sin color, olor ni sabor, que se encuentra presente en la atmósfera de forma natural. No es tóxico y desempeña un papel importante en el ciclo de carbono en la naturaleza. Dada su presencia natural en la atmósfera y su falta de toxicidad, no deberíamos considerarlo como contaminante, sin embargo; es un gas que produce un importante efecto de absorción del calor, llamado efecto invernadero. Por este motivo es uno de los gases que más influye en el calentamiento global del planeta y el consiguiente cambio climático [13, 14].
I.1.c. Hidrocarburos (HCs).

Con este término nos referimos a moléculas de combustible inicial junto a HCs parcialmente oxidados, es decir aquellos que provienen del combustible que no se quemó totalmente, lo que se produce por falta de oxígeno durante la combustión (mezcla rica) o porque la velocidad de inflamación es muy baja (mezcla pobre). Los hidrocarburos sin quedar pueden ser parafinas, olefinas, aromáticos, mientras que, los HCs parcialmente oxidados incluyen aldehídos (C_nH_mCHO), cetonas ($C_nH_mC_O$) y ácidos carbónicos ($C_nH_mC_COOH$) [15].

En fuentes móviles, la mayoría de las emisiones de HCs se producen durante el arranque en frío (cold-start emissions) de los automóviles nafteros (ciclo Otto) equipados con catalizadores de 3 vías (TWC), es decir durante los primeros minutos (1-3 minutos), después del encendido del motor y previo a que el catalizador alcance la temperatura de light-off (250-300 °C). Durante este período, el 80 % de hidrocarburos emitidos atraviesan libremente el convertidor catalítico sin reaccionar, liberándose de este modo, a la atmósfera. Alrededor de 100 especies de HCs están presentes en los gases de escape durante el arranque en frío. Aproximadamente, se componen de 10 % de metano, 30 % de alquenos, como etileno o propileno, 30 % de alcanos, como pentano, butano o hexano y 30 % de aromáticos como tolueno o xileno [16].

Las intoxicaciones producidas por este tipo de contaminantes tienden a causar cuadros respiratorios relativamente severos.

Consisten en una compleja mezcla de partículas líquidas y sólidas de sustancias orgánicas e inorgánicas suspendidas en aire. Los principales componentes del MP son los sulfatos, nitratos, amoníaco, cloruro de sodio, carbón, polvo de minerales y agua. Las partículas se clasifican en función de su diámetro aerodinámico en PM$_{10}$ (diámetro < 10 μm) y PM$_{2.5}$ (diámetro < 2.5 μm). Estas últimas suponen mayor peligro porque al inhalarlas, pueden alcanzar zonas periféricas de los bronquiolos y alterar el intercambio pulmonar de los gases [17].

Los efectos del MP sobre la salud dependen de los niveles de exposición a los que está sometida actualmente la mayoría de la población urbana y rural de los países
I. Introducción.

La exposición crónica a las partículas aumenta el riesgo de enfermedades cardiovasculares y respiratorias.

En este sentido, el sistema de transporte constituye una de las principales fuentes de emisión de contaminantes gaseosos. En los últimos 60 años, la flota mundial de vehículos aumentó desde 40 millones hasta más de 700 millones; cifra que se prevé aumente a más de 1000 millones en el año 2013 [18]. La combustión ideal de los HCs conduce a la formación de compuestos como, agua y dióxido de carbono (CO$_2$). Sin embargo, debido a que la combustión no es perfecta y a las elevadas temperaturas alcanzadas por el motor, los gases de escape contienen cantidades significativas de contaminantes que generan consecuencias importantes como el efecto invernadero y calentamiento global, de modo que deben ser transformados en compuestos inofensivos.

I.2. PRINCIPALES FUENTES DE EMISIÓN

Los procesos que contribuyen en mayor medida a la cantidad total emitida de las principales especies contaminantes (HCs, NOx y COx) se vinculan con los procesos de combustión en fuentes estacionarias, como las usinas generadoras de energía eléctrica y, en fuentes móviles, asociadas al escape de los vehículos [19].

El motor de combustión interna se caracteriza por obtener energía mecánica directamente de la energía química de un combustible que se quema en una cámara de combustión y se clasifican en dos tipos principales. El primero es el motor de encendido por chispa, comúnmente conocido como “naftero”, porque funciona con nafta o gasolina regular como combustible. En este tipo de motor, el combustible vaporizado y mezclado con aire, entra en ignición por medio de una chispa eléctrica. La expansión de los gases causada por el calor de la combustión impulsa a un pistón o rotor [20].

El segundo tipo es el motor de encendido por compresión “diésel”, que también utiliza el calor de un proceso de combustión para impulsar un pistón, pero en el que no se necesita chispa. En lugar de ello, el combustible vaporizado se inyecta y entra en contacto con el aire calentado hasta una temperatura suficiente para que se queme por sí mismo [21].

La gran mayoría de los motores de combustión interna destinados a los vehículos son de movimiento alternativo. En ellos el vaivén de uno o varios de sus pistones se
Tabla I. 1 se presentan las composiciones típicas de los gases de escape para los motores, velocidad del vehículo, factor de aceleración/desaceleración, entre otros. En la automóviles es una mezcla compleja y depende de una serie de factores, como el tipo de combustible, tipo de motor, velocidad del vehículo, factor de aceleración/desaceleración, entre otros. En la Tabla I.1 se presentan las composiciones típicas de los gases de escape para los motores más comunes [23, 24] sin el empleo de catalizadores.

- 2 tiempos (2T): el motor recibe fuerza impulsora una vez por cada revolución, es decir que efectúan una carrera útil de trabajo en cada giro.

- 4 tiempos (4T): la fuerza impulsora actúa una vez por cada dos revoluciones, es decir que efectúan una carrera útil de trabajo cada dos giros.

Existen motores diésel y nafteros tanto en 2T como en 4T [22].

La composición de la corriente efluente de los motores de combustión en los automóviles es una mezcla compleja y depende de una serie de factores, como el tipo de motor, velocidad del vehículo, factor de aceleración/desaceleración, entre otros. En la Tabla I.1 se presentan las composiciones típicas de los gases de escape para los motores más comunes [23, 24] sin el empleo de catalizadores.

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Motor Diésel</th>
<th>Motor Naftero</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx (ppm)</td>
<td>350-1000</td>
<td>1200</td>
</tr>
<tr>
<td>HC (ppmC)</td>
<td>50-330</td>
<td>1300</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>300-1200</td>
<td>1300</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td>10-15</td>
<td>4-12</td>
</tr>
<tr>
<td>H₂O (%)</td>
<td>1,4-7</td>
<td>12</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>SOx (ppm)</td>
<td>10-100<sup>a</sup></td>
<td>20</td>
</tr>
<tr>
<td>PM (mg·m⁻³)</td>
<td>65</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>25-650</th>
<th>25-850</th>
<th>25-1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHSV (h⁻¹)</td>
<td>30000-100000</td>
<td>30000-100000</td>
<td>30000-100000</td>
</tr>
<tr>
<td>λ<sub>a</sub> (A/C)<sup>b</sup></td>
<td>≈ 1,8 (26)</td>
<td>≈ 1,16 (17)</td>
<td>≈ 1 (14,7)<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Los combustibles diésel con 500 ppm de sulfuros producen aproximadamente 20 ppm de SO₂ [24].

^b Se define λ como el cociente entre la relación aire/combustible (A/C) real y la estequiométrica; λ = 1 en el punto estequiométrico donde A/C = 14,7.

^c Parte del combustible se utiliza para el barrido de los gases de escape, lo cual no permite definir un valor preciso de A/C.
El 80% de los HCs se emiten en los dos primeros minutos después del arranque del motor, antes que el convertidor catalítico (TWC) alcance la temperatura light-off (~300 °C). Dentro de los HCs no quemados se incluye un gran número de especies químicas tales como compuestos aromáticos, parafinas, olefinas, entre otros. A modo de ejemplo en la Tabla I.2 se presenta la composición química de los hidrocarburos durante el arranque en frío del motor [25].

En consecuencia, el control de la emisión de HCs no quemados es un problema ambiental no resuelto todavía, y obliga a los fabricantes de automóviles y de catalizadores a focalizar la investigación en esta temática.

Tabla I.2. Composición aproximada de la corriente efluente durante el arranque en frío del motor [25].

<table>
<thead>
<tr>
<th>Hidrocarburos</th>
<th>Tiempo de muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 (s)</td>
</tr>
<tr>
<td>Parafinas</td>
<td>20</td>
</tr>
<tr>
<td>Olefinas</td>
<td>45</td>
</tr>
<tr>
<td>Aromáticos, C₆, C₇</td>
<td>20</td>
</tr>
<tr>
<td>Aromáticos, > C₈</td>
<td>15</td>
</tr>
</tbody>
</table>

Existen diferentes enfoques para disminuir las emisiones producidas durante el arranque en frío del motor. Estas alternativas incluyen calentar eléctricamente el catalizador [26-29] o acoplar otro sólido [30, 31], encender los gases de escape (EGI) [32] y emplear dispositivos de almacenamiento de calor. Sin embargo, estas posibilidades presentan inconvenientes tales como, el costo, la complejidad en el diseño y fabricación y la durabilidad.

En el caso de las industrias, el uso de amoníaco (NH₃) representa la solución comercial más atractiva y, en la actualidad, la RCS-NOx con NH₃, es la tecnología disponible para la eliminación de los NOx de fuentes estacionarias [33-35].
I. Introducción.

I.3. EVOLUCIÓN LEGISLATIVA

En función de lo desarrollado hasta el momento, se destaca que los gases procedentes de la combustión en los motores de los vehículos pasan a ser protagonistas de una serie de reglamentaciones encaminadas hacia su control y limitación.

Los Estados Unidos, y concretamente el estado de California, fueron quienes iniciaron el proceso legislativo al cual se unió poco después Europa. En el año 1963, se inicia la legislación de emisiones para el control de los gases contaminantes, hasta niveles de emisión previstos para el año 2000. A partir de ese año, la normativa legal ha seguido una tendencia de severidad creciente. La solución técnica no es fácil, ya que para alcanzar el mejor compromiso viable entre buenas prestaciones del motor y un estricto control de las emisiones, es necesario conjugar un elevado número de variables que aumentan a medida que los límites de las emisiones son más severos.

Por otro lado, también intervino la Organización Mundial de la Salud (OMS) mediante las primeras directrices sobre la Calidad del Aire publicadas en 1987 [36] y actualizadas en 1997 [37], que se circunscribían al ámbito europeo. Sin embargo, las publicadas en 2005 son aplicables a todo el mundo y en ellas se recomiendan nuevos límites de concentración de algunos contaminantes en el aire, como por ejemplo; partículas en suspensión (MP), NOx, HC y dióxido de azufre (SO2).

Con respecto a la legislación en la República Argentina, si bien existe la Ley 24449 (Ley de Tránsito) y el Decreto 779/95 (Año 1995), Anexo N “Medición de emisiones de vehículos livianos equipados con motores Otto” y Anexo Ñ “Medición de emisiones de partículas visibles (humo) de motores diésel y de vehículos equipados con ellos”, a la cual se han adherido la mitad de las provincias, hoy en día, esos límites han quedado desactualizados y, además no se encuentran detallados todos los contaminantes que debieran estar presentes en este tipo de ley.

A pesar de esto, en la República Argentina, actualmente está en vigencia la Resolución 35/09 del 23/2/2009, B.O. 23/5/2009 que fija los parámetros mínimos en lo que se refiere a la calidad del aire. Sin embargo, esta resolución se basa en las Normativas Europeas, que son las que regulan los límites aceptables para las emisiones de gases de combustión de los vehículos nuevos vendidos en los Estados Miembros de la Unión Europea.

Las normas europeas de emisión se definen en función de una serie de directivas de la Unión Europea (UE) con implantación progresiva, cada vez más restrictivas. Cada
I. Introducción.

una de ellas representa una modificación de la Directiva 70/220/CEE (1970), relativa a las legislaciones de los Estados Miembros en materia de medidas que deben adoptarse contra la contaminación del aire causada por los gases procedentes de los motores de explosión con los que están equipados los vehículos a motor.

Las normas y directivas de la UE que se encuentran en vigencia son las siguientes:

- Euro I (1993): para turismo (91/441/CEE); para camiones ligeros (93/53/CEE)
- Euro II (1996): para turismo (94/12/CE – 96/69/CE)

La norma Euro V es un programa de medidas reglamentarias de la Comisión Europea y aprobadas por el Parlamento Europeo el 22 de mayo de 2007 por el que se establecen los requisitos técnicos para la homologación de los vehículos de motor en lo que se refiere a las emisiones, para evitar que difieran de un Estado Miembro de la UE a otro. El programa Euro V sustituye al Euro IV que estaba en vigencia desde enero de 2005 y supone comparativamente una disminución de la cantidad de NOx autorizado para los vehículos a motor hasta los 60 mg·km\(^{-1}\) en motores de gasolina y 180 mg·km\(^{-1}\) en los motores diésel. Asimismo, el programa contempla una reducción del 80 % de la MP, que disminuye de 25 a 5 mg·km\(^{-1}\) (Fig. I.1). Aunque la norma Euro V entró en vigencia a partir del 1 de octubre de 2009, estipula un período de adaptación hasta 2012 para aquellos fabricantes de automóviles de más de 2000 kg, como ambulancias, vehículos de rescate o familiares.

Además, actualmente se encuentra en desarrollo la norma Euro VI, en donde todos los vehículos equipados con un motor diésel tendrán la obligación de reducir considerablemente las emisiones de NOx a partir de la entrada en vigencia de la norma Euro VI. Por ejemplo, las emisiones procedentes de los automóviles, se limitarán a 80 mg·km\(^{-1}\), lo que representa una reducción suplementaria de más del 50 % respecto a la norma Euro V. Asimismo, se deben reducir las emisiones combinadas de HCs y NOx procedentes de vehículos diésel para limitarlas a 170 mg·km\(^{-1}\). La norma Euro VI será aplicable a partir del 1 de septiembre de 2014 en lo que respecta a la homologación, y
del 1 de septiembre de 2015 en lo que se refiere a la matriculación y venta de las nuevas clases de vehículos.

Los límites de emisión según las normas Euro V y VI, se presentan en las Tablas I.3 y I.4, respectivamente. Para ello se emplearon las siguientes definiciones y clasificaciones:

- **Masa de referencia (MR)**: es la masa del vehículo en orden de marcha restándole la masa uniforme de un conductor de 75 kg y sumándole una masa uniforme de 100 kg. Se subdivide en:
 a) Categoría N\(_1\) – Clase I: vehículos industriales ligeros ≤ 1305 kg.
 b) Categoría N\(_1\) – Clase II: vehículos industriales ligeros con masa entre 1305 y 1760 kg.
 c) Categoría N\(_1\) – Clase III: vehículos industriales ligeros con masa entre 1760 y 3500 kg.
 d) Categoría N\(_2\): vehículos de transporte de mercancías con masa máxima superior a 3,5 toneladas.
 e) Categoría M: vehículos para turismo > 2500 kg.
Tabla I.3. Límites de emisiones según norma Euro V [36, 37].

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Clase</th>
<th>MR(^{(a)})</th>
<th>Valores Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MR(^{(a)})</td>
<td>HCT(^{(b)})</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>Todos</td>
<td>100</td>
</tr>
<tr>
<td>N(_1)</td>
<td>I</td>
<td>≤ 1305</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1305-1760</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>> 1760</td>
<td>160</td>
</tr>
<tr>
<td>N(_2)</td>
<td></td>
<td>-</td>
<td>160</td>
</tr>
</tbody>
</table>

(a) Masa de Referencia (kg), (b) HCs totales (mg·km\(^{-1}\)), (c) Concentración de NOx (mg·km\(^{-1}\)), (d) Concentración total de HCT+NOx (mg·km\(^{-1}\)), (e) Encendido por chispa, (f) Encendido por compresión.

Tabla I.4. Límites de emisiones según norma Euro VI [36, 37].

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Clase</th>
<th>MR(^{(a)})</th>
<th>Valores Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MR(^{(a)})</td>
<td>HCT(^{(b)})</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>Todos</td>
<td>100</td>
</tr>
<tr>
<td>N(_1)</td>
<td>I</td>
<td>≤ 1305</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1305-1760</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>> 1760</td>
<td>160</td>
</tr>
<tr>
<td>N(_2)</td>
<td></td>
<td>160</td>
<td>82</td>
</tr>
</tbody>
</table>

(a) Masa de Referencia (kg), (b) HCs totales (mg·km\(^{-1}\)), (c) Concentración de NOx (mg·km\(^{-1}\)), (d) Concentración total de HCT+NOx (mg·km\(^{-1}\)), (e) Encendido por chispa, (f) Encendido por compresión.

Por lo tanto, las restricciones sobre la generación de contaminantes atmosféricos son cada vez más severas, promoviendo una investigación continua en busca de nuevas tecnologías.
I.4. TECNOLOGÍAS CATALÍTICAS PARA EL CONTROL DE LA CONTAMINACIÓN EN FUENTES MÓVILES

Para resolver un problema complejo como el de la contaminación es necesaria la retroalimentación entre el aparato legal, que norma el crecimiento urbano e industrial y la comunidad científica. Ésta última debe proporcionar información técnico-científica actualizada con el fin de apoyar el control de la contaminación generada por actividades humanas. En el caso de las políticas de control de contaminantes, éstas pueden dividirse en dos clases: preventivas y de atenuación. Las primeras tratan de evitar la generación misma de las sustancias nocivas, mientras que las segundas, son medidas de control de emisión [38].

En esta sección, se desarrollan algunas medidas de atenuación para disminuir la contaminación, particularizando al caso de los HCs y NOx provenientes de motores Otto.

En general, la composición de los gases de escape de los vehículos depende de varios factores, tales como, el modelo del motor, lubricante utilizado, combustible empleado y más concretamente, la razón aire/combustible (A/C) en la alimentación del motor. La relación A/C puede ser convertida a un parámetro adimensional denominado ‘λ’. Cuando λ = 1 equivale a A/C = 14,7; que en los motores de gasolina constituye la relación ideal para la combustión estequiométrica. En la Fig. I.2, se representan las concentraciones típicas de HCs, CO y NOx emitidas por un motor en función de λ [39].

Figura I.2. Composición de la emisión del motor de los vehículos en función de λ y de la relación A/C.
I. Introducción.

Cuando la alimentación del motor equivale a una mezcla con $\lambda < 1$ (A/C < 14,7); el motor opera en condiciones de exceso de combustible, por lo que se denomina “mezcla rica”. En este caso, la combustión es incompleta y los gases de escape resultantes contienen más agentes reductores (CO, HC) que oxidantes (O$_2$, NOx). Caso contrario, cuando $\lambda > 1$, el motor opera en exceso de aire (“mezcla pobre”) y origina gases de escape que contienen más agentes oxidantes que reductores.

En base a la naturaleza química y al contenido de los diversos constituyentes en los gases producto de la combustión, se constató que la solución a adoptar pasaría obviamente por la instalación de un sistema catalítico capaz de promover la oxidación de HCs y reducción de los NOx [40].

Desde 1979 hasta la actualidad, los catalizadores de 3 vías (TWC) son empleados en los sistemas de control de emisiones de vehículos que emplean motores Otto, porque con él se logra la conversión simultánea de HCs, CO y NOx en condiciones cercanas a la estequiométrica. Sin embargo, presentan algunas limitaciones inherentes que requieren ser mejoradas y que se encuentran en desarrollo. Estas desventajas se vinculan fundamentalmente a la poca actividad a bajas temperaturas (durante la puesta en marcha del motor) y a la poca eficiencia cuando se opera en condiciones de mezcla pobre.

En la Fig. I.3 se representa la evolución de la conversión de los HCs, CO y NOx en función de la composición que posee la alimentación del motor utilizando un catalizador de tres vías.

![Figura I.3. Conversión simultánea de CO, HCs y NOx sobre un catalizador TWC en función de λ.](image-url)
Si el motor se alimenta con una mezcla estequiométrica, $\lambda = 1$, se obtienen conversiones bastante aceptables para los tres contaminantes en cuestión. Sin embargo, una leve variación en el valor de λ causa una disminución apreciable en la conversión de uno o más de los contaminantes. De esta manera, la calidad del catalizador se evalúa en función del ancho de la banda, definido como el intervalo en el que se obtienen conversiones comprendidas entre el 85-90% para los tres contaminantes [41].

Las reacciones que permiten la transformación de estas sustancias nocivas presentes en los escapes de los motores de los vehículos se hallan termodinámicamente favorecidas. Sin embargo, las velocidades de reacción son muy lentas en ausencia de un catalizador. Dichas reacciones son las que se presentan en la Tabla I.5.

Tabla I.5. Reacciones que ocurren en los escapes de los automóviles y que contribuyen a la reducción de los contaminantes [23].

<table>
<thead>
<tr>
<th>Reacción</th>
<th>Ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidación</td>
<td>$2 \text{CO} + \frac{1}{2} \text{O}_2 \rightarrow \text{CO}_2$</td>
</tr>
<tr>
<td></td>
<td>$\text{C}_x\text{H}_y + (x/4 + 1) \text{O}_2 \rightarrow y \text{CO}_2 + (x/2) \text{H}_2\text{O}$</td>
</tr>
<tr>
<td>Reducción/3 vías</td>
<td>$\text{CO} + \text{NO}_x \rightarrow \text{CO}_2 + \frac{1}{2} \text{N}_2$</td>
</tr>
<tr>
<td></td>
<td>$\text{C}_x\text{H}_y + (2 + x/2) \text{NO}_x \rightarrow y \text{CO}_2 + (x/2) \text{H}_2\text{O} + (1 + x/4) \text{N}_2$</td>
</tr>
<tr>
<td></td>
<td>$\text{H}_2 + \text{NO}_x \rightarrow \text{H}_2\text{O} + \frac{1}{2} \text{N}_2$</td>
</tr>
<tr>
<td>Water gas-shift</td>
<td>$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$</td>
</tr>
</tbody>
</table>

Un diseño típico de un sistema moderno de un convertidor catalítico de 3 vías se presenta en la Fig. I.4.

Figura I.4. Partes del convertidor catalítico de 3 vías (TWC).
Básicamente, se trata de una carcosa de acero inoxidable en cuyo interior se instala un monolito tipo panal de abeja (honeycomb) de cordierita, cuya composición química es $2\text{MgO} \cdot 2\text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2$. La elección y las características geométricas del monolito desempeñan un papel clave en la determinación de la eficiencia del convertidor. Tradicionalmente, se utilizan los monolitos de cordierita y la disposición típica de dicho monolito contiene alrededor de 60 celdas·cm$^{-2}$. Además, los catalizadores de tres vías, se caracterizan por la presencia de una fase activa, cuya función es la de catalizar una determinada reacción química y que puede estar constituida por diferentes elementos:

- metales: nobles (Pt, Pd) ó básicos (Fe, Ni)
- óxidos metálicos de V, Mn, Fe, Cu, entre otros, comúnmente empleados en reacciones de oxidación de hidrocarburos y CO.

La incorporación de la fase activa a los monolitos se realiza mediante sucesivas impregnaciones (washcoat) [42, 43]. Este procedimiento consiste en depositar una fina capa de material de elevada superficie específica, que se encuentra altamente disperso en una suspensión acuosa, sobre las paredes de los canales de la base monolítica.

En resumen, los sistemas catalíticos empleados actualmente para eliminar contaminantes gaseosos provenientes de fuentes móviles, pueden mejorarse para alcanzar las metas previstas por las normativas establecidas a nivel mundial.

1.5. OBJETIVOS

La catálisis heterogénea ha proporcionado soluciones eficaces para el tratamiento de efluentes gaseosos. Las tecnologías que se aplican actualmente para eliminar los óxidos de nitrógeno se basan principalmente en dos métodos: la reducción catalítica con NH$_3$ empleada en fuentes de emisión fijas, y los catalizadores de tres vías desarrollados para fuentes móviles que emplean gasolina como combustible.

La reducción catalítica selectiva de NOx empleando un hidrocarburo como agente reductor representa una alternativa eficaz al uso de amoníaco para la eliminación de NOx en fuentes fijas y al empleo de catalizadores de tres vías en mezcla pobre o para medios de transporte accionados por motores diésel.

Una problemática adicional que presentan las fuentes móviles es la emisión de hidrocarburos durante el arranque en frío. Una posible solución es el empleo de un
I. Introducción.

sistema que los entrampe temporalmente a baja temperatura y los desorba gradualmente, luego de que el convertidor alcance la temperatura de light-off (~ 300 °C). Al mismo tiempo, se procura que el hidrocarburo desorbido actúe como agente reductor en la reacción de reducción de NOx en atmósfera oxidante. Esta posible solución permite la eliminación simultánea de HCs durante el arranque en frío del motor y NOx.

Para el desarrollo de esta Tesis, se ha propuesto como objetivo general el estudio de sistemas que permitan combinar el proceso de adsorción-desorción de hidrocarburos con la reducción catalítica selectiva de los NOx.

Para alcanzar el objetivo general propuesto se plantearon los siguientes objetivos específicos:

- Diseñar materiales basados en Ag o Co soportados en estructuras micro- o mesoporosas para adsorber y retener hidrocarburos y a la vez, ser catalíticamente activos en la eliminación de NOx.

- Investigar la incorporación de los metales al soporte por diferentes métodos de preparación: (i) intercambio iónico, (ii) impregnación húmeda incipiente y (iii) deposición reactiva con CO₂ supercrítico.

- Evaluar la capacidad de adsorción y temperatura de desorción empleando compuestos modelos. Butano y tolueno fueron elegidos como representativos de los hidrocarburos lineales y aromáticos presentes en los efluentes de combustión.

- Estudiar la actividad catalítica en la reducción selectiva de NOx, en presencia de oxígeno en exceso, usando tolueno o butano como agente reductor. Analizar el efecto del agregado de agua en la alimentación e investigar mediante FTIR la interacción entre el hidrocarburo adsorbido y el NO a distintas temperaturas.

- Determinar las propiedades texturales y morfológicas, junto a las especies presentes en los materiales preparados, mediante diversas técnicas de caracterización fisicoquímicas. También, se propone correlacionarlas con la capacidad de adsorción y la actividad catalítica.

En este marco, el estudio de las diferentes variables que intervienen en los fenómenos de adsorción/desorción y reacción catalítica permitirá obtener valiosa información práctica respecto de la aplicabilidad de estos catalizadores y procesos.
Asimismo, es de igual importancia el conocimiento adquirido sobre los aspectos básicos relacionados con las propiedades fisicoquímicas de los sistemas estudiados.
I. Introducción.

I.6. REFERENCIAS

I. Introducción.

I. Introducción.

Capítulo II

Estado del Arte

Reducción Catalítica Selectiva con HCs

Trampas de Hidrocarburos

Soportes Catalíticos

Fluidos Supercríticos
En este capítulo se presenta un estudio exhaustivo de la literatura estrechamente vinculada a los sistemas considerados en el desarrollo de la Tesis. Por lo tanto, se expone la revisión bibliográfica de los procesos de adsorción/desorción de hidrocarburos y sobre la Reducción Catalítica Selectiva de NOx empleando hidrocarburos como agentes reductores.

Además, se enfatizó la búsqueda sobre diferentes metales soportados sobre sustratos micro y mesoporosos y de los métodos de incorporación de dichos metales, principalmente la deposición a través de fluidos supercríticos.

II.1. REDUCCIÓN CATALÍTICA SELECTIVA DE NOx CON HCs.

La tecnología denominada “lean NOx” se refiere a la Reducción Catalítica Selectiva de NOx (RCS-NOx) en exceso de oxígeno usando un hidrocarburo como agente reductor. Esta metodología es aplicable a fuentes estacionarias y móviles. En 1990 se reportó por primera vez la RCS-NOx con HCs en atmósfera oxidante [1].

Los grupos de Iwamoto et al. [2, 3] y Held et al. [4], demostraron en forma independiente, que los alcanos o alquenos diferentes al CH$_4$ reducen el NO sobre el catalizador Cu-ZSM-5 (zeolita ZSM-5 intercambiada con Cu). Estos resultados abrieron nuevas posibilidades para la eliminación catalítica de NO en las emisiones de combustión. Desde entonces, se ha publicado un gran número de artículos referidos a la RCS empleando una gran variedad de HCs y diferentes soportes catalíticos, como óxidos metálicos y zeolitas, entre otros.

El metano, principal constituyente del gas natural, ofrece determinadas ventajas relacionadas a su abundancia en la naturaleza, que lo convierten en el combustible generalmente utilizado en las centrales térmicas y en los sistemas de transporte. Sin embargo, difiere fundamentalmente de otros hidrocarburos, en que es una molécula muy estable químicamente. La activación del metano generalmente requiere elevadas temperaturas debido a la fuerza del enlace C-H. En 1992, Li y Armor [5] fueron los primeros en reportar catalizadores de Co intercambiados en ZSM-5 efectivos para la RCS-NOx con CH$_4$ en presencia de oxígeno en exceso.

La reducción de NO con hidrocarburos en atmósfera oxidante puede entonces visualizarse como la competencia entre el NO y O$_2$ por una cantidad limitada de agente reductor, según se observa a través de las siguientes ecuaciones:
II. Estado del Arte.

\[
(2x + y/2) \text{NO} + C_xH_y \rightarrow (x + y/4) N_2 + x \text{CO}_2 + y/2 \text{H}_2\text{O} \quad \text{(Rq. II.1)}
\]

\[
C_xH_y + (x + y/4) \text{O}_2 \rightarrow x \text{CO}_2 + y/2 \text{H}_2\text{O} \quad \text{(Rq. II.2)}
\]

El término Reducción Catalítica “Selectiva” se introdujo para diferenciar a los catalizadores que en presencia de oxígeno favorecen la reacción (Rq. II.1), es decir que son selectivos hacia el N\(_2\). En cambio, los “no selectivos” son aquellos que en presencia de O\(_2\) son incapaces de reducir el NO y sólo oxidan el HC, produciendo CO\(_2\) y H\(_2\)O y favoreciendo de este modo la reacción (Rq. II.2), como por ejemplo el sólido Cu-ZSM5 cuando se emplea CH\(_4\) como agente reductor [4].

El desempeño de los catalizadores para la RCS-NO\(_x\) se caracteriza mediante el perfil de conversión de NO\(_x\) en función de la temperatura, que usualmente posee un valor máximo de conversión. Esto es debido a que cuando la conversión de NO\(_x\) es máxima, la reacción Rq. II.2 se ve desfavorecida o bien, a que el equilibrio químico de la oxidación de NO para producir NO\(_2\) se ve desplazada hacia el NO. Por lo tanto, cuando se comparan catalizadores a la misma velocidad espacial, el catalizador con mayor actividad es aquel capaz de activar el HC más fácilmente y además, presenta la temperatura más baja para obtener la máxima conversión de NO\(_x\) [6-8].

Se ha reportado una gran variedad de soportes como zeolitas y óxidos metálicos para HC-RCS en diferentes condiciones experimentales. Metales como Co, Mn, Ni, Ce, In, Ga, Pt, Pd y/o Ag soportados o intercambiados en ciertos tipos de zeolitas (ZSM-5, ferrierita y mordenita) fueron identificados como activos para la RCS de NO con distintos hidrocarburos en atmósfera oxidante [9-12]. También, existen muchos materiales no zeolíticos que catalizan la reducción de NO\(_x\), como óxidos metálicos [13] y materiales mesoporosos [14-16]. En este sentido, existen estudios recientes sobre la síntesis de sólidos bimetálicos Cu-Al-MCM-41 empleados en la reducción de NO\(_x\) y oxidación de compuestos orgánicos volátiles (COVs) [17]. Asimismo, Boutros et al. [18] analizaron el comportamiento en la RCS-NO\(_x\) con etanol de catalizadores de Ag soportados en soportes mesoporosos del tipo SBA-15, sintetizados por diferentes métodos.
II. Estado del Arte.

La bibliografía relacionada a la RCS-NOx con hidrocarburos es abundante, por lo que se seleccionaron los trabajos más representativos que emplean principalmente Ag y Co como metales activos.

Li y Armor [19, 20] fueron pioneros cuando reportaron elevada actividad del sólido Co-ZSM-5 en la reacción de NOx con metano en condiciones húmedas. A partir de este estudio, numerosos trabajos analizaron diferentes aspectos como los mecanísticos [21], la caracterización fisicoquímica [22, 23] y la desactivación de los sólidos [24-27].

En este sentido, nuestro grupo de trabajo posee una larga trayectoria en el estudio de catalizadores para la eliminación de contaminantes provenientes de motores, instalaciones industriales y fuentes generadoras de potencia. Entre los procesos catalíticos más estudiados han tenido especial importancia aquellos que se basan en el uso de metal-zeolitas aplicados a la reducción selectiva de NOx en exceso de oxígeno y vapor de agua [28-32] y a la oxidación de CO [33-36]. En los últimos años, el grupo desarrolló catalizadores en base a In y Co promovidos con Pt y Fe e intercambiados sobre ZSM-5, Ferrierita y Mordenita [30, 37] que resultaron efectivos para la reducción selectiva de NO empleando metano como agente reductor. Sin embargo, todas estas formulaciones se desactivan en presencia de agua, una problemática común a todas las preparaciones basadas en zeolitas. El mecanismo de desactivación de los sólidos Co-zeolitas ha sido abordado por el grupo, primero estudiando la desactivación cuando la matriz es ZSM-5 [31] y más recientemente cuando se trata de mordenita [38, 39]. En ambos casos, la pérdida de actividad está relacionada con la formación de óxidos de cobalto y la migración de iones Co$^{2+}$ hacia sitios menos accesibles de intercambio. En ZSM-5 predomina el primer factor, mientras que en mordenitas, el segundo. A pesar de esto, también se observó que la adición de un segundo catión promueve la reducción de los NOx y mejora la resistencia a la desactivación por efecto del vapor de agua [39].

Recientemente, Chen et al. [40] estudiaron la actividad y estabilidad del catalizador Co-Beta en la RCS-NOx con metano, obteniendo buena estabilidad durante 30 horas de reacción en ausencia de SO$_2$. Sin embargo, con la adición de 78 ppm de SO$_2$ observaron una disminución reversible de la actividad catalítica. También es importante destacar el estudio reportado por Rodrigues et al. [41], donde analizan el efecto de la incorporación de 1 y 3 % p/p de Co al sólido PdSiBEA en la RCS-NOx con metano. En estas condiciones se obtuvo una conversión máxima de NOx a N$_2$ de 55 %. Palomares et al. [42] estudiaron la actividad de diferentes zeolitas que contienen cobalto con distintas
topologías y composiciones. Con el fin de obtener un catalizador activo para la reducción de NOx determinaron que es necesario que el soporte zeolítico posea una topología adecuada: tamaño medio de poros y una relación atómica Si/Al entre 8 y 30.

Asimismo, se reportaron varios estudios sobre las propiedades catalíticas de sólidos basados en plata para la RCS-NOx con hidrocarburos [43-49]. Los catalizadores de Ag/Al₂O₃ resultaron ser activos en la reducción de NOx en presencia de hidrocarburos oxigenados, tales como etanol, acetona o éter [50]. Sin embargo, en comparación con la alúmina, las zeolitas ofrecen sitios de intercambio que permiten estabilizar los iones Ag⁺ [51].

Es importante el estudio del comportamiento catalítico simulando condiciones próximas a las reales, es decir, elevadas velocidades espaciales, atmósfera oxidante y en presencia de vapor de agua y SO₂. En este sentido, Burch et al. [52] alcanzaron 60 % de conversión a N₂ en seco, con 0,5 % de propeno y una relación C/N de 3 sobre catalizadores con 10 % p/p de Ag soportada en Al₂O₃. Lee et al. [53] reportaron la influencia de 10 % de agua en la corriente de alimentación (0,12 % etanol, C/N = 4,8, 100000 h⁻¹) obteniendo 90 % como conversión máxima de NOx. En este sentido, el grupo de Iglesias [54], también reportó una conversión de NOx cercanas a 80 % con catalizadores Ag/Al₂O₃, 0,1 % C₃H₆, C/N = 3, 10000 h⁻¹ y 3 % H₂O.

Asimismo, el grupo de Li et al. [55] estudiaron la actividad catalítica de muestras Ag-ZSM-5 (8 % p/p de Ag) con CH₄ como agente reductor, 0 % H₂O, C/N = 1 y una velocidad espacial de 7500 h⁻¹. En estas condiciones alcanzaron 35 % de conversión a N₂. También, se obtuvieron conversiones máximas de NOx cercanas a 11 % sobre materiales con 7 % p/p de Ag intercambiada en mordenita [56]. Las condiciones empleadas en este caso fueron 19000 h⁻¹, C/N = 3, 0 % H₂O y 0,1 % de propano como reductor. Masuda et al. [57] en condiciones secas alcanzaron una conversión máxima a nitrógeno de 25 % empleando catalizadores Ag-mordenita, con 3 % p/p de Ag, 1250 ppm de (CH₃)₂O y 15 % de oxígeno, siendo la velocidad espacial de 33000 h⁻¹. La conversión de los óxidos de nitrógeno alcanzada por el grupo de Furusawa [58] intercambiando 2 % p/p de Ag en ZSM-5 fue similar (30 %) utilizando 0,1 % de propano, 5 % de O₂ y 15000 h⁻¹.

Por lo tanto, es importante destacar que los materiales basados en Ag, representan catalizadores prometedores para las reacciones catalíticas de reducción de óxidos de nitrógeno.
Además, recientemente se destacan algunos trabajos de metales soportados sobre sustratos mesoporosos utilizados en la RCS-NOx con HCs. Sobczak et al. [59] estudiaron mediante FTIR la interacción entre propano, oxígeno y las especies presentes en los catalizadores de Pt/NbMCM-41 y Pt/SiMCM-41 con 1 % p/p de Pt, con la finalidad de utilizar dichos sólidos en la RCS de NOx con propano. Ademá as, Zhang et al. [60] estudiaron la influencia de Cu, Cr, Fe, Al, Cu–Al, Cr–Al y Fe–Al sobre el sustrato mesoporoso SBA-15 en la reducción de NOx con 3000 ppm de propano, 1 % O$_2$ y 60000 h$^{-1}$. En estas condiciones, alcanzaron una conversión máxima de 80 % sobre los sólidos Cu-Al/SBA-15 a 350 °C.

Sin embargo, no existe mucha información respecto a catalizadores de Co o Ag soportados en sustratos mesoporosos aplicados en la reducción catalítica selectiva de NOx con hidrocarburos. En este sentido, solamente el grupo de Boutros [18] reportó el conversiones de NOx a N$_2$ entre 30 y 40 % obtenidas con catalizadores de Ag(2,5)SBA-15, en atmósfera oxidante y utilizando etanol como agente reductor.

II.2. TRAMPAS DE HIDROCARBUROS. PROCESOS DE ADSORCIÓN/DESORCIÓN.

Las trampas de hidrocarburos surgen como un método efectivo para controlar las emisiones de HC durante el arranque en frío del motor de los vehículos. Una serie de materiales como tamices moleculares de carbón [61], zeolitas BEA, MFI, MOR, X, SSZ-33, SS-41, ZSM-5 y sólidos mesoporosos del tipo MCM-41, AlMCM-41, SBA-15, han sido propuestos como adsorbentes por su estabilidad térmica a elevada temperatura y su afinidad termodinámica por los HCs.

II.2.a. Comportamiento de zeolitas y sílices mesoporosas en la adsorción y desorción de hidrocarburos.

Comúnmente, las zeolitas no protónicas se emplean en los procesos de adsorción para evitar cualquier transformación catalítica de los adsorbatos en los sitios ácidos. Diversas zeolitas como ser, A, X, Y, mordenita y beta en su forma catiónica fueron empleadas como adsorbentes en aplicaciones prácticas o estudios básicos [62]. En la separación de mezclas (líquidas o gaseosas), dos parámetros principales gobiernan el proceso de separación. Primero, las limitaciones cinéticas son importantes para
II. Estado del Arte.

favorecer la difusión de algunos reactivos. Esto se relaciona con el empaquetamiento molecular y selectividad de forma. La segunda característica se vincula con las propiedades químicas de los reactivos. Sutiles diferencias en las propiedades de diversos componentes de la mezcla adsorbidos pueden generar diferentes interacciones con los sitios de adsorción de las zeolitas. El carácter ácido-base de los adsorbentes es importante en esta etapa. La basicidad de las zeolitas es fácilmente expresada a través del cálculo del parámetro de electronegatividad promedio (Si). Para varios componentes como, hidrocarburos, alcoholes o agua; la energía de activación de la desorción puede correlacionarse con la electronegatividad promedio.

El estudio de la adsorción de benceno en faujasita, mostró que el aromático puede adsorberse sobre los cationes en diferentes sitios de la zeolita [63, 64]. Además, se observó que la localización depende del balance entre la acidez del catión y la basicidad del oxígeno y de la carga [65, 66].

Una de las aplicaciones más importantes es la selectividad en la adsorción de componentes de una mezcla. Por ejemplo, la separación de aromáticos C₈ (o-, m- y p-xilenos y etilbenceno), lo cual es de gran importancia en la industria. Estos compuestos poseen puntos de ebullición muy próximos por lo que la adsorción selectiva en zeolitas es un proceso atractivo en el cual se evita la dificultad de la separación por destilación o cristalización.

Diferentes factores influyen en el proceso de adsorción-desorción, tales como la estructura de la zeolita, la relación Si/Al y el potencial iónico del catión intercambiado, así como también la basicidad y geometría del hidrocarburo. De los diferentes estudios realizados se obtuvieron conclusiones significativas que relacionan la eficiencia en la separación con las propiedades ácido-base de las zeolitas. Se ha propuesto que existe un balance entre la electronegatividad promedio de la estructura y la basicidad del compuesto aromático (relacionado con los electrones π).

Recientemente, Kaliaguine y colaboradores [67] sintetizaron materiales con una estructura compuesta por dos tamaños de poros, micro- y mesoporosos, donde las zeolitas están en forma de nanocristales inter-crecidos en las paredes de los mesoporos de la matriz de aluminosilicato. Se evaluaron las propiedades relacionadas con la adsorción y difusión de hidrocarburos C7 (heptano, tolueno y o-xileno) en los diferentes materiales. Este grupo de investigación, también exploró diversas formulaciones,
basadas en silicoaluminatos y silicoaluminofosfatos de grandes poros unidimensionales para su aplicación como trampa de hidrocarburos [68, 69].

Meininghaus y Prins [70] estudiaron la adsorción de tolueno, p-xileno y n-pentano en zeolitas pertenecientes a familias con diferentes estructuras cristalinas. La adsorción y desorción de estos compuestos se analizó en presencia y ausencia de agua, utilizando la metodología de la curva de ruptura (breakthrough curve) para determinar la capacidad de adsorción. Todos los ensayos se realizaron a 25 ºC, con una concentración de 1000 ppm de hidrocarburo. Las zeolitas empleadas fueron H-ZSM-5 (MFI), FAU y H-MOR. En este caso, se determinó que la capacidad de adsorción está directamente relacionada con las dimensiones de los poros y de las cavidades de la zeolita. Además, la presencia de cationes Al\(^{3+}\) afecta la adsorción de compuestos polares; por lo tanto en zeolitas con menor relación Si/Al (en este caso, Y y mordenita) está favorecida la adsorción de compuestos polares. Finalmente, la adsorción de agua por las zeolitas, es inversamente proporcional a la relación Si/Al.

También, empleando isotermas de adsorción, Calleja et al. [71] mostraron que la adsorción de etileno sobre ZSM-5 aumenta con la disminución de la relación Si/Al (en el rango comprendido entre 5 y 60), mientras que la adsorción de propano se ve afectada muy poco. En esta misma línea, Sakuth et al. [72] reportan que la adsorción de 1-propanol sobre zeolita Y también se ve favorecida cuando la relación Si/Al es baja (entre 13 y 100), mientras que la adsorción de tolueno no se ve afectada.

Serra et al. [73] estudiaron la capacidad de adsorción y estabilidad térmica de tolueno sobre zeolitas ZSM-5 y mordenita con diferentes cationes de intercambio: H\(^+\), Na\(^+\) y Cs\(^+\). En este caso, se determinó que en general, la mordenita posee mejor capacidad de adsorción que la zeolita ZSM-5, mientras que la estabilidad térmica del tolueno adsorbido es determinada por el catión intercambiado. Además, se analizó la influencia de la basicidad que otorga el Cs al intercambiarse en la zeolita Na-mordenita sobre la adsorción de tolueno a baja temperatura [74]. En este sentido, Barthomeuf et al. [75-77] estudiaron la adsorción de hidrocarburos lineales y aromáticos y su interacción sobre diferentes estructuras zeolíticas y analizaron la influencia de la acidez y basicidad que confieren diferentes metales intercambiados en la matriz.

Czaplewski et al. [78] analizaron la orientación de los canales zeolíticos y su influencia en la adsorción, difusión y desorción de propano y tolueno. En consecuencia, estudiaron zeolitas unidimensionales, EUO y mordenita, y tridimensionales Y y ZSM-5.
Los resultados que obtuvieron permitieron demostrar que las zeolitas unidireccionales atrapan el propano hasta elevadas temperaturas, porque las moléculas de tolueno bloquean la difusión del hidrocarburo lineal. En cambio, en aquellos materiales multidireccionales, el propano es capaz de difundir a través de las moléculas del hidrocarburo aromático.

En una de las primeras comunicaciones sobre el uso de sílices mesoporosas como adsorbentes de hidrocarburos, Zhao et al. [79] analizaron el comportamiento del material en la adsorción de benceno, tetrachloruro de carbono y n-hexano. El material MCM-41 empleado en el estudio tenía una superficie específica y un volumen de poro de 1060 m2·g$^{-1}$ y 0,87 cm3·g$^{-1}$, respectivamente. Esto se tradujo en capacidades de adsorción 2 ó 3 veces superior a las obtenidas con las zeolitas. No obstante, se requiere de elevadas presiones parciales del hidrocarburo para aprovechar completamente la capacidad de adsorción de este material. Es decir, a bajas presiones parciales (bajas concentraciones) la capacidad de adsorción de las zeolitas es superior. Por otra parte, resultados de desorción a temperatura programada (TPD) indican que el HC puede ser desorbido con facilidad de la MCM-41 a temperaturas relativamente bajas (50-60 ºC), con lo que la sílice recupera su capacidad adsorbente.

El grupo de Choudhary [80, 81] estudió la desorción a temperatura programada de tolueno, p-xileno, mesitileno y naftaleno sobre MCM-41, Na-AlSi-MCM-41 y H-AlSi-MCM-41. La capacidad de adsorción de los hidrocarburos aromáticos siguen el siguiente orden: tolueno < p-xileno < misitileno < naftaleno, la cual aumenta a medida que disminuye el potencial de ionización del los HCs.

El soporte mesoporoso conocido como SBA-15 se caracteriza por contener microporos además de mesoporos, y por ser más resistente que la MCM-41. Serrano et al. [82], compararon la adsorción de tolueno, iso-pentano y agua sobre MCM-41 y SBA-15 con tamaños de poro de 2,3 y 6,4 nm, respectivamente. Estos autores encontraron que la capacidad de adsorción es mayor en MCM-41. También, Kosuge et al. [83] obtuvieron una tendencia similar: la capacidad de adsorción de benceno y tolueno en SBA-15 (con un volumen de poro de 0,64 cm3·g$^{-1}$) es menor que la capacidad de adsorción en MCM-41 (tamaño de poro de 2,1 nm y volumen de poro de 0,75 cm3·g$^{-1}$). Los autores sugieren que la capacidad de adsorción es menor debido a la microporosidad de la SBA-15.
II. Estado del Arte.

II.3. Soportes Catalíticos

II.3.a. Zeolitas.

Las zeolitas son aluminosilicatos cristalinos hidratados. Algunas se encuentran disponibles en la naturaleza, mientras que otras son sintetizadas en el laboratorio. Están compuestas por tetraedros SiO$_4$ y AlO$_4^-$ unidos entre ellos a través de átomos de oxígeno comunes, dando lugar a estructuras tridimensionales con canales y huecos o cavidades características. Son sólidos microporosos, es decir que sus canales o las entradas a las cavidades tienen un tamaño inferior a los 2 nm. La fórmula general de una zeolita es $M_{x/n}[(AlO_2)_x(SiO_2)_y \cdot w(H_2O)]$, en donde M es un metal con valencia “n”, los índices “x” e “y” indican la composición en óxidos y “w” es el número de moléculas de agua de hidratación que contiene la estructura [84, 85].

La composición química de la zeolita se caracteriza por la relación atómica Si/Al que, de alguna manera determina su estructura cristalina y su química superficial. Actualmente, existen más de 50 tipos de zeolitas con diferentes propiedades físicas y químicas: composición, estructura cristalina, presencia de canales uni-, bi- y/o tridimensionales, tamaño de poro, entre otras [86].

Los tetraedros SiO$_4$ y AlO$_4^-$ se denominan unidades primarias de construcción. Éstos se unen entre ellos, compartiendo átomos de oxígeno, para formar poliedros o unidades secundarias que, a su vez, se agrupan formando 16 posibles polígonos o unidades terciarias. El agrupamiento de estas unidades terciarias origina la estructura tridimensional de la zeolita. Las entradas a los poros y cavidades están constituidas por anillos de 6, 8, 10 y 12 miembros, lo que determina sus dimensiones. Por ejemplo, en la Fig. II.1 se representa la estructura de la zeolita Mordenita (MOR) y puede observarse que la entrada a la cavidad principal de la zeolita MOR está formada principalmente por un anillo de 12 miembros (canal principal) y otro de 8 miembros (canal secundario) [87].

El tamaño de poro o de entrada a la cavidad determina el comportamiento de la zeolita como adsorbente. Así sólo podrá adsorber compuestos con un diámetro cinético inferior a su tamaño de poro. Es lo que se denomina selectividad de forma [88].
Además, las zeolitas reúnen algunas características necesarias para su aplicación a escala industrial en diferentes procesos catalíticos y como adsorbentes de hidrocarburos [89-91]:
- Las zeolitas están formadas por canales y cavidades regulares y uniformes de dimensiones moleculares (< 20 Å) que son medidas similares a los diámetros cinéticos de varias moléculas reactivas. Este tipo de estructura microporosa hace que las zeolitas presenten una superficie interna extremadamente grande en relación a su superficie externa.
- Son materiales estables hidrotérmicamente en las condiciones de trabajo, y no inflamables.
- Su hidrofobicidad puede ajustarse seleccionando un material adecuado o controlando las condiciones de síntesis.
- La estructura de poro característica de un tipo concreto de zeolita hace que su comportamiento como adsorbente sea reproducible.
- La composición química de las zeolitas hace que su superficie sea polar, lo que conlleva a una interacción preferencial con moléculas polares. Pero por otro lado, la incorporación de cationes Al\(^{3+}\) en lugar de Si\(^{4+}\) origina un exceso de carga negativa en la estructura, que debe ser compensado mediante la presencia de otros cationes extraestructurales. La existencia de estos cationes (Na\(^+\), H\(^+\)) genera acidez superficial, la cual
II. Estado del Arte.

puede catalizar determinadas reacciones de algunos HCs adsorbidos, dando lugar a especies diferentes de las adsorbidas, que pueden incluso, quedar retenidas de manera irreversible en la superficie de la zeolita.

- El tamaño de poro y la textura porosa que caracteriza a las zeolitas permite selectividad de tamaño y/o forma, favoreciendo la adsorción de determinadas especies sobre otras. Asimismo, la similitud entre el tamaño de poro y el tamaño molecular de las especies a adsorber, puede potenciar las interacciones adsorbente-adsorbato, lo que facilita la adsorción de los componentes con interacciones favorables. Sin embargo, el tamaño de poro de las zeolitas puede ser también un factor limitante en la adsorción de moléculas de gran tamaño que puedan estar presentes en la corriente a tratar.

- El intercambio iónico es una propiedad intrínseca de estos materiales y, es el producto de la sustitución isomorfa de los átomos de silicio de su estructura por otros átomos. En el caso de las zeolitas esta sustitución ocurre por átomos tetravalentes de aluminio lo que produce una carga neta negativa en la estructura que se compenSA por cationes extra-red. El intercambio iónico en las zeolitas depende de varios factores que determinan la selectividad hacia determinados cationes, entre ellos: la naturaleza y concentración de los cationes en solución, temperatura, aniones asociados a los cationes en solución, relación solvente/agua, naturaleza del solvente, densidad de la carga de red, topología de la red, entre otros. La capacidad de intercambio iónico de una zeolita es una magnitud que brinda una medida de la cantidad de equivalentes de un catión que es capaz de retener por intercambio iónico una masa de zeolita, y está directamente relacionada con el Al presente en la red y depende de su composición química [92].

Debido a las interesantes propiedades de los canales unidimensionales se eligió la estructura NaMordenita como soporte microporoso, con una relación Si/Al = 6,5 y cuya fórmula general es Na\textsubscript{6,4} (AlO\textsubscript{2})\textsubscript{6,4} (SiO\textsubscript{2})\textsubscript{41,6} · n H\textsubscript{2}O. Esta zeolita posee sitios que tienen funciones específicas en reacciones catalíticas [93].

El grupo de Wichterlová estudió mediante UV-Vis y FTIR, la ubicación de diferentes iones metálicos, Co2+, Cu2+ y Fe3+ en zeolitas mordenita, ferrierita, ZSM-5 o Beta [94-97].

En la Fig. II.2 se ilustran los posibles sitios de localización de iones Co2+ en la zeolita Na-Mordenita (NaMOR) en función de los estudios UV-Vis reportados por Kaucký et al. [94].
Los iones metálicos que se ubican en el sitio llamado ‘α’ (correspondiente al sitio E de acuerdo a la notación de Mortier [98]) se ubican en el canal principal de la NaMOR, de modo que se coordinan a los oxígenos del anillo de 6 miembros formado por 2 anillos pentasil. Estos iones presentan la unión más débil con los oxígenos de la estructura zeolítica. En cambio, los sitios de intercambio denominados como ‘β’ (sitio A [98]), representan cavidades laterales menos accesibles porque poseen uniones relativamente más fuertes entre el catión y los oxígenos de la estructura zeolítica en comparación con el sitio ‘α’. En este sitio, los iones metálicos se coordinan con los oxígenos del anillo de 8 miembros de la cavidad de la mordenita.

El sitio catiónico de intercambio ‘γ’ (sitio C [98]), característico por su forma de bote (boat-shaped) ofrece elevada coordinación con gran fuerza de enlace entre el catión y los oxígenos de la zeolita.

Es importante destacar que la población de los sitios individuales con los cationes depende fuertemente de la concentración metálica en la mordenita y de la presencia de co-cationes. En el caso específico del cobalto [99], el sitio más poblado es el ‘β’ (50-70 %), seguido por el ‘α’ (10-30 %) y luego, por el ‘γ’ (0-15 %), en función de la relación Co/Al.

Sin embargo, los materiales zeolíticos se encuentran parcialmente limitados cuando requieren adsorber moléculas de elevado diámetro cinético. Por lo tanto, resulta de interés disponer de materiales porosos con mayor diámetro de poro. Esto ha motivado la
II. Estado del Arte.

II.3.b. Materiales mesoporosos.

Se diferencian de las zeolitas fundamentalmente porque las paredes de sus poros no son cristalinas, sino que están constituidas por sílice amorfa que no presenta orden a nivel atómico, de modo que el orden de estos materiales se encuentra relacionado con la disposición de los poros. Los materiales mesoporosos se han estudiado como posibles sustitutos de las zeolitas, aunque su superficie es también polar, no tienen la acidez de las zeolitas al no contener cationes aluminio [100]. Además, el tamaño de sus poros es superior a los 2 nm, lo que hace que no haya selectividad de forma ni presenten problemas de difusión intra-partícula [101].

Entre los sólidos mesoporosos más estudiados, un gran avance se originó en 1992 cuando la Mobil Research and Development Corporation publicó la síntesis de una serie de silicatos mesoporosos que designaron como la familia M41S. Los principales sólidos porosos de esta familia se denominan MCM-41, MCM-48 y MCM-50 (MCM: Mobil Composition of Matter) [102, 103]. El sólido MCM-50 tiene una estructura laminar inestable, mientras que, el MCM-48 posee una estructura metaestable porosa cúbica, que consta de dos sistemas de canales tridireccionales independientes entre sí (Fig. II.3).

![Figura II.3. Familia de materiales mesoporosos M41S.](image)
II. Estado del Arte.

La estructura de la sílice MCM-41 (Fig. II.4) está constituida por una red hexagonal bien definida de poros cilíndricos unidireccionales, que proporciona al material una alta superficie específica (~ 1000 m2·g$^{-1}$) y un elevado volumen de poro [104].

Figura II.4. Estructura del material MCM-41.

En términos generales, la síntesis de estos sólidos se lleva a cabo mediante la interacción entre una fase inorgánica y otra micelar de naturaleza orgánica. Los agentes precursoros de la estructura o surfactantes (templates) se caracterizan por ser moléculas con carácter anfífilico o también llamadas “moléculas anfifáticas”. Es decir que, poseen un extremo hidrofílico (soluble en agua) y otro hidrófobo (rechaza el agua), que suele normalmente ser una cadena hidrocarbonada. Generalmente, estas dos partes tienden a separarse si se agregan a una mezcla con otras sustancias, lo cual no puede cumplirse debido a que ambos extremos se encuentran unidos por un enlace químico [105, 106].

Los surfactantes o templates empleados en la síntesis de materiales mesoestructurados se pueden clasificar en función de la naturaleza del grupo polar, de la siguiente manera [107]:

- **Surfactantes catiónicos**: presentan una cabeza con carga positiva y, una cola formada por una cadena hidrocarbonada que suele conformar la zona hidrófoba de la molécula. Las sales de alquiltrimetilamonio son surfactantes de este tipo y, son las más empleadas en la síntesis de los materiales mesoporosos de la familia M41S.

- **Surfactantes aniónicos**: son aquellos que poseen un grupo polar con carga negativa y una cola que se encuentra constituida por un hidrocarburo de cadena larga.
- **Surfactantes zwitteriónicos**: se tratan de surfactantes bipolares en los que coexisten un grupo aniónico y otro cationico. Dependiendo de las condiciones de síntesis la carga se encontrará en uno u otro grupo, pudiendo ser positiva, neutra o negativa, en función de que estén o no protonados.

- **Surfactantes no iónicos**: están constituidos por moléculas no iónicas ni ionizables en condiciones normales. La cadena hidrófílica está formada normalmente por una cadena de polióxido de etileno y, la cola es una cadena alifática o alquiraromática.

- **Surfactantes neutros**: tienen una cabeza polar formada por un grupo amino, que puede o no protonarse (dependiendo de las condiciones de síntesis) y de una cadena hidrocarbonada larga.

Como cualquier otro surfactante, forman micelas (Fig. II.5) cuando están en solución acuosa bajo determinadas condiciones porque tiene una cadena hidrófoba y una hidrófila que no pueden separarse. Las micelas del surfactante sirven como plantillas o moldes y crean la porosidad interna del sólido. Una micela es en sí misma un conglomerado de moléculas que constituye una de las fases de los coloides.

El ordenamiento micelar, responsable de la estructuración del material final, se atribuyó a la presencia de moléculas de surfactante en medio acuoso, bajo condiciones determinadas de temperatura, pH y concentración, formando estructuras ordenadas conocidas como cristales líquidos [108]. El mecanismo de formación de los materiales MCM-41, se fundamenta en un proceso sol-gel que puede explicarse de la siguiente manera:

![Figura II.5. Micela esférica inicial.](image-url)
II. Estado del Arte.

a. Formación de la micela. En esta etapa inicial (Fig. II.5), es necesaria la disolución del surfactante elegido. Cuando el agente estructurante (tensoactivo) se disuelve en un solvente, la energía superficial se reduce rápidamente y en forma lineal con el aumento de la concentración [109].

Esta disminución se debe al enriquecimiento preferencial y a la disposición ordenada de las cabezas hidrofílicas del surfactante dentro de la solución acuosa. Sin embargo, dicha disminución se detiene cuando se alcanza la concentración micelar crítica (c.m.c.) y la energía se mantiene constante con el aumento de la concentración del surfactante, como se observa en la Fig. II.6. Además, en general la energía superficial de una solución cambia con la adición de solutos orgánicos e inorgánicos. Por debajo de la c.m.c., la energía superficial disminuye debido a un aumento del cubrimiento de las moléculas de surfactante en la superficie, a medida que aumenta la concentración. En el punto de c.m.c., la superficie es totalmente cubierta por las moléculas del surfactante. Por encima de la c.m.c., el agregado de mayor cantidad de surfactante produce la segregación y formación de agregados coloidales, o micelas [110]. Las micelas iniciales son esféricas (Fig. II.5) e individualmente dispersas en la solución y se convierten en una barra cilíndrica a medida que aumenta la concentración del template. Concentraciones aún mayores pueden generar micelas laminares. Estas micelas, en particular de arreglo hexagonal o cúbico, se utilizan como molde para sintetizar materiales mesoporosos ordenados a través del método sol-gel [111].

![Figura II.6. Efecto de diferentes solutos en la tensión superficial de una solución.](image-url)
II. Estado del Arte.

b. Formación de la barra cilíndrica micelar. A medida que se aumenta la concentración de surfactante en solución, se forma primero la micela cilíndrica individual. Luego, las varas micelares se ordenan de manera tal que permiten la obtención del arreglo hexagonal (Fig. II.7) [112].

Fig. II.7. Mecanismo propuesto para la formación de MCM-41 [108]; (a) hidrólisis de la fuente de Si, (b) formación de varias varas micelares, (c) condensación.

c. Adición de la fuente de Si. Proceso Sol-Gel. El proceso de síntesis sol-gel es una ruta química que ofrece una serie de ventajas frente a otros métodos como, la baja temperatura y homogeneidad a nivel molecular. Usualmente, este método involucra la hidrólisis y condensación de los precursores, que pueden ser alcóxidos de metales o sales inorgánicas u orgánicas. Además, para disolver los precursores se emplean solventes orgánicos o acuosos. En algunas ocasiones, se utilizan otras sustancias para promover las reacciones de hidrólisis y condensación [113]. Normalmente, los grupos alcóxidos son elegidos en un proceso de síntesis sol-gel como fuente de silicio. La reactividad de los precursores elegidos depende en gran medida del grado de transferencia de carga y de la capacidad de aumentar su número de coordinación. Como regla general, cuando la electronegatividad de un átomo metálico disminuye, la habilidad de incrementar su número de coordinación aumenta junto a su radio iónico, como se observa en la Tabla II.2. En consecuencia, la reactividad química de los alcóxidos metálicos aumenta con su radio iónico.
Tabla II.2. Electronegatividad, χ; carga parcial, δM; radio iónico, r; y número de coordinación, n; para algunos metales tetravalentes.

<table>
<thead>
<tr>
<th>Álcaloído$^{(a)}$</th>
<th>χ</th>
<th>δM</th>
<th>r (Å)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(OPri)$_4$</td>
<td>1,74</td>
<td>+0,32</td>
<td>0,40</td>
<td>4</td>
</tr>
<tr>
<td>Ti(OPri)$_4$</td>
<td>1,32</td>
<td>+0,60</td>
<td>0,64</td>
<td>6</td>
</tr>
<tr>
<td>Zr(OPri)$_4$</td>
<td>1,29</td>
<td>+0,87</td>
<td>0,87</td>
<td>7</td>
</tr>
<tr>
<td>Ce(OPri)$_4$</td>
<td>1,17</td>
<td>+0,75</td>
<td>1,02</td>
<td>8</td>
</tr>
</tbody>
</table>

(a) (OPri)$_4$ representa OCH$_2$CH$_3$CH$_3$.

Las reacciones de hidrólisis y condensación son procesos de varios pasos, que se producen de manera secuencial, en paralelo y pueden ser reversibles. Estas reacciones en forma general son las siguientes [114]:

Reacción de Hidrólisis:

\[
M(OEt)$_4$ + x H$_2$O \leftrightarrow M(Oet)$_{4-x}$(OH)$_x$ + x EtOH
\] \hspace{1cm} (Rq. II.3)

Reacción de Condensación:

\[
M(OEt)$_{4-x}$(OH)$_x$ + M(OEt)$_{4-x}$(OH)$_x$ \leftrightarrow (OEt)$_{4-x}$(OH)$_{x-1}$MOM(OEt)$_{4-x}$(OH)$_{x-1}$ + H$_2$O
\] \hspace{1cm} (Rq. II.4)

La condensación resulta en la formación de grupos óxidos o hidróxidos metálicos, a menudo con grupos orgánicos incrustados o adjuntos a ellos. Estos grupos orgánicos pueden ser debidos a la hidrólisis incompleta o introducidos como ligandos orgánicos no hidrolizables. En la Fig. II.7, se presenta un esquema de los procesos involucrados para la síntesis del material mesoporoso MCM-41 [108]. La dimensión y el tamaño del sistema del poro son dictados por la dimensión y el tamaño de las micelas en solución. En el caso del material MCM-41 hexagonal, el diámetro de poro se encuentra entre 20 y 40 Å cuando la longitud de la cadena del alquilo en el surfactante varía entre C8 y C16. Por último, mediante la calcinación, se elimina el excedente de surfactante.
Las paredes silíceas de estos materiales no presentan ningún orden y se encuentran repletas de defectos estructurales procedentes de la hidrólisis de la fuente de sílice y su posterior condensación. Esta condensación no es completa por lo que quedan átomos de silicio unidos a grupos OH en las paredes, denominados grupos silanoles.

II.4. FLUIDOS SUPERCRÍTICOS

Uno de los métodos de preparación explorados en esta Tesis fue el empleo de fluidos en condiciones supercríticas para incorporar un metal a un soporte poroso.

Los fluidos supercríticos son disolventes ideales, ya que su elevada difusividad le permite penetrar perfectamente a través de matrices porosas y su capacidad de solvatación modulable les otorga gran versatilidad y selectividad según las condiciones de presión y temperatura a las que se sometan. Por lo tanto, representan un medio eficaz para la incorporación de metales dentro de sólidos porosos.

Un fluido se encuentra en su estado supercrítico cuando se somete a condiciones por encima de su presión y temperatura crítica. En este estado, la línea de separación de fases líquido-gas se interrumpe, lo que implica la formación de una sola fase (Fig. II.8). Los fluidos supercríticos (FSCs) presentan propiedades que, en muchos aspectos, son únicas y que difieren considerablemente de las correspondientes al estado líquido o gaseoso original. Básicamente, un FSC posee propiedades intermedias entre las de un líquido y las de un gas. Así ocurre con la densidad y las propiedades de transporte, viscosidad, difusividad y conductividad calorífica. En la Tabla II.3, se indican valores típicos de estas propiedades para líquidos y gases en condiciones ambientales y para un FSC en las proximidades del punto crítico [115, 116].

La densidad de los FSCs es próxima a la de los líquidos, lo que influye en la solubilidad. En cambio, la viscosidad se acerca a la de los gases, lo que facilita su movilidad. La difusividad en los FSCs presenta valores intermedios entre los gases y líquidos, de modo que aquellas reacciones heterogéneas en fase líquida que están limitadas por las etapas de transporte, como las que utilizan catalizadores porosos o enzimas, pueden ver incrementada su velocidad operando en condiciones supercríticas.
Figura II.8. Diagrama de fases.

La conductividad calorífica se aproxima a la de los líquidos, lo que indica mejores propiedades respecto a la conducción de calor [115]. Los FSCs tienden a ocupar todo el volumen del recinto y no presentan tensión interfacial, comportamiento similar a los gases (Tabla II.3).

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Gas (1)</th>
<th>FSC (2)</th>
<th>Líquido (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad (kg.m⁻³)</td>
<td>0,5-2,0</td>
<td>200-500</td>
<td>500-1500</td>
</tr>
<tr>
<td>Viscosidad (mPa.s)</td>
<td>0,01-0,3</td>
<td>0,01-0,03</td>
<td>0,2-3,0</td>
</tr>
<tr>
<td>Difusividad (m².s⁻¹)</td>
<td>10⁻⁵</td>
<td>10⁻⁷</td>
<td>10⁻⁹</td>
</tr>
<tr>
<td>Conductividad (W.m⁻¹.K⁻¹)</td>
<td>0,01-0,02</td>
<td>0,05-1</td>
<td>0,1-0,2</td>
</tr>
</tbody>
</table>

(1) Propiedades a temperatura ambiente.
(2) Propiedades en las proximidades del punto crítico.

Al igual que los gases, la densidad de los FSCs varía enormemente con la presión y la temperatura, aunque se alcanzan densidades muy cercanas a las de los líquidos. Así pues, la propiedad característica de los FSCs es el amplio rango de altas densidades que pueden adoptar dependiendo de las condiciones de presión y/o temperatura (a diferencia
de los líquidos que son prácticamente incompresibles y de los gases que poseen densidades muy bajas).

En la Fig. II.9 se presentan las isotermas para un fluido, lo que indican cómo varía su densidad con la presión. Se observa que por encima del punto crítico existe una sola fase y, para densidades altas la curva se mantiene plana, lo que implica grandes variaciones de densidad para pequeños incrementos de presión.

![Figura II.9. Densidad de los fluidos comprimidos.](image)

Por lo tanto, considerando la relación directa que existe entre la densidad del fluido con el poder de solvatación, los FSCs pueden variar enormemente su capacidad de solvatación mediante pequeñas variaciones en la presión y/o temperatura.

Por lo tanto, el conocimiento de las propiedades termodinámicas de los FSC y de su comportamiento en las proximidades del punto crítico es esencial para el diseño apropiado de reacciones y procesos de separación.

De este modo, las aplicaciones principales de los fluidos supercríticos son [117-119]:

- **Extracción**: no deja residuos, se obtienen extractos de elevada pureza y no requiere altas temperaturas.

- **Síntesis y preparación de materiales**: los FSCs permiten la obtención de materiales sólidos con propiedades controladas, entre las que pueden destacarse la obtención de aerogeles y la síntesis de partículas ultrafinas (nanopartículas) con morfología muy uniforme, alta pureza y libres de residuos de disolvente.
- **Medio de reacción**: la existencia de una sola fase permite una óptima transferencia de masa y energía.

Sin duda el fluido supercrítico más utilizado en investigación como en aplicaciones industriales es el CO₂. Se trata de un gas inocuo, abundante y económico, con condiciones críticas relativamente bajas (31°C, 71 bar) y por lo tanto, fáciles de operar.

En la Tabla II.4 se presentan las condiciones de temperatura, presión y densidad para diferentes fluidos supercríticos [120].

<table>
<thead>
<tr>
<th>Fluido</th>
<th>Tc (°C)</th>
<th>Pc (bar)</th>
<th>pc (kg·m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etileno</td>
<td>9,3</td>
<td>50,4</td>
<td>220</td>
</tr>
<tr>
<td>Xenón</td>
<td>16,6</td>
<td>58,4</td>
<td>120</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>31,1</td>
<td>73,8</td>
<td>470</td>
</tr>
<tr>
<td>Etano</td>
<td>32,2</td>
<td>48,8</td>
<td>200</td>
</tr>
<tr>
<td>Óxido nitroso</td>
<td>36,5</td>
<td>71,7</td>
<td>450</td>
</tr>
<tr>
<td>Propano</td>
<td>96,7</td>
<td>42,5</td>
<td>220</td>
</tr>
<tr>
<td>Amoníaco</td>
<td>132,5</td>
<td>112,8</td>
<td>240</td>
</tr>
<tr>
<td>1-propanol</td>
<td>235,2</td>
<td>47,6</td>
<td>270</td>
</tr>
<tr>
<td>Metanol</td>
<td>239,5</td>
<td>81,0</td>
<td>270</td>
</tr>
<tr>
<td>Agua</td>
<td>374,2</td>
<td>220,5</td>
<td>320</td>
</tr>
<tr>
<td>Tolueno</td>
<td>318,6</td>
<td>42,1</td>
<td>290</td>
</tr>
</tbody>
</table>

(1) Temperatura crítica (°C)
(2) Presión crítica (bar)
(3) Densidad crítica (kg·m⁻³)

II.4.a. Método de deposición a través de fluidos supercríticos.

La densidad de los FSCs pueden acercarse e incluso exceder a la de los líquidos, por lo que los FSCs son buenos disolventes de una amplia gama de compuestos orgánicos y organometálicos [121]. En comparación con solventes líquidos convencionales, los FSCs presentan excelentes propiedades de transferencia de masa, ya que presentan elevadas difusividades y baja viscosidad. Poseen muy baja tensión superficial, lo que permite una buena difusión y adherencia a los poros, de manera de evitar el colapso de
partículas en el interior de los poros. Por lo tanto, la utilización de esta técnica presenta una serie de ventajas frente a otros métodos como el de impregnación, co-precipitación, sol-gel, deposición-precipitación, impregnación química de vapor y microemulsiones empleando agentes estabilizantes orgánicos. Éstas se encuentran relacionadas a las propiedades de solvatación y de transporte que presentan los fluidos supercríticos, especialmente la posibilidad de modificarlas con pequeños cambios de temperatura y/o presión. Estas propiedades involucran la capacidad de disolver solutos, miscibilidad con gases permanentes, alta difusividad, baja viscosidad, entre otras [122].

De este modo, el método de deposición de fluidos supercríticos representa una técnica promisoria para preparar nanopartículas metálicas soportadas o películas metálicas.

Entre los FSCs, el dióxido de carbono supercrítico (scCO$_2$) es el más utilizado porque es abundante, económico, no inflamable, no tóxico, ambientalmente benigno, de fácil acceso y no deja residuos que no se puedan tratar. Además, posee una temperatura crítica (Tc) de 31 °C y una presión crítica (Pc) de 71 bar.

Además de los beneficios ambientales, el scCO$_2$ presenta elevado índice de permeabilidad en casi todos los polímeros, lo que hace posible la incorporación de precursores metálicos en diversos sustratos. Por otra parte, la dispersión de las partículas, los índices de difusión en el sustrato y la separación del FSC y la cadena polimérica del metal de interés pueden ser controlados a través de cambios en la temperatura y presión. Estas buenas propiedades del scCO$_2$ también han sido utilizadas en muchas aplicaciones tales como, separaciones (extracción y purificación), reacciones químicas, cromatografía, secado de los materiales y en la síntesis de materiales nanoestructurados [123, 124].

Por lo tanto, el método de deposición de fluidos supercríticos (DFSCs), especialmente utilizando dióxido de carbono (scCO$_2$), es atractivo para la deposición de partículas metálicas en soportes.

La técnica DFSC involucra tres categorías principales [125]:

- La disolución del precursor metálico en el FSC
- Adsorción y absorción del precursor metálico en el sustrato
- Reducción del precursor a su forma metálica
Disolución del precursor metálico en el FSC. La disolución del precursor metálico en la fase supercrítica es el primer paso en el método de deposición. Los precursores metálicos pueden ser compuestos organometálicos o inorgánicos, lo cual dependerá del FSC utilizado en la deposición. Particularmente, los compuestos organometálicos tienen una miscibilidad importante en FSCs como el scCO₂ y han sido extensivamente empleados en técnicas SCFD. En el caso de precursores inorgánicos como las sales, solo presentan apreciable solubilidad en el caso de agua crítica y supercrítica [125].

<table>
<thead>
<tr>
<th>β-cetonas</th>
<th>β-cetonas fluoradas</th>
<th>Ligandos cíclicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td></td>
<td>Co(cp)₂</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>Ni(cp)₂</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu(acac)₂</td>
<td>Cu(hfac)₂</td>
</tr>
<tr>
<td></td>
<td>Cu(tmhd)₂</td>
<td>Cu(hfac)</td>
</tr>
<tr>
<td>Ru</td>
<td>Ru(acac)₃</td>
<td>Ru(cod)(tmhd)₂</td>
</tr>
<tr>
<td>Rh</td>
<td>Rh(acac)₂</td>
<td>Rh(cod)(acac)</td>
</tr>
<tr>
<td>Pd</td>
<td>Pd(acac)₂</td>
<td>PdMe(cp)</td>
</tr>
<tr>
<td>Ag</td>
<td>Ag(cod)(hfac); Ag(hfac)(hmte); Ag(hfac)(tegme)</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Pt(acac)₂</td>
<td>Pt(cod)me₂</td>
</tr>
<tr>
<td>Ir</td>
<td></td>
<td>Ir(cp)(cod)me</td>
</tr>
<tr>
<td>Au</td>
<td>Au(acac)me₂</td>
<td></td>
</tr>
</tbody>
</table>

acac = acetylacetonato; cod = 1,5-cyclooctadieno; cp = cyclopentadienil; hfac = hexafluoroacetylacetonato; hmte = hexametiltrietilen; me = metil; tegme = tetraetilenglicoldimetil eter; tmhd = tetrametilheptadionato; tmod = trimetiloctanodionato.

La solubilidad y el comportamiento de la fase precursor-FSC son parámetros muy importantes, ya que, la adsorción del precursor en el sustrato depende de la concentración en la fase fluida. Algunos estudios sobre la solubilidad de complejos organometálicos en scCO₂ han sido reportados en la literatura. Desde el punto de vista de la solubilidad en scCO₂, los complejos organometálicos pueden ser dicetonas, ditiocarbamatos, macrociclos, reactivos organofosforados, ácido hidroxámico y otros acomplejantes orgánicos. Los precursores organometálicos comúnmente empleados en...
la preparación de nanocompuestos soportados empleando SCFD se observan en la Tabla II.5.

Adsorción o absorción del precursor metálico en el soporte. Uno de los aspectos más importantes de la técnica para la preparación de metales soportados de modo que, las partículas estén dispersas dentro de la matriz, es la absorción del precursor organometálico en el sustrato en presencia del FSC.

Del mismo modo, en el caso que las partículas deban ubicarse en la superficie del soporte, la adsorción del precursor organometálico sobre la superficie en presencia del FSC juega un rol importante. Por lo tanto, el estudio de la cinética y termodinámica de los procesos de absorción y desorción es beneficioso para el desarrollo de esta tecnología.

La resistencia a la transferencia de masa en la superficie externa de la partícula y/o difusión dentro de la partícula gobierna a la cinética de adsorción o absorción. En el primer caso, la resistencia se cuantifica mediante el coeficiente de transferencia de masa externo del precursor mientras que, en el segundo caso, es una combinación del coeficiente de difusión del fluido en los poros y de la difusión del soluto adsorbido en la superficie de los poros. En la absorción, se tiene que considerar la difusión del precursor en el FSC cuando la matriz está llena.
II.5. REFERENCIAS

II. Estado del Arte.

Capítulo III

Materiales y Métodos

Materiales y Procedimientos de Síntesis

Técnicas de Análisis y Caracterización

Sistemas de Evaluación Catalítica

Sistemas de Adsorción y Desorción
En este capítulo se indican los reactivos y materiales empleados en la preparación de los catalizadores. También, se detalla el fundamento y aplicación de las diversas técnicas de caracterización fisicoquímica utilizadas, indicando aquellos aspectos experimentales particulares propios del análisis de las muestras ensayadas durante el desarrollo de esta Tesis. Por último, se presentan los equipos y dispositivos empleados para la evaluación de los catalizadores preparados.

III. Materiales y Métodos.

III.1. MATERIALES Y PROCEDIMIENTOS DE SÍNTESIS

III.1.a. Soportes.

Como soporte microporoso, se empleó la zeolita comercial Na-Mordenita (NaMOR) suministrada por Zeolyst International [1]. Las especificaciones técnicas son las que se presentan en la Tabla III.1.

<table>
<thead>
<tr>
<th>Producto</th>
<th>(\text{SiO}_2/\text{Al}_2\text{O}_3) (1)</th>
<th>Catión</th>
<th>(\text{Na}_2\text{O} \text{ (% p/p)})</th>
<th>(\text{A}_{\text{BET}} \text{ (m}^2\text{g}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBV 10A</td>
<td>13</td>
<td>Sodio</td>
<td>6,5</td>
<td>425</td>
</tr>
</tbody>
</table>

(1) Relación molar \(\text{SiO}_2/\text{Al}_2\text{O}_3 = 13 \) (Si/Al = 6,5).

III.1.a.2. Síntesis de soportes mesoporosos: MCM-41 y AlMCM-41.

Los sustratos mesoporosos MCM-41 y AlMCM-41 se sintetizaron en forma esférica según la metodología empleada por Szègedi et al. [2]. Para ello, los reactivos comerciales que se emplearon fueron los siguientes:

- Surfactante: bromuro de n-hexadeciltrimetilamonioc (\(\text{C}_{16}\text{TMABr} \))
- Fuente de silicio: tetraetilortosilicato (TEOS)
- Fuente de aluminio: aluminato sódico (\(\text{NaAlO}_4 \))
- Etanol (EtOH)
- Solución de hidróxido de amonio (\(\text{NH}_4\text{OH} \)) 29 v/v
III. Materiales y Métodos.

De este modo, se disolvió 1 g de C$_{16}$TMABr en 19,2 ml de agua a temperatura ambiente y agitación continua. Luego, se agregaron 24 g de etanol absoluto y 5,9 g de una solución NH$_4$OH. Posteriormente, se adicionaron 1,88 g de TEOS gota a gota, para evitar una rápida condensación de la fuente de Si.

El etanol se agrega a la preparación porque actúa como disolvente, mientras que, el agua es un reactivo para la reacción de hidrólisis del TEOS. El hidróxido de amoníaco es empleado para lograr un medio alcalino, y así obtener partículas discretas de soporte. La mezcla se mantuvo bajo agitación continua durante 18 horas a 25 °C. El sólido resultante tiene la siguiente composición molar:

TEOS : 0,3 C$_{16}$TMABr : 11 NH$_3$: 144 H$_2$O : 58 EtOH

La muestra AlMCM-41 se preparó de manera similar al sólido MCM-41. La diferencia es el agregado de 0,04 g de aluminato sódico antes de adicionar el TEOS, siendo la relación Si/Al = 20. El mecanismo de síntesis se grafica en la Fig. III.1.

![Figura III.1. Esquema de síntesis del material MCM-41 o AlMCM-41 [2].](image-url)
El sólido final se obtuvo mediante filtración en vacío, con posteriores lavados hasta alcanzar pH neutro. Luego, las muestras se secaron durante 24 horas a 80 °C y, por último se calcinaron en flujo de aire a 5 °C·min$^{-1}$ hasta 550 °C para alcanzar la eliminación total del surfactante.

III.1.b. Preparación de catalizadores microporosos.

El método empleado para la incorporación de Ag o Co en el soporte microporoso NaMOR, fue el de intercambio iónico entre soluciones acuosas de las sales precursoras y la zeolita NaMOR comercial.

III.1.b.1. Intercambio de Ag$^+$ en NaMOR.

Se emplearon 4 g de NaMOR (Si/Al = 6,5) y 150 ml de una solución de AgNO$_3$, en ausencia de luz para evitar la reducción de la plata [3]. Para la preparación de la solución de intercambio, se utilizó un polvo cristalino de AgNO$_3$ con una pureza de 99,99 %, marca Aldrich. Se prepararon soluciones con concentraciones de nitrato de plata entre 0,04 y 0,1 M con la finalidad de intercambiar diferentes concentraciones de iones Ag$^+$ en la estructura zeolítica.

El intercambio iónico se realizó a temperatura ambiente bajo agitación continua, durante 24 horas. Luego, se lavó, se filtró y secó en estufa a 60 °C. Por último, todas las muestras fueron calcinadas en flujo de O$_2$ con una velocidad de calentamiento de 5 °C·min$^{-1}$ hasta 500 °C.

Los catalizadores preparados fueron rotulados de la siguiente manera: Ag(x)M, donde ‘x’ se refiere al porcentaje en peso de Ag y ‘M’ representa el soporte NaMOR.

III.1.b.2. Intercambio de Co$^{2+}$ en NaMOR.

Se emplearon 10 g de NaMOR (Si/Al = 6,5) y 1,5 L de una solución de acetato de cobalto (AcCo) 0,025 M. Para la preparación de la solución de intercambio, se empleó AcCo hidratado (Co(OOCCH$_3$)$_2$·4H$_2$O) con una pureza de 99,99 %, marca Alfa Aesar.

El intercambio iónico se realizó a 50 °C, bajo agitación continua durante 24 horas. Luego, se lavó, se filtró y secó en estufa a 120 °C por 8 horas. Por último, todas las
muestras fueron calcinadas en flujo de O$_2$ a 2 °C·min$^{-1}$ hasta 400 °C. El contenido de cobalto fue de 2,9 % p/p.

El catalizador obtenido fue rotulado de la siguiente manera: CoM, donde ‘M’ representa el soporte NaMOR.

III.1.c. Preparación de catalizadores mesoporosos.

III.1.c.1. Incorporación de Ag en MCM-41 y AlMCM-41 mediante impregnación a humedad incipiente.

Uno de los métodos empleados para incorporar Ag a los soportes mesoporosos MCM-41 y AlMCM-41 fue el de impregnación húmeda incipiente. Para ello, se prepararon soluciones de AgNO$_3$ con concentraciones entre 0,05 y 0,4 M con la finalidad de obtener diferentes contenidos de Ag sobre los sustratos mesoporosos. La cantidad de solución se eligió de manera tal, que el volumen de líquido llene todos los mesoporos. En el momento de realizar la impregnación, se tuvo especial cuidado del contacto con la luz para evitar la reducción de los iones Ag$^+$ presentes en la solución acuosa a Ag metálica [3]. Luego, los sólidos se secaron en estufa a 60 °C y calcinaron en flujo de O$_2$ a 5 °C·min$^{-1}$ hasta 500 °C.

Los catalizadores preparados fueron rotulados de la siguiente manera: Ag(x)SOP, donde ‘x’ se refiere al contenido en peso de Ag y ‘SOP’ representa el soporte MCM-41 o AlMCM-41.

III.1.c.2. Incorporación de Ag o Co en MCM-41 y AlMCM-41 mediante CO$_2$ supercrítico.

El método de deposición reactiva a través de fluidos supercríticos para depositar nanopartículas de Ag o Co en los sustratos mesoporosos, fue realizado en la Universidad de Valladolid. Para ello, se utilizó CO$_2$ (99,99 %) suministrado por Carburos Metálicos (España), como fluido supercrítico.

Los precursores metálicos empleados para tal fin fueron:

- Cobaltoceno (CoCp$_2$). El precursor de Co se seleccionó en función de lo reportado por Hunde y Watkins [4], quienes depositaron películas delgadas de alta pureza de Co y Ni.
directamente sobre óxido de silicio, mediante CO$_2$ supercrítico a partir de sus respectivos metalocenos metálicos. El nombre genérico del precursor es bis (η^5-ciclopentadienil) de cobalto (II) (Fig. III.2).

El cobaltoceno (CoCp$_2$) cuya fórmula química es Co(C$_5$H$_5$)$_2$, pertenece al grupo de los metalocenos, es decir compuestos organometálicos cuya estructura se basa en una disposición centrada del metal entre dos aniones ciclopentadienilos (C$_5$H$_5^+$) enfrentados entre sí, los cuales dan gran estabilidad al compuesto. También son conocidos como compuestos sandwich. El precursor comercial CoCp$_2$ que se utilizó en todos los ensayos se adquirió en Sigma Aldrich.

- Acetilacetonato de plata (acacAg). El precursor de Ag se seleccionó en función de lo reportado por Erkey [5], quien presenta una serie de precursores organometálicos comúnmente empleados en la deposición de nanopartículas metálicas con scCO$_2$. El precursor elegido fue el acetilacetonato de Ag.

El ión acetilacetonato (acac$^-$) es un ligando bidentado monoaniónico derivado de la desprotonación de la acetilacetona (2,4-pentadiona). La unión de este ligando a un ión metálico de transición puede considerarse como constituida por un enlace covalente a través de un oxígeno y un enlace dativo por el otro oxígeno. La fórmula química del acetilacetonato de Ag (acacAg) se presenta en la Fig. III.3.
III. Materiales y Métodos.

El precursor comercial acacAg que se utilizó en todos los ensayos se adquirió en Sigma Aldrich.

La Fig. III.4 presenta el diagrama de flujo del sistema empleado. Las condiciones máximas de presión y temperatura a las que opera el sistema son 33,0 MPa y 350 °C. Los equipos principales que conforman el sistema de DFSC son:

- **Criostato (E1):** acompañado de una cabeza termostática (-20 °C) con una mezcla de agua y etilenglicol (50 %). Tiene la finalidad de enfriar el CO₂ gaseoso y convertirlo a su estado líquido, para su posterior bombeo.

- **Baño térmico (C1):** serpentín sumergido en un recipiente con agua caliente termostatizado a 80 °C, modelo Tectron Bio. Tiene la finalidad de acondicionar la temperatura del CO₂ hasta el valor deseado.

- **Bomba (B1):** Modelo Milton Roy Dosapro, con un caudal máximo de 6,2 l·h⁻¹ y presión máxima de 33,0 MPa.

Figura III.3. Fórmula química del acetilacetonato de plata.

- **Reactor (RT):** cerrado de acero inoxidable, con capacidad de 100 ml (Fig. III.5A). En este reactor se realizan las experiencias de deposición de metales mediante scCO₂. Dentro del mismo, se emplaza un tubo de vidrio de 1,5 cm de diámetro que contiene el soporte y otro de menor diámetro (0,6 cm) donde se ubica el precursor. Ambos se encuentran separados por mallas metálicas para permitir el ingreso y la circulación scCO₂ (Fig. III.5B).

Además, el reactor RT se encuentra equipado con dos resistencias de pared de 250 W y contiene una termocupla tipo K que permite medir y controlar la temperatura de pared (T14). Ambas resistencias se ubican en la parte inferior del reactor para favorecer el flujo convectivo del scCO₂.

![Figura III.5.](image)

Figura III.5. (A) Recipiente de reacción RT y (B) disposición de los lechos dentro del reactor RT.

También, la unidad de reacción contiene una sonda de presión PI2 conectada a un medidor analógico marca BS 2100, que permite la lectura de la presión en RT. La temperatura del proceso se controla mediante otra termocupla tipo K conectada a un controlador PID marca BS 2100.

Con la finalidad de operar el sistema en batch, la planta cuenta con un sistema de válvulas V0 y V1 para aislar al reactor RT.

- **Depósito buffer (D3):** cerrado de acero inoxidable, similar al recipiente RT. Se encuentra ubicado a la salida del circuito de descompresión y calefaccionado mediante una resistencia, con la finalidad de evitar la obstrucción de la cañería, como
III. Materiales y Métodos.

consecuencia del enfriamiento del scCO$_2$ y así, amortiguara la caída de presión que esto generaría.

- **Manorreductor (V5):** para disminuir la presión que llega al separador de fases. El manorreductor es automático, marca Metal Work, modelo MR BIT 1/8 02 siendo la presión máxima admisible de 1,3 MPa y seteado manualmente en 0,05 MPa.

- **Separador de Fases (S3):** para separar el CO$_2$ gaseoso de la cadena polimérica del precursor líquido.

Además, por cuestiones de seguridad existe un sistema de indicadores optimizados de manera tal, que permiten controlar y medir presiones y temperaturas durante el proceso. En la Tabla III.2 se presentan los principales indicadores, mientras que en la Tabla III.3, se observan las características principales de las válvulas empleadas en el sistema de DFSC.

<table>
<thead>
<tr>
<th>Tabla III.2. Indicadores en la planta de DFSC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Flujo</td>
</tr>
<tr>
<td>Presión</td>
</tr>
<tr>
<td>Presión</td>
</tr>
<tr>
<td>Presión</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla III.3. Válvulas presentes en la planta de DFSC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclatura</td>
</tr>
<tr>
<td>V0</td>
</tr>
<tr>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
</tr>
<tr>
<td>V4</td>
</tr>
<tr>
<td>V5</td>
</tr>
</tbody>
</table>
- **Válvula Back-Pressure (V4):** protege a la planta y al sistema contra excesos o cambios repentinos de presión. También, la *back-pressure* mantiene la contrapresión en sistemas de ciclo cerrado, lo que permite que la bomba B1 funcione de manera uniforme.

Condiciones de síntesis.

La deposición metálica en los soportes se realizó en batch, mediante tres etapas consecutivas:

1. Disolución del precursor metálico en el CO$_2$ supercrítico y adsorción del soporte
2. Descomposición y deposición metálica
3. Descompresión lenta del sistema

La deposición de Co en los soportes se realizó según lo reportado por Hunde y Watkins [4]. Los ensayos se realizaron con 100 mg de soporte y dos concentraciones iniciales diferentes de precursor, 0,48 y 0,07 g·L$^{-1}$, para obtener catalizadores con distintos contenidos de Co.

La primera etapa de disolución del cobaltoceno en el CO$_2$ supercrítico, se realizó a 70 ºC y 11,0 MPa durante 3 horas. Para analizar la influencia de diferentes variables en el proceso supercrítico de deposición, la etapa 2 se realizó a temperatura constante (200 ºC), pero a diferentes presiones (9,0, 15,0 y 22,0 MPa) y tiempos (1, 2 y 3 h).

Los catalizadores preparados de esta forma fueron nombrados de la siguiente manera: “Co(x)SOP-t” donde, ‘x’ representa el contenido en peso de cobalto; ‘SOP’ indica el soporte mesoporoso MCM-41 o AlMCM-41 y ‘t’ se refiere al tiempo de deposición total empleado.

En el caso específico de la Ag, se realizaron experiencias de 3 y 6 horas de duración total, de modo que el tiempo de cada una de las etapas fue de 1,5 y 3 horas. La primera fase de disolución del precursor se realizó a 70 ºC y 13,0 MPa, mientras que la segunda etapa se realizó a 150 ºC y 16,0 MPa. En este caso, también se realizaron experiencias de deposición en las mismas condiciones de síntesis explicadas, pero con el agregado de un surfactante polimérico llamado comercialmente FOMBLIN HC/P2-1000 (Sigma Aldrich), que se caracteriza por ser un perfluoropoliéter con un peso molecular...
III. Materiales y Métodos.

promedio de 1195, siendo su fórmula química: \(\text{CF}_3\text{O(CF}_2\text{CFCF}_3\text{O)}_m\text{CF}_2\text{CH}_2\text{-(OCH}_2\text{CH}_2\text{POPO}_3\text{)}_2\text{NH(CH}_2\text{CH}_2\text{OH)}_2 \). Este surfactante se empleó para dispersar y estabilizar las partículas en escala nanométrica [6]. Se impregnó el precursor con una concentración de 1 mmol·dm\(^{-3}\) de Fomblín.

Los catalizadores preparados de esta forma fueron nombrados de la siguiente manera: \(\text{Ag(x)SOP} \) donde, ‘x’ representa el contenido en peso de Ag y ‘SOP’ indica el soporte mesoporoso MCM-41 o AlMCM-41.

En todos los casos, la descompresión del sistema se realizó en 1 hora desde la presión de trabajo hasta la presión atmosférica.

III.2. TÉCNICAS DE ANÁLISIS Y CARACTERIZACIÓN

A continuación se detallan las técnicas de caracterización empleadas durante el desarrollo de esta Tesis, junto a las condiciones de análisis bajo las cuales los distintos equipos han sido operados para determinar las propiedades estructurales y físico-químicas de los catalizadores sintetizados y de los precursores metálicos. En la Tabla III.4 se resumen las técnicas de caracterización y se explica brevemente el objetivo perseguido con cada una de ellas.

<table>
<thead>
<tr>
<th>Técnicas</th>
<th>Información obtenida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ads./Des. de N(_2)</td>
<td>Propiedades texturales</td>
</tr>
<tr>
<td>Reducción a Temperatura Programada (TPR)</td>
<td>Reducibilidad de las especies</td>
</tr>
<tr>
<td>Difracción de Rayos X</td>
<td>SAXS Ordenamiento mesoporoso</td>
</tr>
<tr>
<td></td>
<td>DRX Presencia de fases cristalinas</td>
</tr>
<tr>
<td>DRS/UV-Vis</td>
<td>Estructura molecular, coordinación y valencia</td>
</tr>
<tr>
<td>Raman (LRS)</td>
<td>Especies superficiales</td>
</tr>
<tr>
<td>XPS</td>
<td></td>
</tr>
<tr>
<td>Absorción atómica</td>
<td>Composición</td>
</tr>
<tr>
<td>ICP-OES</td>
<td></td>
</tr>
<tr>
<td>Espectroscopía FTIR</td>
<td>Grupos funcionales</td>
</tr>
<tr>
<td>Microscopía Electrónica de Barrido (SEM)</td>
<td>Tamaño, morfología y distribución de las partículas</td>
</tr>
<tr>
<td>Microscopía Electrónica de Transmisión (TEM)</td>
<td>Ordenamiento y dimensiones de los poros y partículas</td>
</tr>
<tr>
<td>Análisis termogravimétrico</td>
<td>Temperatura de descomposición</td>
</tr>
<tr>
<td>Análisis calorimétrico</td>
<td>Calor de descomposición</td>
</tr>
</tbody>
</table>
III.2.a. Adsorción/Desorción de N\textsubscript{2} a -196 °C.

El fenómeno de adsorción en el contexto de la interfase gas/sólido, denota el enriquecimiento o agotamiento de uno o más componentes en la capa interfacial [7]. Los dos factores complementarios en los fenómenos de adsorción son el área superficial y la porosidad o textura del sólido. Por esta razón, la medida de la adsorción de gases y vapores puede dar información sobre el área superficial y la estructura porosa de un sólido [8]. Estas dos últimas están vinculadas al proceso de síntesis y se pueden determinar a través de las isotermas de adsorción.

La cantidad de gas adsorbido por un sólido a temperatura constante para distintas presiones relativas de gas se conoce como isoterma de adsorción. La mayoría de las isotermas que podemos encontrar en la literatura pertenecen a uno de los cinco tipos denominados I a V, en la clasificación original de Brunauer, Deming y Teller [9] o del tipo VI, añadido por la Unión Internacional de Química Pura y Aplicada (IUPAC, por sus siglas en inglés).

Estas seis formas comunes de isotermas se representan en la Fig. III.6. La forma de cada tipo de isoterma está relacionada con diferencias en la energía de interacción entre el adsorbato y adsorbente y con la porosidad del sólido.

De este mismo modo, se clasificaron los tamaños de poro en tres grupos según su diámetro [7]:
- Microporos: 0-2 nm
- Mesoporos: 2-50 nm
- Macroporos: > 50 nm

Esta clasificación se realizó para describir la naturaleza de los sólidos que producen diferentes tipos de isotermas: tipo I (microporosos), tipo II y III (no porosos) y tipo IV y V (mesoporosos).

La isoterma tipo I se identifica por una abrupta pendiente inicial a presión relativa baja seguida por una curva con pendiente casi nula, que se extiende hasta presiones relativas elevadas. Durante muchos años esta isoterma se interpretó de acuerdo a la teoría de Langmuir de adsorción en la monocapa, pero actualmente se acepta que el proceso de adsorción corresponde al llenado de los microporos más que al recubrimiento de la superficie de las paredes del poro [10].
III. Materiales y Métodos.

La isoterma tipo II se obtiene con sólidos no porosos o macroporosos y representa la adsorción monocapa/multicapa no restringida del adsorbato sobre el adsorbente. La isoterma tipo III es característica de interacciones débiles gas/sólido [11]. La debilidad de las interacciones hace que la adsorción a bajas presiones relativas sea baja, sin embargo, una vez que una molécula se encuentre adsorbida, las fuerzas adsorbato-adsorbato promoverán la interacción de otras moléculas.

Si los adsorbentes son mesoporosos, la isoterma presenta un bucle de histéresis. Así, las isotermas tipo IV y V son características de adsorbentes mesoporosos, donde el bucle de histéresis está asociado con la condensación capilar que ocurre en los mesoporos. Estos poros se llenan completamente a presiones relativas elevadas.

La isoterma tipo VI representa una adsorción escalonada en multicapa del adsorbato. El primer escalón representa la formación de la primera capa adsorbida, el segundo el de la segunda capa. Usualmente la adsorción en multicapa ocurre después de dos o tres escalones bien definidos.

Figura III.6. Tipos de isotermas de adsorción [7].
III.2.a.1. Determinación del área superficial mediante el método BET.

La adsorción de gases se usa ampliamente para determinar el área superficial de un material finamente dividido o poroso. La forma más común de calcular el área superficial de un sólido, a partir de la isoterma de adsorción de gases, es hallar el valor de la monocapa a partir de la ecuación de Brunauer, Emmett y Teller (BET) [12] para describir la isoterma. Esta descripción se basa en el trabajo de Langmuir [9], pero con una extensión de la teoría más allá del modelo de monocapa, hasta la adsorción en multicapa. La superficie del sólido se considera como una distribución de sitios de adsorción en equilibrio dinámico con el gas, donde la velocidad de condensación de las moléculas sobre sitios vacíos iguala la velocidad de evaporación de las moléculas de sitios ocupados. La ecuación que describe este estado, es:

\[
\frac{p}{V(p^*-p)} = \frac{1}{V_m c} + \left(\frac{c-1}{V_m c}\right)\left(\frac{p}{p^*}\right)
\]

(Ec. III.1)

donde,
- \(V_m\) es el volumen de la monocapa
- \(c\) es una constante que relaciona la energía libre, entalpía y entropía de adsorción [13] e indica el calor de adsorción del gas sobre el sólido.
- \(p\) es la presión de equilibrio
- \(p^*\) es la presión de saturación del vapor

\(V_m\) y \(c\) se pueden obtener graficando el primer término de la Ec. III.1 versus \(p/p^*\), donde \(V\) es el volumen del gas adsorbido a una presión relativa \(p/p^*\) expresada en \(\text{cm}^3\cdot\text{g}^{-1}\) en condiciones normales. Esta gráfica contiene una parte lineal en un rango limitado de presiones relativas en el que se produce la adsorción en monocapa. Por lo tanto, el volumen de la monocapa y la constante \(c\), se obtienen empleando la pendiente y la ordenada en el origen de la curva. El rango de linealidad varía considerablemente y depende de la naturaleza del sólido. Para las isotermas II y IV, el rango lineal se encuentra entre 0,05 y 0,35 de presión relativa, mientras que para las del tipo I suele estar entre 0,02 y 0,12.

La teoría BET es una simplificación de la realidad y como tal, supone:

1. Homogeneidad de los lugares de adsorción del sólido.
2. La teoría está restringida a las fuerzas entre el adsorbente y las moléculas de adsorbato, despreciando las interacciones entre las moléculas de adsorbato vecinas.

3. Todas las moléculas en las capas después de la primera se tratan como equivalentes [14], aunque realmente es de esperar que la interacción disminuya considerablemente con la distancia a la superficie.

4. La condensación hasta formar una película de líquido ocurre a la presión de saturación del adsorbato [15].

III.2.a.2. Condensación capilar e histéresis.

El desfasaje entre la curva de adsorción y desorción del gas es lo que se conoce como histéresis y se han clasificado en cuatro tipos que se ilustran en la Fig. III.7. Cada una de las formas se han identificado con estructuras porosas específicas. El origen del bucle de histéresis se atribuye a la condensación capilar del gas en los poros del sólido, es decir que corresponde al llenado de los poros con líquido condensado a una presión inferior a la de saturación.

El bucle de histéresis tipo H1 se asocia con materiales porosos que consisten en aglomerados o compactos de forma regular y distribución de tamaño de poros estrecha. El tipo H2 suele encontrarse en adsorbentes que contienen poros de acceso estrecho y cuerpos de poro anchos, denominados de cuello de botella. En este caso, el análisis de la distribución del tamaño de poro a partir de la rama de adsorción dará información del tamaño del cuerpo de los poros, mientras que analizando la curva de desorción se obtendrá información del tamaño de los cuerpos de los poros. El tipo H3, que no exhibe adsorción limitada a presión relativa alta, se observa con agregados de partículas laminares dando lugar a poros laminares, que también abarcan el rango de macroporos. El tipo H4 suele también asociarse a los poros laminares, pero en este caso la forma de isoterma tipo I indica microporosidad.

Una característica común a muchos materiales mesoporosos, es el súbito cierre del bucle de histéresis, a una presión dependiente del gas, independiente de la naturaleza del sólido poroso. Por ejemplo, para nitrógeno a -196 ºC, p/p° = 0.42 [16] y para benceno a 25 ºC, p/p° = 0.17 [17]. Se piensa que esto es debido a la rotura del menisco seguida del vaciado de los poros cuando la tensión sobre el menisco, causada por la disminución de la presión relativa, se hace mayor que la tensión superficial del líquido condensado en
los poros. Este fenómeno recibe el nombre de efecto de resistencia a la tensión (TSE, de sus siglas en inglés, tensile strength effect) y deriva de la isoterma de desorción e impacta en la determinación del tamaño de poro. En este caso, es preferible que la distribución del tamaño de los poros se calcule considerando la isoterma de adsorción.

![Diagrama de histeresis](image)

Figura III.7. Tipos de bucles de histéresis [9].

III.2.a.3. Determinación del volumen de mesoporos y distribución de tamaños de mesoporos.

Existen numerosas metodologías basadas en la ecuación de Kelvin que describen la condensación capilar producida en los mesoporos. Entre ellos, el método descrito por Barrer, Joynner y Halenda es el comúnmente utilizado para determinar el volumen y distribución de tamaños de mesoporos [18]. En la región de condensación capilar (\(p/p^0 > 0,4\)), el método BJH se fundamenta en que cada aumento de presión provoca el incremento del espesor de la capa adsorbida en las paredes de los poros, junto a la condensación capilar en los poros, cuyo tamaño está dado por la ecuación de Kelvin [19], la cual predice la formación de un menisco líquido por debajo de la presión de saturación del vapor, y se puede usar para calcular el tamaño de los poros involucrados con los datos de adsorción o desorción. Si se elige la rama de adsorción la forma del menisco puede considerarse cilíndrica si los poros son abiertos por los dos extremos, o hemisférica si son sólo abiertos por un extremo. Para la rama de desorción, en el caso de un poro cilíndrico con menisco hemisférico [20], la ecuación se escribe de la siguiente manera:
III. Materiales y Métodos.

$$\ln\left(\frac{p}{p^0}\right) = -\frac{2\gamma V_L}{r_KRT}$$

(Ec. III.2)

donde,

- \(\frac{p}{p^0}\), es la presión relativa
- \(\gamma\), es la tensión superficial
- \(V_L\), es el volumen molar del adsorbato en forma líquida
- \(R\), es la constante de los gases
- \(T\), es la temperatura absoluta
- \(r_K\), es el radio de los poros llenados

Para el nitrógeno esta ecuación se puede escribir de la siguiente manera:

$$r = \frac{9.53}{\ln\left(\frac{p}{p^0}\right)}$$

(Ec. III.3)

La histéresis entre adsorción y desorción está producida por las diferencias entre la evaporación restringida de adsorbato a partir del menisco del líquido que llena los poros de desorción, y la construcción del sistema monocapa/multicapa en adsorción, que aumenta de grosor al llenarse los poros. En la aplicación de la ecuación de Kelvin, por la diferencia de los mecanismos involucrados, se obtiene el radio si se aplica a los datos de desorción o el diámetro si se aplica a los de adsorción.

Dependiendo de la presión relativa se debe realizar una pequeña corrección del ancho del poro añadiendo el grosor del adsorbato ya adsorbido en las paredes del poro:

$$r = r_K + t$$

(Ec. III.4)

donde,

- \(r\), es el radio real
- \(r_K\), es el radio de poro calculado a partir de la presión relativa
- \(t\), es el espesor de la capa adsorbida en las paredes del poro

El volumen total de poros se calcula mediante la expresión de Wheeler:
III. Materiales y Métodos.

\[V_P = V_A + \int_{r}^{\infty} \pi (r-t)^2 L(r) dr \]
(Ec. III.5)

donde,
- \(V_P \): volumen de poros
- \(V_A \): volumen adsorbido
- \(L(r) \): longitud de los poros que se vacían de condensado

Barret, Joyner y Halenda (BJH) [10] propusieron un método aproximado de resolución de la Ec. III.5, donde se sustituye la integral por la sumatoria sobre intervalos discretos del valor de \(r \). Considerando un sistema de poros cilíndricos interconectados, llenos de condensado capilar en el punto correspondiente al valor más elevado de la presión relativa (intervalo inicial), la variación total del volumen de condensado al disminuir la presión desde \(x_{k-1} \) a \(x_k \), viene dada por:

\[V_k^c = \pi (r_k - t_{sk})^2 L_k + \pi \sum_{i=1}^{k-1} L_i \left[(r_i - t_{sk})^2 - (r_i - t_{x_{k-1}})^2 \right] \]
(Ec. III.6)

donde,
- \(V_k^c \): representa la variación total de volumen entre las presiones \(x_{k-1} \) y \(x_k \) leída directamente sobre la isoterma
- \(r_k \): es el radio medio correspondiente al intervalo \(k \)
- \(t_{sk}, t_{x_{k-1}} \): son los espesores de la capa adsorbida a las presiones \(x_k \) y \(x_{k-1} \)
- \(r_i \): es el radio medio correspondiente al intervalo \(i \) (poros ya vacíos de condensación)
- \(L_k, L_i \): son las longitudes de los poros que se vacían de condensado en los intervalos \(k \) o \(i \), respectivamente.

El primer término de la derecha de la Ec. III.6, representa el volumen que se evapora de los capilares llenos, mientras que el segundo indica la disminución del espesor de la multicapa de adsorbato retenido en poros que no contienen condensado capilar.

Siendo \(V_k \) y \(S_k \) el volumen y la superficie de los poros que se han vaciado en el intervalo \(k \), comprendidos entre las presiones \(x_{k-1} \) y \(x_k \), se puede escribir:

\[L_k = 2 \pi r_k S_k \]
\[L_k = \pi r_k^2 V_k \]
III. Materiales y Métodos.

Por lo tanto, puede obtenerse la expresión utilizada en el método BJH:

\[
V_k = R_k \left[V^* - \left(t_{x(k-i)} - t_{x(k)} \right) \sum_{i=1}^{k-1} \frac{S_i (r_i - t_{x(k)})}{r_i} \right]
\]

(Ec. III.7)

siendo,

\[
R_k = \left(\frac{r_k}{r_k - t_{x(k)}} \right)^2
\]

El método BJH se elaboró para poros cilíndricos, pero puede generalizarse para diferentes modelos geométricos de porosidad utilizando en cada caso los factores adecuados.

III.2.a.4. Determinación del volumen y distribución de tamaños de microporos.

En esta Tesis se utilizó el método desarrollado por Lippens y DeBoer [21], el cual se basa en la relación entre el volumen adsorbido por unidad de superficie (por ejemplo, el espesor estadístico \(t \) de la capa adsorbida) y la presión. Esta relación genera una curva simple e independiente del tipo de porosidad del sólido [22]. Por lo tanto, graficando el volumen adsorbido \(V_{ads} \) versus el espesor \(t \) (método t-plot), se obtiene una recta (Fig. III.8), cuya pendiente ‘\(m \)’ es directamente proporcional al área superficial del sólido:

![Figura III.8. Curva t (método t-plot) para un sólido microporoso.](image)
En esta Tesis se utilizó el modelo matemático propuesto por Harkins-Jura [23], porque es el modelo matemático que mejor ajusta a los resultados experimentales. La ecuación empleada es la siguiente:

$$t = \frac{13.99}{\sqrt{0.034 - \log \frac{p}{p^o}}} \quad \text{(Ec. III.8)}$$

Si la muestra es no porosa, se obtiene una línea recta que pasa por el origen, pero si el sólido es mesoporoso los datos del gráfico se desvían a presiones relativas altas. Si la muestra es microporosa, se obtiene una intersección positiva con el eje y al extrapolar la parte lineal de la curva.

La intersección es equivalente al volumen de microporos y la pendiente se debe al área externa, es decir, la no asociada a los microporos. El área asociada a los microporos se obtiene de la diferencia entre el área BET y el área externa.

Los ensayos se realizaron en un equipo Micromeritics Accusorb modelo 2100E. Previo al ensayo de adsorción, los catalizadores son desgasificados en alto vacío a 320 °C durante 8 h. Posteriormente, las muestras se ponen en contacto con cantidades adecuadas de N\textsubscript{2} para cubrir todo el intervalo de presiones relativas hasta aproximarse a la saturación (p/po = 0.995).

III.2.b. Reducción a Temperatura Programada (TPR).

La reducción a temperatura programada es una técnica ampliamente utilizada para la caracterización química de los sólidos [24-26]. Básicamente la técnica TPR consiste en la reducción de un sólido mediante una corriente gaseosa durante el calentamiento programado del sistema. Generalmente, se utiliza como gas reductor H\textsubscript{2} diluido en un gas inerte y la información química se obtiene analizando la variación de la concentración del mismo como consecuencia de la reducción. El monitoreo continuo de la concentración de H\textsubscript{2} a la salida del reactor, resulta en uno o varios picos. Cada uno de ellos representa un proceso de reducción que involucra una especie química particular del sólido. La posición del pico en el perfil, depende de la naturaleza química del componente y su entorno y el área refleja la concentración del mismo en el sólido.
III. Materiales y Métodos.

Durante el desarrollo de esta Tesis, se empleó la técnica de TPR para analizar la reducibilidad de las especies de Ag o Co soportadas en las diferentes estructuras. El equipo empleado para tal fin, dispone de una corriente principal de gas reductor y dos adicionales para los gases de tratamiento. Como gas reductor se utilizó una mezcla de 5 % de H₂ en Ar y como gases de tratamiento, nitrógeno y oxígeno. Para tal fin, las experiencias se realizaron en un equipo Okhura TP-20025 con un detector de conductividad térmica. La velocidad de calentamiento fue de 10 °C·min⁻¹ hasta 900 °C. La masa empleada en todos los casos fue de 100 mg. La calibración se realizó mediante pulsos de H₂ (5 %)/Ar de volumen conocido. Los datos adquiridos se procesaron con el programa provisto por el fabricante.

III.2.c. Difracción de Rayos X.

Se empleó la difracción de rayos X con la finalidad de determinar las fases cristalinas y para estudiar el ordenamiento de la estructura en sólidos mesoporosos.

III.2.c.1. Alto Ángulo (DRX).

Esta técnica permite obtener información sobre las propiedades estructurales, la orientación y el tamaño de los cristales presentes en las muestras. Como cada compuesto cristalino posee determinados parámetros característicos, por ejemplo los espacios entre planos atómicos, entonces el conocimiento de estas distancias es suficiente para identificarlo de una manera inequívoca y definitiva.

Los rayos X se definen como una radiación electromagnética de longitud de onda corta producida por la desaceleración de electrones de elevada energía o por transiciones electrónicas que implican electrones de los orbitales internos de los átomos [27]. El intervalo de longitudes de onda de los rayos X varía entre 10⁻⁶ a 10 nm. Cuanto menor es la longitud de onda, mayor es su energía y poder de penetración.

La técnica de difracción de rayos X, básicamente consiste en hacer incidir un haz de rayos X colimado sobre una muestra, el cual es difractado en el espectro por las fases cristalinas en función de la distancia entre planos atómicos de la fase y el ángulo de difracción 2θ. En el caso más general, los sólidos están constituidos por una fracción amorfa y otra parte ordenada en forma de cristales. Cuando el haz incide sobre el sólido,
III. Materiales y Métodos.

la parte amorfa dispersa los rayos en forma incoherente, generando la aparición de un halo en el difractograma. Cuando atraviesa los cristales, los rayos X son difractados coherentemente de acuerdo a la Ley de Bragg [27]:

\[2 \cdot d \cdot \text{sen} \theta = n \lambda \]

(Ec. III.9)

donde,
- \(d \), distancia interplanar (Å)
- \(n \), un número entero que representa el orden de difracción
- \(\lambda \), longitud de onda de la radiación monocromática empleada (Å)
- \(\theta \), ángulo de difracción (rad)

La intensidad del haz difractado en función del ángulo de incidencia conduce a un patrón de difracción característico de la estructura cristalográfica de la muestra irradiada.

El análisis de las muestras se realizó en dos laboratorios diferentes empleando las mismas condiciones experimentales. Por un lado, los precursores y sólidos preparados durante la estancia en Valladolid, se midieron en la Universidad de Valladolid. Los sólidos fueron molidos en un mortero de ágata para homogeneizar el tamaño de partícula y colocados en el portamuestras que se ubica verticalmente dentro del equipo. Se utilizó un equipo Philips PW 1710 empleando como radiación la línea K\(\alpha \) de Cu (\(\lambda = 1,54056 \) Å). El tamaño de paso fue de 0,02° para un barrido de ángulos 2\(\theta \) desde 5 a 85°.

Otro lote de catalizadores se analizó empleando un instrumento Shimadzu modelo XD-D1 equipado con un tubo de rayos X con radiación monocromática CuK\(\alpha \) y filtro de Ni en Santa Fe.

En el caso de los catalizadores microporosos, esta técnica fue utilizada para determinar el grado de cristalinidad e identificar las especies presentes. La cristalinidad fue estimada a partir de la relación entre la suma de intensidades de los picos más importantes correspondientes a los planos (1 1 1), (3 3 0), (1 5 0), (2 0 2) y (3 5 0) de las muestras microporosas preparadas y del soporte NaMOR. El máximo grado de cristalinidad fue considerado igual al 100 % y corresponde al soporte [28]. La identificación de las especies presentes en las muestras preparadas se determinó
mediante la comparación de los difractogramas obtenidos con los patrones suministrados por la base de datos del sistema.

III.2.c.2. Bajo ángulo (SAXS).

En el caso de materiales amorfos como los mesoporosos, la disposición regular de los poros produce reflexiones que se manifiestan como señales a bajos ángulos de difracción, por eso la necesidad de emplear SAXS. Los difractogramas de los sustratos del tipo MCM-41 son fácilmente identificables debido al ordenamiento de sus canales proporcionando únicamente reflexiones del tipo (h k 0). Por lo que, la difracción de rayos X a bajos ángulos, permite evaluar el grado de ordenamiento estructural de estos materiales [29].

Los análisis de difracción de rayos X a bajo ángulo se realizaron en el Centro de Asistencia a la Investigación Difracción de Rayos X de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid (España) empleando una cámara Hecus-Braun que tiene incorporada un detector sensible a posición y permite controlar la temperatura de la muestra de interés. Este dispositivo está instalado sobre un generador de rayos X PANalytical modelo PW3830. Las medidas se realizaron en un rango de ángulos de 2\(\theta\) entre 0 y 8°.

III.2.d. Espectroscopia de Reflectancia Difusa en Ultravioleta Visible (DRS/UV-Vis).

Los análisis de espectroscopia de reflectancia difusa en la región ultravioleta-visible proporcionan información sobre el entorno de las especies metálicas incorporadas en el material. La radiación absorbida por las moléculas de la región UV-Vis provoca transiciones electrónicas que pueden ser observadas. Para un mismo estado electrónico, existen un estado vibratorio fundamental y varios excitados, y para cada estado vibracional, existen un estado rotatorio fundamental y varios excitados. Las radiaciones de microondas o del IR cercano, producen transiciones en los estados de rotación; las radiaciones comprendidas dentro de la región del infrarrojo, con energías más elevadas que las anteriores, producen cambios en los estados de vibración; la radiación UV-vis debido a sus altas energías produce transiciones electrónicas [30].
El principio físico de esta técnica involucra la absorción de radiación ultravioleta-visible por una molécula, causando la promoción de un electrón desde su estado basal a un estado excitado, liberándose el exceso de energía en forma de calor. La luz visible o UV es absorbida por los electrones de valencia y luego, éstos son promovidos a estados excitados (de mayor energía). Al absorber radiación electromagnética de una frecuencia dada, ocurre una transición desde uno de estos orbitales a uno vacío. En el intervalo espectral mencionado se realizan medidas de reflectancia o transmitancia [31].

En términos generales, la espectroscopía de reflectancia (DRS) se utiliza para estudiar materiales en polvo o con una superficie rugosa. Es una técnica no destructiva y, normalmente, se utiliza sulfato de bario como referencia por ser transparente a la región del espectro empleada. El tamaño de partícula es un parámetro importante, porque reduce la intensidad de la radiación dispersada. El espectro resultante se obtiene en porcentaje de reflexión en ordenadas (% R) versus la longitud de onda en abscisas [32]. El espectro no guarda una relación numérica directa entre la intensidad de la banda y la concentración, en contra de lo que normalmente sucede en los espectros de absorción. Esto es consecuencia de las distorsiones espectrales debidas a que la longitud efectiva de paso varía constantemente (coeficiente de penetración en la muestra). Este parámetro depende de la absorbividad de la muestra a una longitud de onda en particular. La corrección que se aplica para linealizar estos datos es la transformación de Kubelka-Munk [33]:

\[f(R) = \frac{(1 - R_{\infty})^2}{2 \cdot R_{\infty}} \]

(Ec. III.10)

donde, \(f(R) \), es el resultado de una inversión del espectro a un formato similar a los de absorción y que puede correlacionarse con la concentración siempre que se trate de muestras no diluidas.

\(R_{\infty} \), es la relación entre la reflectancia de la muestra y la referencia (generalmente BaSO\(_4\)) medida a una distancia de distribución infinita.

Para llevar a cabo las medidas de reflectancia difusa se utiliza una esfera integradora, con la finalidad de sumar todo el flujo radiante reflejado o radiado por la muestra sin importar la dirección hacia donde refleja o radia. La esfera integradora es un accesorio
que requiere un instrumento de doble haz con buena óptica, buena resolución y fuentes en muy buen estado, porque el accesorio limita la energía de entrada. Su rango de aplicación abarca desde los 800 nm a los 220 nm.

Fundamentalmente, consta de una esfera recubierta de un material de referencia o blanco (BaSO_{4}) que recoge las reflexiones producidas en la referencia y en la muestra y las dirige hacia un detector.

Las experiencias se realizaron en un espectrómetro marca Shimadzu UV-VIS-NIR, modelo UV-3600, con una esfera integradora recubierta con BaSO_{4} utilizado como referencia.

III.2.e. Espectroscopia Láser Raman (LRS).

La espectroscopia Raman se utiliza para estudiar modos de baja frecuencia como los vibratorios, rotatorios, entre otros. Se basa en los fenómenos de dispersión inelástica de la luz monocromática.

La interacción entre la radiación incidente (fotón) y la molécula en estudio da lugar a una excitación de la molécula. La molécula excitada se relaja, pero puede relajarse de dos maneras. Volviendo al estado energético en el que se encontraba o acabando en un estado energético diferente. Si regresa al estado energético que se encontraba, se libera una energía igual a la absorbida. Esto sucede en la mayoría de las interacciones y se conoce como dispersión elástica o de Rayleigh. Sin embargo, normalmente la molécula no regresa a su estado inicial. En este caso, la energía liberada será distinta de la absorbida, de modo que existe un intercambio de energía, que es la dispersión inelástica que caracteriza al fenómeno Raman. Normalmente, la molécula acaba en un nivel energético más elevado, de modo que, la energía que se libera es menor que la que se absorbe, por lo que se aumenta la longitud de onda y disminuye la frecuencia de la radiación. Esta dispersión Raman se denomina Stokes. Sin embargo, si la molécula acaba en un nivel energético inferior, se libera más energía que la absorbida, por lo que disminuye la longitud de onda y aumenta la frecuencia de la radiación. Esta dispersión Raman se denomina anti-Stokes [34, 35].

Típicamente, una muestra es iluminada con un rayo láser y la luz del punto iluminado es recogida por un lente y enviada a un monocromador. Debido a la
dispersión elástica de Rayleigh, las longitudes de onda cercanas a la línea del láser son filtradas, mientras que el resto de la luz recogida es dispersada sobre un detector.

Durante el desarrollo de la Tesis, los espectros Raman fueron registrados en un equipo marca Horiba Jobin modelo Yvon Lab RAM HR. La fuente de excitación fue un laser de Ar 514,5 nm modelo Spectra 9000 Photometrics con una potencia de 30 mW. Las muestras analizadas fueron preparadas en pastillas autosoportadas con una presión de 4 bar.

III.2.f. Espectroscopía Fotoelectrónica de Rayos X (XPS).

Esta técnica se utiliza para el análisis de la superficie del sólido y se fundamenta en el efecto fotoeléctrico. Es decir, consiste en irradiar una muestra con fotones que contienen una energía superior a la de enlace de los electrones de los átomos, de modo que los electrones salen de la muestra con una energía cinética igual al exceso de energía del fotón respecto a la citada energía de enlace.

Básicamente, las energías puestas en juego se relacionan mediante la siguiente ecuación [36]:

\[h \nu = EE + EC \]

(Ec. III.11)

donde,
- \(h \nu \), la energía de excitación
- EE, la energía de enlace o fotoionización (eV)
- EC la energía cinética del fotoelectrón emitido (eV)

En la práctica, esta ecuación debe ser modificada de acuerdo a potenciales existentes en el espectrómetro; por lo que,

\[h \nu = EE + qsp + E’C \]

(Ec. III.12)

Esta ecuación, se entiende en términos de que es necesaria una energía adicional, ‘qsp’ denominada función trabajo, para liberar el electrón de la matriz del sólido. La
energía remanente aparece como energía cinética EC, levemente modificada por el potencial de contacto entre la muestra y el espectrómetro ($E'C$).

Los valores de energía de enlace EE, caracterizan el estado químico de cada elemento, por lo que, si se cambia de estado, éste se refleja con una modificación de EE y se lo denomina “corrimiento químico”.

En muchos elementos el número de oxidación y el cambio químico están estrechamente relacionados. En este sentido la técnica XPS permite identificar las especies superficiales y determinar su estado de oxidación. Además, es una técnica esencialmente de análisis superficial del sólido, alcanzando una profundidad de 30 Å. Los parámetros de caracterización obtenidos a partir de la aplicación de esta técnica son: energía de enlace, que se obtiene del espectro obtenido durante la irradiación de la muestra y consiste en el número de fotoelectrones emitidos a un dado nivel de energía ($N(E)$) versus la energía cinética o energía de enlace, y el ancho a la altura media del pico (FWHM).

Cuando el electrón es eyectado, frecuentemente aparecen líneas adicionales de menor intensidad denominadas satélites, pudiéndose obtener otro parámetro característico que es la relación de intensidades del pico satélite al pico principal. Los parámetros son calculados mediante el software del instrumento, Casa XPS (Casa Software Ltd., UK). Para la corrección de la EE por el efecto de carga se tomó como referencia la señal del C $1s$ (284,6 eV) o se consideró el pico de Si $2p$ como referencia interna. Para cuantificar las especies se consideró que [37, 38]:

a) El proceso de fotoemisión consta de 3 etapas: excitación óptica del electrón, transporte del mismo a través del sólido y escape a través de la superficie hacia el detector.

b) Sustracción del “background” para eliminar la señal de los electrones secundarios. Es decir que, el diferencial de intensidad de electrones que provienen del nivel K del átomo A, dN^A_K, contenido en el sólido con una densidad atómica $\rho^A(x,y,z)$ bajo un flujo I_0 de rayos X puede escribirse como variables físicas y parámetros del instrumento.

La expresión diferencial puede integrarse para obtener una expresión adecuada a diferentes situaciones. Asumiendo que la pastilla es fina y con un espesor t, la ecuación integrada resulta:
III. Materiales y Métodos.

\[\mathcal{N}_K^A = F_K^A \cdot \rho_K^A \cdot \sigma_K^A \cdot \lambda_K^A \left[1 - \exp \left(- \frac{t}{\lambda_K^A \cdot \text{sen} \theta} \right) \right] \]
(ec. III.13)

donde, \(F_K^A (E_K) \), el factor que incluye parámetros instrumentales dependiente de EC, dado por el fabricante del equipo.

\(\sigma_K^A \), la sección transversal de fotoionización del nivel K del átomo A, dado por Scofield [37].

\(\lambda_K^A \), el camino libre medio (dependiente de \(E_K \)). Distancia promedio que el electrón viaja entre sucesivas colisiones inelásticas.

\(\theta \), el ángulo de salida de los electrones con respecto a la superficie. En la mayoría de los casos \(\theta \) es grande y puede considerarse el \(\text{sen} \theta \sim 1 \).

Las determinaciones de las concentraciones en términos absolutos están sujetas a grandes errores, por lo que se hace un cálculo de concentraciones relativas de los átomos presentes en la superficie. Esto es útil cuando se desea determinar enriquecimientos superficiales para superficies semi-infinitas conteniendo elementos A y B, con sus respectivas densidades \(\rho_A \), \(\rho_B \) y fracciones molares \(x_A \), \(x_B \), escribiendo por simplicidad como \(I_A \), \(I_B \), a la intensidad total del pico registrado para un dado nivel A y B:

\[\frac{I_A}{I_B} = \frac{F_K^A \cdot \sigma_K^A \cdot \lambda_K^A \cdot x_A}{F_K^B \cdot \sigma_K^B \cdot \lambda_K^B \cdot x_B} \]
(Ec. III.14)

A partir de esta ecuación puede obtenerse la relación \(x_A/x_B \).

Los análisis de XPS se realizaron en un equipo SPECS multitécnica equipado con una fuente de rayos X no monocromática de ánodo dual Mg/Al y un analizador hemiesférico PHOIBOS 150 operado en modo de transmisión fija (FAT mode). La cámara de análisis tiene adosada una segunda cámara que permite el tratamiento de las muestras previo a las medidas. Los espectros se adquirieron con una energía de paso de 30 eV y 200 W. La presión en la cámara de análisis durante la medida fue inferior a \(2 \cdot 10^{-9} \) mbar.
En todos los casos, las muestras fueron deshidratadas bajo vacío a 300 °C durante 20 min en la cámara de pretratamiento. Se midieron las energías de enlace de los niveles electrónicos Si 2p, Al 2p, C 1s, O 1s y Na 1s. Para las muestras que contienen Co, se utilizó el ánodo de Al (hν = 1486,6 eV) y se registró la energía de enlace de la región Co 2p, que representa la región principal del cobalto.

En el caso específico de los catalizadores que contienen Ag, se registró el valor de EE para el nivel electrónico Ag 3d que es el principal. Sin embargo, las especies Ag₂O y Ag° poseen valores de EE de la región Ag 3d muy cercanos entre sí (< 0,5 eV). Como consecuencia de esto, no es fácil la identificación del estado de oxidación de las especies de plata por medio de la medición de la EE de su nivel electrónico principal. Por lo tanto, para determinar el estado de oxidación de las especies de Ag presentes en las muestras preparadas, se determinó el parámetro Auger modificado (α'), por medio de la siguiente ecuación [36-38]:

\[\alpha' = EC_{(jkl)} - EC_{(i)} + h\nu \]

(Ec. III.15)

donde,

- \(EC_{(jkl)} \), la energía cinética de la transición Auger.
- \(EC_{(i)} \), la energía cinética del fotoelectrón emitido desde el nivel i.
- \(h\nu \), la energía de excitación radiada característica del ánodo utilizado. En este caso, se empleó el ánodo de Mg, cuya radiación emitida es de 1253,6 eV.

Por lo tanto, además de las EE de los niveles electrónicos característicos del soporte, se midió energía cinética de la región principal, Ag 3d y la energía cinética en la región de las transiciones Auger, Ag M₄VV.

Esencialmente, la emisión electrónica Auger es un fenómeno físico que se produce como consecuencia de la desaparición de un electrón interno de un átomo. Cuando un electrón migra de una de las capas internas de un átomo, deja una vacante o hueco que es ocupado por un electrón de un nivel de energía externo y resulta en un exceso de energía. Este exceso de energía es liberado por la emisión de un fotón, aunque también puede ser transferida a otro electrón, el cual es emitido del átomo. Este segundo electrón emitido es llamado electrón Auger. La energía del electrón Auger corresponde a la diferencia entre la energía de la transición electrónica primaria y la energía de
ionización para la capa de la cual el electrón Auger fue emitido. Esos niveles electrónicos dependen del tipo de átomo y del ambiente químico en el cual se encontraba el átomo.

III.2.g. Espectroscopia de Emisión Óptica de Plasma Acoplado por Inducción (ICP-OES).

La composición química de las especies metálicas de los materiales sintetizados en los laboratorios de la Universidad de Valladolid, se determinó con un equipo ICP-OES modelo Optima 2100DV, marca Perkin Elmer. Básicamente, el principio analítico de esta técnica está basado en la propiedad de los átomos de emitir radiación electromagnética específica según el elemento en determinadas condiciones físicas. Para ello, es necesario liberar los elementos que se van a investigar en una muestra de sus compuestos, generalmente mediante la adición de energía, y hacerlos disponibles como partículas libres. En la espectroscopia de emisión óptica, la muestra atomizada es ofrecida con energía térmica, la cual es capaz de transformar átomos a su estado excitado y también de ionizarlos [39]. Para obtener el valor del contenido metálico presente en los sólidos, se debe calibrar previamente el equipo con disoluciones patrones. Además, las muestras deben digerirse previamente con ácidos minerales fuertes combinados de manera adecuada.

En el caso de las muestras mesoporosas preparadas en Valladolid, el procedimiento consistió en pesar aproximadamente 0,1 g de sólido y depositarlo en una cápsula de platino completamente seca. Luego, se agregó una dada cantidad de agua desionizada necesaria para humedecer completamente la muestra. A continuación, se adicionó 2 ml de H$_2$SO$_4$ y 10 ml de HF y se coloca la cápsula en una manta calefactora. Durante los primeros minutos se observa el desprendimiento de vapor de agua. Luego, aparece un vapor más denso de color blanco debido al ácido sulfúrico. En este momento, se retira la cápsula de la manta calefactora, se deja enfriar y se vierte en un matraz de 250 ml y se enrasa con agua destilada ultrapura. Esta muestra es la que se mide en el equipo ICP-OES y se compara con la curva patrón de calibrado de cobalto para conocer su concentración.
III.2.h. Absorción Atómica.

El equipo de absorción atómica está compuesto por: una fuente de radiación, un atomizador o llama generada a partir de acetileno y aire en condiciones netamente oxidantes, de modo que la muestra succionada por un capilar se reduzca a su estado atómico, un monocromador (prisma y rendija) para separar las líneas de absorción de las demás líneas espectrales emitidas por la lámpara y, un detector.

Mediante esta técnica se determinó en contenido de Ag en los catalizadores preparados. Para ello, se pesó una determinada masa con exactitud y luego se adicionó 25 ml de H$_2$SO$_4$ 50 %. Posteriormente, se colocó sobre una plancha calefactora y se mantuvo en reflujo hasta digerir toda la muestra. Por último, se enrasa a un determinado volumen para realizar la determinación del elemento.

III.2.i. Espectroscopía Infrarrojo con Transformada de Fourier (FTIR).

La espectroscopía infrarroja (IR) estudia la interacción entre la materia y la radiación infrarroja, correspondiente a la región del espectro electromagnético que abarca las longitudes de onda entre 0,7 y 1000 μm.

La técnica FTIR se utilizó durante la estancia en la Universidad de Valladolid para conocer la estructura química y los grupos funcionales de los productos de la degradación de los precursores empleados en la deposición de Co y Ag sobre sustratos mesoporosos.

Para ello, se utilizó un espectrofotómetro modelo Bruker Tensor 27, con un accesorio ATR “Golden Gate” (reflectancia total atenuada) de marca SPECAC. Las medidas se realizaron en un rango de número de onda entre 4000 y 600 cm$^{-1}$ con una resolución de 4 cm$^{-1}$ y con un total de 64 barridos.

Además, se empleó un equipo marca Shimadzu IR Prestige-21 modelo 8101M, equipado con un detector de alta sensibilidad DLATGS, en un intervalo de número de onda entre 400 y 4000 cm$^{-1}$, con una resolución de 4 cm$^{-1}$ y con un total de 64 barridos. Para realizar los análisis, las muestras de Ag o Co soportadas sobre sustratos mesoporosos, se diluyeron en KBr (1/200 en peso) y posteriormente, someterla a presión para obtener una pastilla que se introdujo en el portamuestra del equipo FTIR. De este modo, se determinó la presencia de compuestos orgánicos y grupos silanoles en las muestras.
III. Materiales y Métodos.

III.2.j. Microscopía Electrónica de Barrido (SEM/EDX) y mapeo de las imágenes SEM.

La aplicación esta técnica combinada con la detección a través de la espectrometría de energía dispersiva de rayos X (EDX) se realizó para analizar la morfología y homogeneidad de los soportes mesoporosos, observar las nanopartículas depositadas y determinar la composición química aproximada de las muestras preparadas.

La técnica SEM se basa en la imagen producida debido al bombardeo mediante un haz de electrones sobre la superficie de la muestra bajo estudio. Permite examinar la estructura tridimensional y la textura de las superficies porosas. Básicamente, el haz pasa a través de las lentes condensadoras y del objetivo, mientras que, un detector cuenta el número de electrones secundarios de baja energía emitidos por cada punto de la superficie de la muestra. Las lentes de SEM no son parte del sistema de formación de imagen, sino que se utilizan para ampliar y enfocar el haz de electrones sobre la superficie.

La técnica de microanálisis por sonda de electrones permite detectar sólo aquellos elementos cuyo número atómico esté entre 11 (sodio) y 92 (uranio) inclusive. La metodología analítica empleada considera como el 100 % al total de elementos presentes detectados. La distribución porcentual (en peso) se expresa en base a esta consideración. El tratamiento de la información se realizó usando el software del sistema. No se utilizó muestras estándares de referencia, ya que sólo se desea determinar si existen zonas con diferente composición en una misma muestra.

Para ello, se empleó un microscopio electrónico de barrido ambiental (ESEM) FEI Quanta modelo 200FEG con una tensión de 30 kV. Además, para observar las partículas metálicas se utilizó un detector de retrodispersado (backscattered electron detector), que se caracteriza por tener contraste en relación con el número atómico, ‘Z’ (Z-contrast). Por lo tanto, si hay fases con Z muy diferentes, los valores más altos serán más brillantes que las otras fases. Las imágenes SEM se obtuvieron en la Universidad de Valladolid.

Además, se realizó el análisis de la distribución de elementos (Co, Si, O) mediante el mapeo digital en las imágenes obtenidas por SEM. Esta técnica se emplea para obtener la distribución espacial bidimensional de elementos y conocer así, la homogeneidad del Co en el soporte mesoporoso. El mapeo digital consiste en la utilización de pseudos colores que representan la distribución espacial bidimensional de la emisión de energía.
de los elementos químicos existentes en las muestras, lo que representa la distribución elemental real.

III.2.k. Microscopía Electrónica de Transmisión (TEM).

La Microscopía Electrónica de Transmisión se utilizó para determinar la ordenación, morfología, dimensión y dirección de los canales mesoporosos, así como también, se estudió la presencia, morfología y tamaño de las nanopartículas metálicas depositadas sobre los sustratos en estudio. La microscopía electrónica de transmisión permite conseguir resoluciones de hasta 3 Å y está indicada para materiales que presentan tamaños de partículas reducidos (< 1 µm).

En un microscopio electrónico de transmisión la muestra es iluminada por un haz de electrones producidos en el cañón situado en la parte superior del microscopio. Este cañón puede ser termoiónico (W o LaB₆) o de emisión de campo.

Se empleó un microscopio TEM de Emisión de Campo marca JEOL, modelo JEM-FS2200 HRP de 200 kV, como así también otro microscopio de menor potencia (100 kV) marca JEOL, modelo JEM-1011 HR. Las muestras se disolvieron en metanol y, posteriormente se depositaron en una rejilla de carbón, para ser introducida directamente en el microscopio. Las medidas se realizaron en la Universidad de Valladolid.

III.2.l. Análisis Termogravimétrico (TGA).

Los análisis termogravimétricos se utilizaron para analizar la temperatura de descomposición del precursor metálico empleado en la deposición mediante CO₂ supercrítico. Para ello, se empleó una termobalanza marca Mettler Toledo SAE, modelo TGA/SDTA 851e, equipada con un horno horizontal de temperatura media (1100 °C) y con un intercambiador automático de gases y circuito externo de agua para acondicionamiento de la temperatura del horno con una resolución de 0,005 °C. Estos ensayos se realizaron en la Universidad de Valladolid.

Esta técnica consiste en someter a las muestras con una rampa de calefacción controlada bajo atmósfera inerte (normalmente N₂) registrando la evolución de la pérdida de masa con la temperatura. En nuestro caso, el ensayo se realizó con 7 mg de
precursor dentro de un crisol de óxido de aluminio y se calentó a 20 °C·min\(^{-1}\) desde 50 a 850 °C en flujo de N\(_2\) (60 ml·min\(^{-1}\)).

Las pérdidas de masa obtenidas y las temperaturas correspondientes a los distintos máximos presentes en la curva diferencial, permiten conocer las diferentes etapas que se producen a lo largo de la descomposición térmica, así como las cantidades eliminadas en cada una de ellas.

III.2.m. Medidas Calorimétricas (DSC).

Las medidas calorimétricas se realizaron con la finalidad de detectar los cambios de energía durante el tratamiento térmico del precursor de Co empleado en la deposición mediante CO\(_2\) supercrítico. Estos ensayos se realizaron en la Universidad de Valladolid.

Se empleó un calorímetro diferencial de barrido Mettler Toledo SAE, modelo DSC 822e, equipado con un sensor cerámico FSR5 de alta sensibilidad (15 µV·µW\(^{-1}\)). Se utilizó una rampa de calentamiento de 10 °C·min\(^{-1}\) desde -40 a 200 °C con un flujo de 60 ml·min\(^{-1}\) de N\(_2\). El principal objetivo que se persigue con la utilización de esta técnica es conocer el proceso de descomposición térmica que tiene lugar en el precursor metálico cuando es sometido a temperaturas cercanas a las de deposición sobre el soporte.

III.3. SISTEMAS DE EVALUACIÓN CATALÍTICA

III.3.a. Reducción Catalítica Selectiva de NOx con Hidrocarburos.

En el estudio de la actividad de los catalizadores preparados, se utilizó la reacción de reducción selectiva de NOx con hidrocarburos (RCS-NOx), en exceso de O\(_2\) y en presencia de vapor de agua. Para ello, se construyó el sistema de flujo continuo que se esquematiza en la Fig. III.9.
III. Materiales y Métodos.

Figura III.9. Sistema de flujo utilizado para la Reducción Catalítica Selectiva de NOx con hidrocarburos.
III. Materiales y Métodos.

El sistema consta de 5 líneas de alimentación de gases:
- Helio: empleado como diluyente y carrier de los otros gases. Se utilizó He 5.0, cuya calidad es de grado analítico con una pureza de 99,999 %.
- Oxígeno: se utilizó O₂ con una pureza de 99,99 %.
- Óxido nítrico: se utilizó una mezcla especial patrón certificado, que consiste en NO al 5,00 % ± 0,02 % diluido en He.
- Butano: se utilizó una mezcla especial patrón certificado, consistente en C₄H₁₀ al 1,00 % ± 0,02 % diluido en He.
- Tolueno: se utilizó una mezcla especial patrón certificado, consistente en C₇H₈ al 0,10 % ± 0,02 % diluido en He.

Las líneas de gases de reacción se encuentran conectadas a controladores de flujo másicos (MKS), con los cuales se controlaron los caudales de reactivos empleados.

Las composiciones típicas de la corriente gaseosa de reacción fueron 1000 ppm de NO, 500 ppm de C₄H₁₀ o C₇H₈, 2 % de O₂, en balance con helio. En algunos casos, se analizó la influencia del agregado de 2 % de vapor de agua en la corriente de alimentación. Para ello, se colocó un saturador de H₂O provisto de una manta calefactora, para saturar una corriente de He con 2 % de agua y que luego se mezcló con los demás gases de reacción.

El reactor sujeto por los cabezales, consistió en un tubo de cuarzo de 20 mm de diámetro en el que se colocan 200 mg de catalizador entre dos tapones de lana de cuarzo. El cabezal superior posee 2 entradas, por una de ellas ingresa el O₂ mientras que por la otra se agrega la mezcla gaseosa de He, HC/He y NO/He. A través del cabezal inferior, se introdujo una termocupla compacta tipo K, con una vaina de cuarzo de 1,5 mm de diámetro, que llegó hasta el centro del lecho catalítico. El reactor se calefaccionó con un horno tipo libro, conectado a un controlador y programador de temperatura Omega CN6081. La reacción se llevó a cabo a presión atmosférica y en un intervalo de temperatura entre 350 y 600 °C, utilizando una velocidad espacial (GHSv) de 20000 h⁻¹.
III.3.a.1 Cuantificación de la concentración de los gases.

Los gases de salida del reactor pasan por una válvula muestreadora con la finalidad de ser analizados cromatográficamente. El sistema cromatográfico está compuesto por un cromatógrafo gaseoso, marca Shimadzu, modelo GC2014 y está provisto de un detector de conductividad térmica (TCD). Los rellenos comerciales de las columnas cromatográficas que se utilizaron fueron Zeolita 5A, Bentona-23 y Porapak QS para cuantificar N\textsubscript{2}, C\textsubscript{7}H\textsubscript{8} y C\textsubscript{4}H\textsubscript{10}, respectivamente. Todas las columnas se mantuvieron a 50 °C y presión atmosférica. El detector operó a 65 °C y se utilizó He 5.0 como gas carrier.

Para cuantificar la concentración de gases reactivos y productos, se realizó una calibración empleando las diferentes columnas cromatográficas. Se prepararon mezclas con diferentes diluciones en He de N\textsubscript{2}, C\textsubscript{7}H\textsubscript{8} y C\textsubscript{4}H\textsubscript{10}, en un intervalo de concentraciones acorde al test catalítico. Se midieron las áreas del pico correspondiente a cada gas y con ellas se construyeron las curvas de calibración de áreas versus concentración. De esta manera, para cada gas se obtuvo una ecuación de calibración producto de la regresión lineal de los valores de áreas y concentración medidos.

La conversión de NO a N\textsubscript{2} se calculó en base al análisis de la concentración de N\textsubscript{2} en la corriente de salida del reactor, considerando que por cada mol de NOx alimentado se producen 0.5 moles de N\textsubscript{2}, de la siguiente manera:

\[
X_{\text{NO}}(\%) = \frac{2 \left[[\text{N}_2] - [\text{N}_2]^\circ \right]}{[\text{NO}]^\circ} \cdot 100
\]

(Ec. III.16)

where,
\(X_{\text{NO}}\), es la conversión de NO a N\textsubscript{2} (%).
\([\text{N}_2]\), es la concentración de egreso de N\textsubscript{2}.
\([\text{N}_2]^\circ\), es la concentración en la corriente de entrada de N\textsubscript{2} < 50 ppm.
\([\text{NO}]^\circ\), es la concentración de ingreso de NO.

En cambio la conversión del HC se calculó mediante las concentraciones iniciales y finales del mismo, de la siguiente manera:

\[
X_{\text{HC}}(\%) = \frac{\left[\text{C}_4\text{H}_{10} \right]^\circ - \left[\text{C}_4\text{H}_{10} \right]}{\left[\text{C}_4\text{H}_{10} \right]^\circ} \cdot 100
\]

(Ec. III.17)
III. Materiales y Métodos.

\[X_{\text{tol}}(\%) = \frac{[C_7H_8]_0 - [C_7H_8]}{[C_7H_8]_0} \times 100 \]
(Ec. III.18)

donde,
- \([C_4H_{10}]^0\), es la concentración de ingreso de butano
- \([C_4H_{10}]\), es la concentración de egreso de butano
- \([C_3H_8]^0\), es la concentración de ingreso de tolueno
- \([C_3H_8]\), es la concentración de egreso de tolueno

III.3.b. Oxidación Total y Preferencial de CO.

Sobre algunas de las muestras preparadas se realizaron experimentos exploratorios para evaluar la actividad catalítica en las reacciones de oxidación total (COTox) y preferencial de CO en corriente rica en H\(_2\) (COProx). Para ello, se empleó el sistema de flujo continuo que se representa en la Fig. III.10, similar al sistema empleado para la RCS-NOx con hidrocarburos.

![Sistema de flujo empleado para las reacciones de COTox y COProx.](image)

Figura III.10. Sistema de flujo empleado para las reacciones de COTox y COProx.

Se emplearon 200 mg de catalizador ubicados en un reactor tubular de cuarzo de 20 mm de diámetro interno. La mezcla gaseosa reaccionante consistió en 1 % CO en He, 1
% O$_2$ y/o 40 % H$_2$, con una relación entre la masa del catalizador y el caudal total de 2,1 mg·cm$^{-3}$. La salida del reactor se encuentra en línea con un cromatógrafo gaseoso Shimadzu modelo GC 2014, equipado con un detector de conductividad térmica (TCD). Se emplea una columna Zeolita 5A para separar compuestos como CO y O$_2$ y/o H$_2$.

El cálculo de la conversión de CO se realizó mediante la siguiente ecuación:

$$X_{CO} (%) = \frac{[CO]^o - [CO]}{[CO]^o} \cdot 100$$ \hspace{1cm} (Ec. III.19)

donde, $[CO]^o$, es la concentración de ingreso de CO
$[CO]$, es la concentración de egreso de CO

La selectividad del O$_2$ hacia el CO$_2$ se calculó a partir de la siguiente ecuación:

$$S (%) = \frac{50([CO]^o - [CO])}{[O_2]^o - [O_2]}$$ \hspace{1cm} (Ec. III.20)

donde, $[CO]^o$, es la concentración de ingreso de CO
$[CO]$, es la concentración de egreso de CO
$[O_2]^o$, es la concentración de ingreso de O$_2$
$[O_2]$, es la concentración de egreso de O$_2$

III.4. Sistemas de Adsorción y Desorción

III.4.a. Estudios de Adsorción y Desorción de Hidrocarburos.

III.4.a.1. Método dinámico de adsorción y desorción.

Las medidas de adsorción y desorción de tolueno o butano, se llevaron a cabo en un sistema de flujo dinámico que se presenta en la Fig. III.11.
III. Materiales y Métodos.

Figura III.11. Representación del sistema de flujo para las medidas de adsorción y desorción de hidrocarburos.
Como gas carrier del sistema se utilizó He de pureza 5.0, con una concentración de CO\textsubscript{2} < 1 ppm, de agua < 3 ppm y de hidrocarburos < 0,003 ppm. La corriente de entrada de He se divide en dos líneas (1 y 2) cuyos caudales son controlados por controladores másicos, marca Aalborg.

La línea 2 está conectada a dos saturadores que contienen tolueno líquido y se encuentran sumergidos en un baño de temperatura controlada. El He se satura en tolueno y, por medio de una correcta combinación de válvulas de 6 y 4 vías (6V, 4V1 y 4V2), se mezcla con la corriente de He puro que circula por la línea 1, hasta alcanzar la concentración de tolueno deseada. La corriente de tolueno/He resultante ingresa a un reactor de cuarzo de 7 mm de diámetro, donde se emplaza un lecho de material adsorbente.

Además, existe una tercera línea de operación (línea 3) conectada a un tubo de butano diluido al 1 % en He. La salida de la línea se encuentra conectada a la válvula de 6 vías, del mismo modo que la salida de la línea 2, con la finalidad de diluir en He las corrientes de los hidrocarburos.

Cada línea de operación posee una válvula de apertura y cierre luego de los controladores de flujo, lo que habilita o no el uso de la línea.

Para realizar los ensayos, 100 mg de material adsorbente se ubicaron en el centro de un reactor de cuarzo calefaccionado por un horno eléctrico montado con un controlador de temperatura digital PID, marca Omega y una termocupla K ubicada en el centro del reactor.

Los gases de salida están conectados a un espectrómetro de masas marca Thermostar de la casa Balzers. La espectrometría de masas es una técnica que permite seguir en continuo las señales de la relación (masa/carga) correspondiente a las masas características de diferentes compuestos. En este trabajo se determinó en forma cuantitativa la señal principal del tolueno (m/c = 91) y de butano (m/c = 43). Además, se registraron las siguientes señales: 2 (hidrógeno), 4 (helio), 28 (nitrógeno o CO), 32 (oxígeno), 105 (ácido benzoico), 44 (CO\textsubscript{2}), 77 (grupo fenil), 18 (agua), 62 (penteno), 15 (grupo metil) y 16 (metano) [40].
III.4.a.2. Determinación de las curvas de ruptura.

Una curva típica de quebre, también conocidas como curvas de ruptura o *breakthrough*, muestra la evolución de la concentración del adsorbato en la corriente efluente. En la Fig. III.12 se representa tal proceso y se expresa como la concentración a la salida del lecho ‘C’ en función del tiempo ‘t’ y C° corresponde a la concentración del adsorbato a la entrada del reactor. En el esquema se observa que al saturarse el material, la concentración de salida es igual a la concentración de adsorbato a la entrada.

La línea de puntos indica el tiempo que demora el adsorbato en alcanzar el lecho donde se encuentra el sólido (t_1). El área entre las curvas (rayas oblicuas) se utilizó para calcular la cantidad de hidrocarburo adsorbido en el material.

![Figura III.12. Curva de ruptura típica de un material poroso.](image)

Las curvas de ruptura, fueron obtenidas empleando el sistema de flujo continuo descrito anteriormente (Fig. III.10).

La concentración de tolueno empleada en todos los ensayos fue de 8000 ppm, mientras que la de butano fue de 10000 ppm. La adsorción de cualquiera de los HCs se realizó en forma isotérmica a 100 °C. Luego de alcanzar el equilibrio entre la fase gas del hidrocarburo y la superficie del sólido, se realizó una purga con He durante 15 minutos, para eliminar el excedente de tolueno o butano no quimisorbido o fisisorbido. Las curvas de ruptura se construyeron graficando la concentración relativa (C/C°) del HC a la salida del reactor en función del tiempo. Mediante el área bajo la curva se calculó la capacidad de adsorción de tolueno o butano del material ensayado a la temperatura de adsorción y concentración del adsorbato, mediante la siguiente ecuación:
III. Materiales y Métodos.

\[Q \text{ (mmoles} \cdot \text{g}^{-1}) = \frac{F}{W} \int C(C^0) dt \]
\text{(Ec. III.21)}

donde,
F, representa el caudal volumétrico
W, es la masa del adsorbente
Q, indica la cantidad adsorbida

III.4.a.3. Desorción a Temperatura Programada (TPD).

La desorción a temperatura programada se fundamenta en el estudio de la liberación de un gas quimisorbido en un sólido, mediante el aumento progresivo de la temperatura. Generalmente, los centros sobre el que tiene lugar la quimisorción no son todos iguales, por lo que cada uno de ellos interacciona con el adsorbato con diferente fuerza. Por lo tanto, la desorción desde los distintos sitios podría producirse a diferentes temperaturas. La quimisorción tiene lugar entre la primera capa de la molécula de adsorbato y la superficie del sustrato. Las otras capas están fisisorbidas y por lo tanto están débilmente enlazadas. Esto implica que antes de hacer un ensayo se deben eliminar todas las capas fisisorbidas, para lo cual se purga con una corriente de gas inerte. La Fig. III.13 muestra una curva típica del ensayo completo de adsorción y desorción a temperatura programada realizado.

![Figura III.13. Curva típica del ensayo completo de adsorción y desorción a temperatura programada.](image-url)
La desorción a temperatura programada de HC adsorbido (TPD-HC) se llevó a cabo en el mismo sistema de flujo usado para medir las curvas de ruptura (Fig. III.10). Los experimentos se realizaron a continuación de la etapa de adsorción y luego de barrer con gas inerte (He) a 100 °C para eliminar el hidrocarburo adsorbido físicamente. La desorción se condujo con una rampa de calentamiento de 10 °C·min⁻¹.

El área bajo el perfil de desorción (Fig. III.13) permite calcular los moles de tolueno o butano retenidos, a una temperatura mayor a la de adsorción.

Con los valores de la cantidad de HC adsorbido (capacidad de adsorción) obtenidos a partir de las curvas de quiebre y con los valores de la cantidad desorbida (capacidad de retención) determinado de los experimentos de TPD, se define el coeficiente de retención Φ de la siguiente manera:

\[
Φ (%) = \frac{Q_{des}^{HC}}{Q_{ads}^{HC}} \times 100
\]

(III.22)

donde, \(Q_{ads}^{HC}\), son los moles totales de hidrocarburo adsorbidos

\(Q_{des}^{HC}\), son los moles de hidrocarburo desorbidos a \(T > 100 °C\)

Por lo tanto, la ecuación III.22 permite determinar el porcentaje de moles de tolueno o butano retenidos a una temperatura mayor a la de adsorción.

III.4.a.4. Estudio FTIR. Interacción y reactividad de los hidrocarburos adsorbidos.

Como se mencionó en la sección III.2, la espectroscopía infrarroja estudia la interacción entre la materia y la radiación infrarroja, que corresponde a la región del espectro electromagnético que abarca las longitudes de onda (λ) entre 0,7 y 1000 μm o 14300 y 400 cm⁻¹, expresadas en números de onda (υ), respectivamente. Al mismo tiempo, este intervalo se divide en 3 regiones como se expresa en la Tabla III.5 [41].

La característica principal de la espectroscopía IR es que permite identificar especies químicas, a través de la determinación de la frecuencia de vibración (número de onda) a las que los distintos grupos funcionales presentan bandas de absorción en el espectro IR. Para la realización de estos experimentos se utilizó un equipo marca Shimadzu IR Prestige-21 modelo 8101M, equipado con un detector de alta sensibilidad DLATGS.
III. Materiales y Métodos.

Tabla III.5. División de la región de infrarroja.

<table>
<thead>
<tr>
<th>Región del IR</th>
<th>Longitud de onda (λ)</th>
<th>Número de onda (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercano</td>
<td>0,78-2,5</td>
<td>14300-4000</td>
</tr>
<tr>
<td>Medio*</td>
<td>2,5-25</td>
<td>4000-400</td>
</tr>
<tr>
<td>Lejano</td>
<td>25-100</td>
<td>400-40</td>
</tr>
</tbody>
</table>

* Región empleada en esta Tesis.

Para realizar las medidas de adsorción se prepararon pastillas con los sólidos de 13 mm² de superficie, de modo de alcanzar un espesor aproximadamente constante para las diferentes muestras. Las pastillas se colocaron dentro de una celda de vidrio para infrarrojo, la cual se diseñó especialmente con una región de calentamiento y otra de medida (Fig. III.14), equipada con ventanas de F₂Ca. Los espectros fueron obtenidos con una resolución de 4 cm⁻¹ y una captura de 80 barridos.

![Esquema de la celda de Infrarrojo empleado para realizar experimentos de adsorción y desorción de tolueno o butano](image_url)

Figura III.14. Esquema de la celda de Infrarrojo empleada para realizar experimentos de adsorción y desorción de tolueno o butano. Referencias: (1) Radiación IR, (2) Portamuestra con la pastilla de la muestra, (3) Celda de análisis de gases con ventanas de F₂Ca, (4) Egreso de los gases, (5) Zona de calentamiento calefaccionada por manta, (6) Regulador de tensión de la manta calefactora, (7) Termocupla, (8) Lector de temperatura, (9) Posicionador de la muestra y (10) Ingreso de los gases.
III. Materiales y Métodos.

Estudio de estabilidad térmica del tolueno o butano adsorbido.

Con el fin de remover el agua adsorbida en el sólido, la muestra se trató inicialmente en flujo de He durante 4 h a 400 °C. Luego se enfrió hasta 100 °C en corriente de inerte. Se midió el espectro de la pastilla libre de HCs, el cual se utilizó como blanco o referencia. A continuación, se ingresó a la celda una corriente de 8000 ppm de tolueno/He o 10000 ppm de butano/He durante 1 hora a 100 °C. Una vez terminado el proceso de adsorción, se purgó con gas inerte para eliminar todas las moléculas de HC que no fueron adsorbidas por el sólido y se adquirió el espectro.

Una vez que el tolueno o butano se encuentra adsorbido en la pastilla se realizó un estudio de estabilidad térmica, calentando la muestra a diferentes temperaturas en flujo de inerte desde 100 hasta 400 °C, esperando 30 min después de cada medida de modo que el sistema se estabilice. Finalmente la muestra se purgó durante toda la noche a 400 °C en flujo de inerte, y se midió nuevamente el espectro, para observar la estabilidad térmica de las especies de HC adsorbido en el sólido.

Adsorción de NO en presencia de tolueno o butano adsorbido.

Este análisis fue realizado para estudiar la estabilidad y reactividad de las especies de tolueno o butano adsorbidas en presencia de un gas oxidante como es NO/He. Para esto se procedió de la misma forma que en la metodología antes descripta, empleando durante la etapa de calentamiento una corriente de 1000 ppm de NO/He.

III.4.b. Desorción a Temperatura Programada de NO (TPD-NO).

Se realizaron experiencias de adsorción y desorción de NO, con la finalidad de caracterizar la interacción de las especies de plata presentes en las muestras Ag(x)M con dicha molécula. Por lo tanto, se adaptó el equipo de evaluación catalítica (ver Sección III.3.a) para llevar a cabo dicha experiencia. En consecuencia, el flujo de gases a la salida del reactor atravesó una celda. Los componentes productos de la reacción se analizaron con un espectrómetro de infrarrojo con transformada de Fourier (FTIR) marca Mattson Genesis II, dispuesto al final de la línea de gases en la salida del reactor. El instrumento operó entre 1000 y 4000 cm\(^{-1}\) con una resolución de 2 cm\(^{-1}\).
Las mediciones se tomaron en unidades de absorbancia empleando una celda cilíndrica de vidrio de 2,5 cm de diámetro y 16 cm de longitud provista de ventanas de F$_2$Ca en ambos extremos. Esta ventana es inactiva al infrarrojo en todo el intervalo de frecuencia analizado.

Para la cuantificación de los gases de reacción, se realizó una calibración mediante diluciones en He de NO, NO$_2$ y N$_2$O dentro del rango de concentraciones próximo a los niveles que se obtendrán en la reacción. Se midieron las absorbancias absolutas para las señales de IR más importantes de cada gas (Tabla III.6) y con ellas se construyeron las curvas de calibración de absorbancia versus concentración. Las curvas de calibración se realizaron para las frecuencias de mayor intensidad de cada gas.

Tabla III.6. Números de onda característicos de los gases en estudio.

<table>
<thead>
<tr>
<th>Gas</th>
<th>ν (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>1900</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>1628</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>2237</td>
</tr>
</tbody>
</table>

El procedimiento que se siguió para realizar las experiencias fue el siguiente:

- Para eliminar moléculas adsorbidas en el sólido, como H$_2$O y O$_2$, que pueden perturbar la experiencia, se sometió a la muestra a un barrido con 50 cm3·min$^{-1}$ de He durante 8 horas a 400 ºC, empleando una velocidad de calentamiento de 5 ºC·min$^{-1}$.

- Luego se enfrió hasta temperatura ambiente y se hizo pasar una mezcla de NO en He con una concentración de 5000 ppm.

- Se dejó adsorber durante 20 minutos y luego se cerró el ingreso de NO/He, continuando con el pasaje de He, de modo de barrer todo el NO en fase gas que no fue quimisorbid. Esto último se constató por la ausencia de la señal de NO en el espectro FTIR de la fase gas.

- Posteriormente, se comenzó el calentamiento con una rampa de 10 ºC·min$^{-1}$. Se tomaron seguidamente medidas de espectros IR de los gases de salida del reactor, a la temperatura correspondiente de la rampa en el comienzo de la adquisición de datos.
III.5. Referencias

III. Materiales y Métodos.

III. Materiales y Métodos.

[40] Base de datos del software Balzers Quadstar 433 V6.0.

Capítulo IV

Catalizadores AgNaMordenita

Caracterización Fisicoquímica

Evaluación Catalítica

Trampa de Hidrocarburos

Estudio FTIR
En este capítulo se presentan los resultados obtenidos con catalizadores de Ag intercambiada en NaMordenita. Se analizó el comportamiento de los materiales como adsorbentes de hidrocarburos (butano o tolueno) y como catalizadores para la reducción catalítica selectiva de NOx. Además, se evaluó el acoplamiento de ambos procesos: adsorción de hidrocarburos a baja temperatura y posterior reacción con NOx. También, se presenta la caracterización fisicoquímica de los catalizadores mediante adsorción de N\textsubscript{2}, TPR y espectroscopias UV-Vis, XPS y FTIR.

IV.1. CARACTERIZACIÓN FISICOQUÍMICA

IV.1.a. Propiedades físicas, químicas y texturales.

Mediante intercambio iónico de NaMOR con soluciones de AgNO\textsubscript{3} con diferentes concentraciones se obtuvieron catalizadores con 5, 10 y 15 % p/p de Ag. La Tabla IV.1 presenta el contenido de Na y Ag determinados por espectroscopía de absorción atómica, para los catalizadores Ag(x)M y el soporte NaMOR. Además, se muestran los resultados de superficie específica (A_{BET}) y volumen de microporos (V_{μ}) obtenidos.

El valor de la superficie específica del soporte NaMOR comercial es de 409 m2·g-1, lo cual concuerda con lo reportado por el proveedor Zeolyst International [1]. La incorporación de plata a los canales de la mordenita provoca una disminución del área superficial y volumen de los microporos en comparación con el sustrato original.

<table>
<thead>
<tr>
<th>Catalizador</th>
<th>% Ag(1)</th>
<th>% Na(2)</th>
<th>A_{BET}(3)</th>
<th>V_{μ}(4)</th>
<th>Cristalinidad(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaMOR</td>
<td>0</td>
<td>4,10</td>
<td>409</td>
<td>0,165</td>
<td>100,0</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>5,15</td>
<td>1,21</td>
<td>265</td>
<td>0,083</td>
<td>77,9</td>
</tr>
<tr>
<td>Ag(10)M</td>
<td>10,30</td>
<td>0,47</td>
<td>301</td>
<td>0,088</td>
<td>58,9</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>15,17</td>
<td>0,34</td>
<td>309</td>
<td>0,086</td>
<td>36,6</td>
</tr>
</tbody>
</table>

(1) Porcentaje en peso de Ag obtenido mediante absorción atómica.
(2) Porcentaje en peso de Na obtenido mediante absorción atómica.
(3) Superficie específica calculada a partir de las isotermas de adsorción de N\textsubscript{2} a -196 °C (m2·g-1).
(4) Volumen de microporos calculados a partir del método t-plot (cm3·g-1).
(5) Cristalinidad calculada a partir de la relación de la suma de intensidades de los cinco picos más intensos de los difractogramas de DRX (%), considerando 100 % de cristalinidad para el soporte NaMOR.
IV. Catalizadores AgNaMordenita.

Con la finalidad de evaluar la presencia de sitios ácidos (H\(^+\)) generados durante el intercambio iónico, se analizó el contenido de sodio en las muestras preparadas, el cual se determinó mediante absorción atómica. En la Tabla IV.2 se muestran los moles de Ag y Na presentes en los catalizadores Ag(x)M y en el soporte, los cuales fueron calculados a partir del contenido en peso de Ag y Na, respectivamente. Teniendo en cuenta que la fórmula química de la zeolita NaMordenita, con una relación Si/Al = 6,5, es Na\(_{6,4}\) (AlO\(_2\)\(_{6,4}\) (SiO\(_2\))\(_{41,6}\)·16 H\(_2\)O, se observa que la cantidad teórica máxima de iones Na\(^+\) para intercambiar es de 6,4 moles.

En la Tabla IV.2 se muestra que luego de intercambiar el soporte NaMOR con 5, 10 y 15 % p/p de Ag, queda un remanente de 1,54, 0,62 y 0,47 moles de sodio sin intercambiar, respectivamente. Al mismo tiempo, durante el intercambio iónico se producen sitios ácidos H\(^+\) que disminuyen a medida que aumenta la cantidad de Ag incorporada.

<table>
<thead>
<tr>
<th>Catalizadores</th>
<th>Ag(^{(1)})</th>
<th>Na(^{(2)})</th>
<th>H(^{(3)})</th>
<th>Fórmula Química</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaMOR</td>
<td>-</td>
<td>5,40</td>
<td>1,00</td>
<td>Na({5,4})H({1,0})MOR</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>1,35</td>
<td>1,54</td>
<td>3,51</td>
<td>Ag({1,35})Na({1,54})H(_{3,51})MOR</td>
</tr>
<tr>
<td>Ag(10)M</td>
<td>2,85</td>
<td>0,62</td>
<td>2,93</td>
<td>Ag({2,85})Na({0,62})H(_{2,93})MOR</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>4,50</td>
<td>0,47</td>
<td>1,43</td>
<td>Ag({4,5})Na({0,47})H(_{1,43})MOR</td>
</tr>
</tbody>
</table>

(1) Moles de plata calculados a partir del porcentaje en peso de Ag obtenido por absorción atómica.
(2) Moles de sodio calculados a partir del porcentaje en peso de Na obtenido por absorción atómica.
(3) Moles de protones calculados por diferencia con el valor teórico de moles de Na (6,4 moles).

Los sitios H\(^+\) pueden generarse como consecuencia del medio ácido que se mantuvo durante el intercambio iónico (pH = 5).

Los difractogramas obtenidos mediante DRX para todas las muestras Ag(x)M calcinadas (Fig. IV.1), sólo presentan los picos correspondientes a la estructura zeolítica y no se detecta ninguna de las líneas de difracción correspondientes a la especie Ag\(_2\)O (2\(\theta\) = 32,6°, 37,8°, 54,7° y 65,3°) o Ag\(^\circ\) (2\(\theta\) = 38,1°, 44,3°, 64,4° y 77,4°) [2]. Si bien no se observan estas señales, se aprecian cambios en las intensidades relativas de los picos principales de la zeolita NaMOR luego de incorporar distintos contenidos de Ag. Esto se encuentra directamente relacionado con la disminución del volumen de poro y la
cristalinidad reportados en la Tabla IV.1. Con la incorporación de 15 % p/p Ag, el volumen de poro y la cristalinidad disminuyen 50 y 63,4 %, respectivamente.

![Difractogramas](image)

Figura IV.1. Difractogramas obtenidos para los sólidos (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M calcinados.

En este sentido, Kukulska-Zaja y Datka [3] sugieren que la ubicación de especies de Ag en la cercanía de los oxígenos de la estructura produce la deformación del anillo zeolítico. Por lo tanto, el aumento de la cantidad de iones Ag\(^+\) en los canales podría producir distorsiones en los poros y huecos intercristalinos debido a la interacción con el oxígeno de la red.

IV.1.b. Reducibilidad de las especies de Ag.

Las propiedades de los centros activos están relacionadas con las diferentes especies de Ag presentes en los catalizadores. La reducción a temperatura programada (TPR)
IV. Catalizadores AgNaMordenita.

permite diferenciar estas especies. En este sentido, la Tabla IV.3 y la Fig. IV.2 presentan los resultados obtenidos mediante TPR para la mezcla mecánica Ag₂O/M y los sólidos intercambiados Ag(x)M. Los perfiles de reducción exhiben picos en tres regiones de temperaturas diferentes atribuidos a distintas especies de plata.

La reducción por debajo de 300 °C (región I) con un pico principal a 222 °C se atribuye a pequeñas partículas de Ag₂O altamente dispersas y/o formando clústeres de Ag₂O localizados fuera o dentro de la estructura zeolítica [4]. La presencia de otros pequeños picos en esta región (< 300 °C) sugiere una interacción diferente entre el óxido y los canales zeolíticos.

Probablemente, las especies Ag₂O se forman como consecuencia de la descomposición térmica durante el proceso de calcinación de especies AgOH, de acuerdo a la siguiente reacción química [5]:

Figura IV.2. Perfiles de reducción para la muestra de referencia (a) Ag₂O/M y los catalizadores (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.
IV. Catalizadores AgNaMordenita.

\[
\text{Ag}^+ + \text{OH}^{-} \rightarrow \text{Ag(OH)} \quad \text{(en solución acuosa)} \quad \text{(Rq. IV.1)}
\]

\[
2 \text{AgOH} \rightarrow \text{Ag}_2\text{O} + \text{H}_2\text{O} \quad \text{(en los poros durante la calcinación)} \quad \text{(Rq. IV.2)}
\]

Generalmente, la reducción entre 300 y 600 °C (región II) es asociada a iones Ag\(^+\) en posiciones de intercambio dentro de la zeolita. Además, existe una pequeña fracción por encima de 600 °C (región III) que puede ser asignada a iones Ag\(^+\) localizados en sitios muy estables, de elevada coordinación, en donde el catión interactúa fuertemente con la estructura zeolítica. Estos dos picos se atribuyen a especies intercambiadas en diferentes sitios de la mordenita, probablemente en el canal principal (sitio \(\alpha\)) y en los \textit{side-pockets} (sitios \(\beta\)), respectivamente [6] (ver Sección II.2.a, Fig. II.2).

| Tabla IV.3. Reducibilidad de las especies de Ag en los catalizadores Ag(x)M. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| **Muestras** | **H\(_2\)/Ag (T\(_\text{máx.}^\circ\text{C})** | **H\(_2\)/Ag** | **PR (%)** |
| | 25-300 | 300-600 | > 600 | Ag\(_2\)O | Ag-\(\alpha\) | Ag-\(\beta\) |
| Ag\(_2\)O/M | 0,50 | - | - | 0,50 | 100 | - | - |
| | (190) | | | | | | |
| Ag(5)M | 0,14 | 0,17 | 0,05 | 0,36 | 28 | 34 | 10 |
| | (221) | (406) | (780) | | | | |
| Ag(10)M | 0,18 | 0,24 | 0,03 | 0,45 | 36 | 48 | 6 |
| | (222) | (404) | (770) | | | | |
| Ag(15)M | 0,22 | 0,19 | 0,09 | 0,50 | 44 | 38 | 18 |
| | (222) | (443) | (757) | | | | |

(1) Los catalizadores Ag(x)M fueron calcinados en flujo de O\(_2\) a 500 °C. La muestra de referencia Ag\(_2\)O/M se deshidrató a 500 °C en flujo de inerte.
(2) Máxima temperatura de reducción en cada región.
(3) Relación entre los \(\mu\)moles totales de H\(_2\) consumido y los \(\mu\)moles totales de Ag presentes en la muestras.
(4) Proporción relativa (PR) de Ag\(_2\)O y de iones Ag\(^+\) en los sitios \(\alpha\) y \(\beta\) de la NaMOR (%).

Como se observa en la Tabla IV.3, la muestra Ag(15)M posee una relación entre el H\(_2\) consumido y los moles de plata reducidos de 0,50, lo que indica la reducción
IV. Catalizadores AgNaMordenita.

completa de especies Ag\(^+\) a Ag\(^0\). Sin embargo, para los catalizadores Ag(5)M y Ag(10)M el consumo total de H\(_2\) es inferior a 0,50. Probablemente, cuando la concentración de Ag es baja, una fracción de iones Ag\(^+\) estén ubicados en los sitios γ de la mordenita, los cuales son muy estables y difíciles de reducir.

De este modo, es posible estimar la concentración relativa de las diferentes especies de plata en las muestras, según se presentan en la Tabla IV.3. En ella se observa, que a medida que aumenta el contenido de Ag en los catalizadores Ag(x)M, incrementa la proporción relativa de las especies Ag\(_2\)O. Cuando la carga de plata es alta (15 % p/p), los iones Ag\(^+\) se ubican preferencialmente en los sitios α (pico de reducción entre 300 y 600 °C) y β (temperatura de reducción entre 600 y 900 °C).

IV.1.c. UV-Vis DRS.

Las especies de plata en solución o en matrices sólidas como las zeolitas, presentan bandas de absorción características en la región espectral UV-Vis [7]. La Fig. IV.3 exhibe los espectros obtenidos en la región 220-700 nm para el soporte NaMOR (espectro a), la muestra de referencia Ag\(_2\)O/M (espectro b) y los catalizadores Ag(x)M (espectros c-e).

Las muestras Ag(x)M presentan una banda intensa de absorción UV alrededor de 220 nm, que se atribuye a la transición electrónica [Kr] 4d\(^{10}\)-[Kr] 4d\(^9\)5s\(^1\) del ión Ag\(^+\) aislado e intercambiado en el soporte NaMOR. En este sentido, Shi et al. [8] reportaron tres bandas superpuestas por debajo de 230 nm, específicamente a 196, 212 y 224 nm, correspondientes a iones de plata intercambiados en H-ZSM-5. Además, Shibata et al. [9] informaron la presencia de bandas a 210 y 235 nm asignadas a iones Ag\(^+\) presentes en sólidos Ag-MFI pretratados en flujo de O\(_2\) a 500 °C.

La asignación de bandas de absorción individuales a diferentes especies de plata soportadas en materiales zeolíticos ha sido ampliamente discutida en la literatura [10, 11]. Entre los diversos resultados, se propone la existencia de iones Ag\(^+\) aislados, clústers catiónicos (Ag\(_n^{m+}\)) y clústers metálicos (Ag\(_n^0\)) con n < 8, como posibles especies de plata capaces de absorber energía en la región UV-Vis.

En el caso de la muestra Ag(5)M, se observan bandas a 286 y 320 nm asignadas a pequeños clústers de plata catiónicos (Ag\(_n^{m+}\), 2 ≤ n ≤ 4) [12]. La banda débil observada entre 370 y 480 nm podría corresponder a nanopartículas de Ag\(_2\)O, que presentan la
IV. Catalizadores AgNaMordenita.

capacidad de absorción de luz en la región UV y visible (200-650 nm) [13]. Una banda similar fue observada para muestras Ag-H-ZSM-5 tratadas con una corriente de aire [8].

Figura IV.3. Espectros UV-Vis DRS obtenidos para las muestras (a) NaMOR, (b) Ag₂O/M, (c) Ag(5)M, (d) Ag(10)M y (e) Ag(15)M calcinadas.

Los catalizadores con mayor contenido metálico, 10 y 15 % p/p de Ag intercambiada en NaMOR (espectros d y e, respectivamente), presentan una señal ancha a 250 nm y otra débil cercana a 330 nm correspondiente a clústeres Agₙ⁺. También, se observa la señal de absorción del óxido de plata. En los espectros (d) y (e), es posible que la presencia de cantidades de moléculas de agua coordinadas con iones Ag⁺, genere la disminución de las intensidades de los espectros [14].
IV. Catalizadores AgNaMordenita.

IV.1.d. Caracterización superficial.

La Fig. IV.4A presenta los espectros fotoeléctronicos de la región Ag 3d medidos para los catalizadores Ag(x)M, como así también para el sólido de referencia Ag₂O/M, con el fin de investigar el estado químico de las especies de plata intercambiadas (Ag⁺) y soportadas (Ag⁰ y Ag₂O) sobre el sustrato zeolítico NaMOR.

![Spectroscopic characterization](image)

Figura IV.4. Espectros XPS obtenidos para las muestras (a) Ag(5)M, (b) Ag(10)M, (c) Ag(15)M y (d) Ag₂O/M; región (A) Ag 3d y (B) Ag M₄VV Auger.

La energía de enlace para la Ag 3d en las muestras intercambiadas presenta dos picos cercanos a 368,3 y 374,3 eV (FWHM ~ 2,1), asignados al doblete Ag 3d₅/₂ y Ag 3d₃/₂, respectivamente. Además, se observa un corrimiento de 0,5 eV hacia 367,8 y 373,8 eV de los valores de energía de enlace para el sólido Ag₂O/M. Teniendo en cuenta los resultados de XPS previamente reportados [15], varios autores coinciden en que es difícil distinguir diferencias en los estados de oxidación de la plata considerando...
solamente la energía de enlace del nivel electrónico Ag 3d. Esto se debe a que las diversas fases, como por ejemplo, Ag2O (368,4 eV), AgO (368,0 eV) y Ag metálica (368,2 eV), no presentan una diferencia apreciable en el valor de energía de enlace en esta región [16]. Por este motivo, se midió además la energía cinética de la transición Auger Ag M4VV (Fig. IV.4B) y de este modo, se calculó el parámetro Auger modificado, \(\alpha' \) (Tabla IV.4), el cual permite diferenciar el estado de oxidación del elemento en cuestión.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>EE Ag 3d(_{5/2}) (FWHM)</th>
<th>EC Ag M(_{4})VV</th>
<th>(\alpha')</th>
<th>Relación atómica</th>
<th>Relación atómica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(eV)</td>
<td>(eV)</td>
<td></td>
<td>Sí/Al(_S)</td>
<td>Ag/Al(_S)</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>368,4 (2,1)</td>
<td>354,0</td>
<td>722,3</td>
<td>6,1</td>
<td>0,67</td>
</tr>
<tr>
<td>Ag(10)M</td>
<td>368,3 (2,1)</td>
<td>354,5</td>
<td>722,8</td>
<td>6,1</td>
<td>0,95</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>368,2 (2,3)</td>
<td>354,0</td>
<td>722,2</td>
<td>6,2</td>
<td>0,91</td>
</tr>
<tr>
<td>Ag(_2)O/M</td>
<td>367,8 (1,8)</td>
<td>357,7</td>
<td>724,6</td>
<td>6,0</td>
<td>0,30</td>
</tr>
</tbody>
</table>

(1) Energía de Enlace (eV).
(2) Energía Cinética (eV).
(3) Parámetro Auger modificado: \(\alpha' \) (eV) = EC (Ag M\(_{4}\)VV) – EC (Ag 3d\(_{5/2}\)) + 1253,6 eV.
(4) ‘S’ representa la relación atómica superficial y ‘B’ indica la relación atómica en el bulk determinada por análisis químico.

El uso de este parámetro en la identificación de diferentes especies presentes en los materiales posee varias ventajas, (i) eliminar cualquier error sistemático en la intensidad máxima de fotoelectrones que pueden surgir debido a la carga de la muestra y, (ii) como el parámetro depende principalmente del corrimiento Auger, los valores de energía cinética están bien separados para los diferentes estados de oxidación de la plata [16].

La energía cinética del pico principal obtenida para la transición Auger de los catalizadores Ag\(_x\)M varía entre 354,0 y 354,5 eV; mientras que para la muestra de referencia Ag\(_2\)O/M es de 357,7 eV; siendo los parámetros Auger calculados próximos a 722,3 y 724,6 eV, respectivamente. Estos valores concuerdan con los obtenidos por
Bera et al. [17], quienes reportaron valores de 726,3 y 724,5 eV para la Ag° y Ag₂O, respectivamente.

Los valores de α' para los sólidos Ag(x)M son menores que los correspondientes a la especie óxido de plata y Ag° metálica, lo que sugiere que las especies de Ag se encuentran en un entorno diferente y, son principalmente iones Ag⁺ en posiciones de intercambio.

También, los valores del ancho a la altura media (FWHM) del pico Ag 3d$^{5/2}$ para las muestras Ag(x)M son levemente más amplios que para el sólido Ag₂O/M, lo que sugiere la coexistencia de pequeñas partículas de Ag₂O dispersas en la estructura de la mordenita. Además, para todas las muestras se midieron las energías de enlace de los niveles electrónicos correspondientes a los elementos de la estructura Al 2p, Si 2p, Na 1s y O 1s que resultaron ser de 74,0, 102,4, 1067,0 y 531,7 ± 0,1 eV, respectivamente.

La relación atómica superficial Ag/Al3_5 y Si/Al3_5 calculada a partir de los datos de XPS se observan en la Tabla IV.4. Los elevados valores de la relación Ag/Al3_5 indican un enriquecimiento superficial a medida que aumenta el contenido metálico en los catalizadores Ag(x)M. La relación Si/Al superficial permanece constante (Si/Al = 6,2) y cercana al valor volumétrico (Si/Al = 6,5).

IV.1.e. Desorción de NO a temperatura programada (TPD-NO).

La Fig. IV.5 muestra los perfiles de desorción obtenidos después de la adsorción de NO a temperatura ambiente sobre los catalizadores con 5 y 15 % p/p de Ag y en comparación con la referencia Ag₂O/M. Similares resultados se obtuvieron para la muestra Ag(10)M.

El eje ‘y’ de la Fig. IV.5 se refiere a la concentración de NO₂ a la salida del reactor normalizada con el contenido de Ag₂O obtenido de los perfiles de TPR. La curva representativa del TPD-NO presenta un pico de baja intensidad por debajo de 100 °C y otro por encima de 300 °C. Las muestras Ag(x)M exhiben un corrimiento del segundo pico de desorción hacia mayores temperaturas en comparación con la referencia Ag₂O/M, lo que podría ser atribuido a la interacción del NO con diferentes especies de Ag dispersas en la estructura.

La corriente gaseosa desorbida fue analizada a la salida del reactor mediante FTIR y se detectó solamente la señal a 1628 cm⁻¹ perteneciente a la especie NO₂. Esto sugiere que el NO adsorbido es oxidado en presencia de especies Ag₂O.
Por lo tanto, la oxidación del NO adsorbido sobre las especies Ag₂O puede esquematizarse de la siguiente manera:

\[
\text{NO (g)} \rightarrow \text{NO (ads)} \quad \text{(Rq. IV.3)}
\]

\[
\text{NO (ads)} + \text{Ag}_2\text{O (s)} \rightarrow \text{NO}_2\text{(ads)} + 2 \text{Ag}^0\text{(s)} \quad \text{(Rq. IV.4)}
\]

\[
\text{NO}_2\text{(ads)} \rightarrow \text{NO}_2\text{(g)} \quad \text{(Rq. IV.5)}
\]

En la Tabla IV.5 se presenta la relación molar NO₂/Ag₂O, teniendo en cuenta el área bajo la curva del perfil de TPD (Fig. IV.5) que se relaciona con los µmoles de NO₂ desorbidos y los picos de reducción por debajo de 300 °C (Fig. IV.2), que corresponden a las partículas de Ag₂O. Los valores próximos a 1, indican la oxidación completa de las moléculas de NO adsorbido en Ag₂O y corroboran la estequiometría propuesta en la
IV. Catalizadores AgNaMordenita.

(Rq. IV.4). Este mecanismo de oxidación de NO a NO₂ también fue observado con las especies de InO⁺/InₓO y soportadas sobre zeolitas mordenita y ZSM-5 [18].

<table>
<thead>
<tr>
<th>Muestras</th>
<th>µmol NO₂ (1)</th>
<th>µmol Ag₂O (2)</th>
<th>NO₂/Ag₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag₂O/M</td>
<td>78</td>
<td>70</td>
<td>1,11</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>6,3</td>
<td>6,5</td>
<td>0,97</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>31</td>
<td>30,6</td>
<td>1,01</td>
</tr>
</tbody>
</table>

(1) µmoles calculados a partir de los resultados de TPD de NO.
(2) µmoles calculados a partir de los perfiles de TPR.

En resumen, mediante TPR, UV-Vis y XPS, se determinó que los catalizadores Ag(x)M poseen pequeñas partículas de Ag₂O (20 %) altamente dispersas en coexistencia con iones Ag⁺ ubicados en posiciones de intercambio dentro de los canales de la estructura NaMOR. A través de la desorción de NO a temperatura programada, se observó que las especies de óxido de plata son capaces de oxidar el NO a NO₂. Además, los resultados de absorción atómica permitieron determinar la presencia de iones Na⁺ y Ag⁺ junto a protones H⁺.

IV.2. Reducción Selectiva de NOx con Hidrocarburos.

Las Figs. IV.6 y IV.7 presentan la conversión de NOx a N₂ para la RCS-NOx con butano y tolueno como agentes reductores, respectivamente. El comportamiento catalítico se analizó en corriente seca y con el agregado de 2 % de vapor de agua a la entrada del reactor. Todos los catalizadores Ag(x)M exhibieron curvas tipo vulcano con un máximo de conversión a N₂ entre 500 y 525 ºC, según los catalizadores e hidrocarburos empleados.

En presencia de butano y en condiciones secas (Fig. IV.6A), los catalizadores con 5 y 10 % p/p de Ag presentaron similar actividad catalítica, siendo la máxima conversión a N₂ de 30,3 % y 32,4 % a 525 ºC, respectivamente. Sin embargo, la actividad reductora del catalizador Ag(15)M es menor.
Cuando el HC empleado fue tolueno (Fig. IV.7A), el sólido con 10 % p/p de Ag alcanzó una conversión de 38,2 % a 500 ºC. Por lo tanto, la mayor actividad reductora observada posiblemente se debe a que el anillo aromático del tolueno es más reactivo que la cadena alifática del butano.
IV. Catalizadores AgNaMordenita.

Figura IV.7. RCS-NOx usando C\textsubscript{7}H\textsubscript{8} como reductor para las muestras Ag\textsubscript{(x)}M: (●, ○) 5 % Ag, (▲, △) 10 % Ag y (■, □) 15 % Ag. Condiciones: GHSV = 20000 h-1, 1000 ppm NO, 2 % O\textsubscript{2}, 500 ppm C\textsubscript{7}H\textsubscript{8}, símbolos llenos: 0 % H\textsubscript{2}O, símbolos vacíos: 2 % H\textsubscript{2}O. (A, B): conversión de NOx a N\textsubscript{2}; (C, D): conversión de C\textsubscript{7}H\textsubscript{8} en función de la temperatura.

Por otro lado, en todos los catalizadores se observó un efecto positivo sobre la actividad reductora del NO con la adición de 2 % de H\textsubscript{2}O. La conversión máxima de
NOx aumentó desde 20 % (en seco) a 47,5 % (2 % H₂O) a 500 ºC empleando butano sobre el catalizador Ag(15)M (Fig. IV.6B). Del mismo modo, usando tolueno las conversiones de NOx fueron mayores que las medidas en condiciones secas. La mayor conversión de NO alcanzada es de 51,2 % a 500 ºC para el sólido con 15 % p/p de Ag (Fig. IV.7B).

Las conversiones de butano (presentadas en las Figs. IV.6C y 6D) son similares para todos los catalizadores y se alcanza la conversión total del hidrocarburo a temperaturas cercanas a 525 ºC, donde la conversión a nitrógeno fue máxima. Cuando se utilizó tolueno, el catalizador Ag(10)M mostró una menor conversión del hidrocarburo a temperaturas por debajo de 500 ºC, en comparación con los otros sólidos intercambiados. Similares resultados se observaron con el agregado de 2 % de agua en todo el intervalo de temperatura.

La presencia de agua en la alimentación puede tener efectos diferentes: (i) de manera reversible, puede inhibir la actividad catalítica para la reducción de NOx porque las moléculas de agua compiten por los sitios activos impidiendo la adsorción del NOx, (ii) promover el reformado del hidrocarburo generando H₂ y, (iii) en el caso que el agente reductor contenga más de tres átomos de carbono, posee un efecto benéfico porque colabora en mantener la superficie limpia de depósitos carbonosos [19, 20].

En la Fig. IV.8 se muestra la influencia del contenido de plata en la conversión máxima de NOx a N₂ con butano o tolueno en presencia o ausencia de 2 % de agua. En concordancia con otros autores [21], la conversión máxima a N₂ presenta un valor óptimo entre 5 y 10 % p/p de Ag en condiciones secas y con ambos hidrocarburos. Sin embargo, un comportamiento diferente se observó en presencia de 2 % de agua, donde la conversión a N₂ aumenta a medida que se incrementa el contenido metálico. Posiblemente, puede ocurrir una reacción paralela a 500 ºC, en donde el tolueno o butano reaccione con el agua, generando hidrógeno y monóxido de carbono o dióxido de carbono. De este modo, la presencia de H₂ en el flujo reactivo, podría mejorar la conversión de NO. La deposición de carbono podría producirse al mismo tiempo debido a la descomposición de los hidrocarburos y/o por la desproporción de CO [22].
Los resultados obtenidos para las muestras de Ag intercambiada en la RCS-NOx mostraron que la actividad catalítica fue mayor en presencia de agua con ambos HCs, por lo que se puede concluir en que el efecto beneficioso del agua se debe probablemente a la producción de H₂ a partir de la reacción de reformado del hidrocarburo, que a su vez, mejora la reducción de NOx y también, el agua contribuye a mantener la superficie limpia de depósitos carbonosos.
IV.3. TRAMPA DE HIDROCARBUROS. CAPACIDAD DE ADSORCIÓN Y RETENCIÓN.

IV.3.a. Curvas de Ruptura.

La determinación de las curvas de ruptura o quiebre es un método directo utilizado para determinar la capacidad de adsorción de un material adsorbente.

Las Figs. IV.9A y 9B comparan las curvas de ruptura para la adsorción de butano o tolueno a 100 °C sobre el soporte NaMOR y las muestras intercambiadas con 5, 10 y 15 % p/p de Ag, respectivamente.

Además, los µmoles de tolueno o butano adsorbidos a 100 °C (Q_{ADS}) fueron calculados a partir del área relacionada a las curvas de quiebre (Tabla IV.6).
Tabla IV.6. Capacidad de adsorción, desorción y retención de tolueno o butano.

<table>
<thead>
<tr>
<th>Catalizadores</th>
<th>% Ag</th>
<th>Tolueno</th>
<th>Butano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$Q_{\text{ADS}}^{(1)}$</td>
<td>$Q_{\text{DES}}^{(2)}$</td>
</tr>
<tr>
<td>NaMOR</td>
<td>0</td>
<td>0,93</td>
<td>0,38</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>5</td>
<td>0,61</td>
<td>0,17</td>
</tr>
<tr>
<td>Ag(10)M</td>
<td>10</td>
<td>0,73</td>
<td>0,35</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>15</td>
<td>0,86</td>
<td>0,21</td>
</tr>
<tr>
<td>Ag(15)M$^{(4)}$</td>
<td>15</td>
<td>0,84</td>
<td>0,16</td>
</tr>
</tbody>
</table>

(1) Cantidad de tolueno o butano adsorbido a 100 ºC (µmol·mg$^{-1}$).
(2) Cantidad de tolueno o butano desorbido por encima de 100 ºC (µmol·mg$^{-1}$).
(3) Capacidad de retención de tolueno o butano por encima de 100 ºC; $\Phi = (Q_{\text{DES}}/Q_{\text{ADS}}) \times 100$ (%).
(4) Catalizador Ag(15)M reducido en flujo de H$_2$ hasta 300 ºC previo a la adsorción y desorción de C$_7$H$_8$.

La zeolita NaMOR presenta la mayor capacidad de adsorción de tolueno (Fig. IV.9A, curva a), ya que posee el tiempo más alto para alcanzar la saturación. La incorporación de 5 % p/p de Ag (Fig. IV.9A, curva b) produce una apreciable disminución en la cantidad de C$_7$H$_8$ adsorbido. Este comportamiento puede deberse a varios factores. Uno de ellos es la disminución del volumen de poro (cerca del 50 %) al agregar Ag (Tabla IV.1). Otro factor puede estar relacionado con un aumento en la concentración de protones generados durante el intercambio iónico con la solución de nitrato de plata a pH = 5 (Tabla IV.2). Choudhary et al. [23, 24] estudiaron la adsorción de diferentes compuestos, entre ellos el benceno sobre materiales zeolíticos del tipo HZSM-5 y NaZSM-5 e indicaron que la adsorción de benceno es mayor en zeolitas sódicas en comparación con las protónicas.

A medida que aumenta la carga metálica y disminuye la concentración de H$^+$ (Fig. IV.9A, curvas c y d), se produce un incremento en la capacidad de adsorción (Tabla IV.6). De hecho, la cantidad de tolueno adsorbido por el sólido Ag(15)M es ligeramente inferior al soporte NaMOR, debido a que la interacción del tolueno con los iones Ag$^+$ es más fuerte que con los sitios H$^+$ [25].
IV.3.a.1. Análisis de la composición química de los catalizadores Ag(x)M.

Con la finalidad de interpretar estos resultados, además de las propiedades texturales, se debe tener en cuenta la composición química de la estructura zeolítica. La sustitución de iones Si\(^{4+}\) por otro de menor valencia como Al\(^{3+}\), genera una carga negativa, la cual es compensada por cationes, obteniéndose un par ácido-base conjugado. El catión actúa como sitio ácido de Lewis, mientras que los oxígenos de la estructura zeolítica, que llevan la carga parcial negativa, actúan como base de Lewis. Dependiendo de la naturaleza del catión, la carga sobre el oxígeno puede ser lo suficientemente alta como para generar propiedades básicas [26, 27].

Durante el intercambio iónico de la mordenita con la solución de nitrato de plata, una fracción de iones Na\(^+\) de la estructura zeolítica se intercambió por cationes Ag\(^+\) y protones. De este modo, los iones Ag\(^+\), Na\(^+\) y H\(^+\) están presentes, como cationes de compensación, en distinta proporción según la Tabla IV.1.

Por otro lado, ha sido demostrado que los compuestos aromáticos que contienen electrones \(\pi\), como el tolueno, poseen dos modos posibles de adsorción, como se muestra en la Fig. IV.10.

![Diagrama de adsorción de tolueno en mordenita y Ag(x)M](image-url)

Figura IV.10. Esquema de la interacción del tolueno con los sitios ácidos y básicos en (A) la mordenita y (B) los sólidos Ag(x)M [28].
Por un lado, la interacción de la nube π con el catión, la cual ha sido bien documentada [29-31] e involucra el carácter ácido del mismo. Para un dado contenido de Al, el carácter ácido del catión aumenta con la electronegatividad. El otro modo, corresponde a la interacción de los grupos C-H del hidrocarburo con los átomos de oxígeno de la estructura (sitios básicos). Este carácter básico se intensifica con cationes de baja electronegatividad, como el ión Na⁺.

La basicidad teórica de las zeolitas se puede calcular empleando el Principio de Sanderson: “Cuando dos o más átomos con electronegatividad diferente se combinan químicamente, se promedia la electronegatividad del nuevo compuesto”. En consecuencia, la basicidad de la zeolita puede expresarse por medio de la electronegatividad promedio \(S_i \) la cual depende de la composición química del material. Para un compuesto genérico \(\text{PpQqRr} \), la electronegatividad promedio está dada por:

\[
S_i = \left(\frac{S_p S_q S_R}{S_p + S_q + S_R} \right)^{1/(p+q+r)}
\]

(Ec. IV.1)

donde \(S_j \) denota la electronegatividad del átomo \(j \). Los valores numéricos de \(S_j \) fueron obtenidos por Sanderson [32] y se indican en la Tabla IV.7.

<table>
<thead>
<tr>
<th>Átomos</th>
<th>O</th>
<th>H</th>
<th>Si</th>
<th>Al</th>
<th>Na</th>
<th>Ag</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_j)</td>
<td>3,654</td>
<td>2,592</td>
<td>2,138</td>
<td>1,714</td>
<td>0,560</td>
<td>1,826</td>
<td>1,960</td>
</tr>
</tbody>
</table>

Esto valor permite calcular la carga promedio sobre el oxígeno según la siguiente ecuación:

\[
\delta_{ox} = \frac{S_{ox} - S_{ox}}{2,08 \sqrt{S_{ox}}}
\]

(Ec. IV.2)

donde, de la Tabla IV.7 se puede observar que el valor de la electronegatividad del oxígeno, ‘\(S_{ox} \)’ es 3,654.
El carácter básico de las zeolitas se incrementa con un aumento en el valor absoluto δ_{ox} y está asociado a cationes con baja electronegatividad y acidez débil. En la Tabla IV.8 se presentan los valores de electronegatividad y carga del oxígeno promedio obtenidos para el soporte NaMOR y las muestras Ag(x)M. En ella, se observa que la electronegatividad promedio es máxima con la incorporación de 10 % p/p de Ag, consecuentemente la carga en el oxígeno es mínima.

Tabla IV.8. Electronegatividad promedio y carga promedio del oxígeno para la mordenita y las muestras intercambiadas Ag(x)M.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>S_i</th>
<th>$-\delta_{ox}$</th>
<th>Fórmula Química</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaMOR</td>
<td>2,845</td>
<td>0,203</td>
<td>$Na_{5,4}H_{1,0}$ MOR</td>
</tr>
<tr>
<td>Ag(5)M</td>
<td>2,950</td>
<td>0,177</td>
<td>$Ag_{1,35}Na_{1,54}H_{3,51}$ MOR</td>
</tr>
<tr>
<td>Ag(10)M</td>
<td>2,968</td>
<td>0,173</td>
<td>$Ag_{2,85}Na_{0,62}H_{2,93}$ MOR</td>
</tr>
<tr>
<td>Ag(15)M</td>
<td>2,961</td>
<td>0,174</td>
<td>$Ag_{4,5}Na_{0,47}H_{1,43}$ MOR</td>
</tr>
</tbody>
</table>

Cuando se adsorbe butano a 100 °C (Fig. IV.9B), disminuye la cantidad de HC adsorbido por las muestras Ag(x)M en comparación con el soporte NaMOR. Además, todos los sólidos intercambiados presentan similares curvas de quiebre para distintos contenidos metálicos. En este sentido, la cantidad de butano adsorbida fue similar para diferentes concentraciones de plata (Tabla IV.6). Probablemente, estos resultados sean consecuencia de la débil interacción entre los grupos metilos de la cadena lineal del butano y los iones Ag$^+$ presentes en las muestras preparadas.

En cambio, los iones Ag$^+$ presentes en las muestras preparadas representan los sitios activos para la adsorción de tolueno. La presencia de diferentes concentraciones de Ag revelan dos efectos contrapuestos de la plata sobre la capacidad de adsorción de los hidrocarburos. Por un lado, las especies de plata producen el bloqueo de los canales de la mordenita debido a la incorporación de un catión de compensación con mayor radio iónico que el Na$^+$ (0,95 Å para Na$^+$ y 1,26 Å para Ag$^+$). Este efecto se encuentra directamente vinculado con la pérdida de cristalinidad y disminución de las propiedades texturales de la zeolita intercambiada, como son el volumen de poro y área superficial (Tabla IV.1). Por otro lado, un segundo efecto relaciona la fuerte interacción entre las especies de Ag presentes y el hidrocarburo adsorbido. La fuerza de interacción depende en gran medida de la naturaleza del HC. En el caso específico del tolueno, los resultados experimentales muestran dos situaciones. En primer lugar, la capacidad de adsorción...
disminuye significativamente con la adición de 5 % p/p de Ag en comparación con el sólido NaMOR. En esta muestra, prevalece el efecto de obstrucción o bloqueo de la estructura zeolítica. Sin embargo, al añadir un contenido más alto de metal (10 y 15 % p/p de Ag), la capacidad de adsorción aumenta como consecuencia de la disminución de la cantidad de H⁺ y del efecto predominante de interacción entre iones Ag⁺ y la molécula de tolueno.

En cambio, la situación del butano es diferente. Se nota que la adición de 5 % p/p de Ag también produce la disminución de la cantidad de hidrocarburo adsorbido en comparación con los µmoles adsorbidos por la Na-Mordenita. Por lo tanto, el efecto de obstrucción predomina, del mismo modo que con el tolueno. Sin embargo, cuando se añade un mayor contenido metálico, la cantidad de butano adsorbido disminuye ligeramente, lo que indica que la interacción de los grupos C-H del hidrocarburo lineal con los oxígenos de estructura es débil.

IV.3.b. Desorción de C₇H₈ o C₄H₁₀ a temperatura programada.

La Fig. IV.11 presenta los perfiles de desorción de tolueno y butano adsorbidos sobre el soporte NaMOR y las muestras Ag(x)M.

El perfil de desorción de tolueno sobre el soporte NaMOR (Fig. IV.11, curva a) presenta dos zonas características, una a baja temperatura (100-300 ºC) y otra entre 300 y 500 ºC. La primera región está asociada al tolueno adsorbido débilmente. En cambio, el HC desorbido a elevadas temperaturas se vincula con moléculas de tolueno en interacción con sitios Na⁺ y H⁺. Cuando el HC es lineal, el perfil de desorción presenta un único pico a temperaturas inferiores a 200 ºC.

En los catalizadores Ag(x)M, el tolueno adsorbido a 100 ºC se retuvo hasta temperaturas cercanas a 300 ºC, mientras que la máxima temperatura de desorción de butano es siempre menor a 200 ºC. Como se observó anteriormente, los iones Ag⁺ ([Kr] 4d¹⁰S⁰) son capaces de activar el tolueno adsorbido, mediante la donación de los electrones π a los orbitales π₀ antienlazantes de la molécula de tolueno [3]. La interacción entre los iones Ag⁺ es más fuerte con los electrones π del anillo aromático de la molécula de tolueno que con los σ de la cadena lineal del butano.
La ausencia del segundo pico de desorción en las muestras Ag(x)M se debe a que las moléculas de tolueno adsorbido reaccionan para generar, como únicos productos, H₂, CO₂ y H₂O. La Fig. IV.12 muestra la evolución de estos compuestos en función de la temperatura de desorción. Este comportamiento no fue observado en NaMOR.

En este sentido, Rönkkönen et al. [33] reportaron reacciones de descomposición de hidrocarburos aromáticos sobre catalizadores de Rh, Ni, Pt o Pd soportados sobre ZrO₂. También, Ding et al. [34] estudiaron la activación del metano en sólidos de Ag intercambiada en zeolitas ZSM-5 para generar H₂ como producto de reacción.
La fuerte interacción de los iones Ag\(^+\) con el tolueno retenido hasta 350 °C conduce a la descomposición de tolueno según la siguiente reacción [35]:

\[
C_7H_8 \rightarrow 7 C (s) + 4 H_2 (g)
\] \hspace{1cm} (Rq. IV.6)

Sin embargo, las partículas de Ag\(_2\)O promueven la oxidación del hidrocarburo generando dióxido de carbono y agua:

\[
C_7H_8 + 18 Ag_2O \rightarrow 7 CO_2 + 4 H_2O + 36 Ag^0
\] \hspace{1cm} (Rq. IV.7)

En la Tabla IV.6 se pueden observar también los valores de adsorción y desorción de tolueno obtenidos para el sólido Ag(15)M reducido en flujo de H\(_2\) a 5 °C-min\(^{-1}\) hasta 300 °C que luego, se enfrió en inerte hasta la temperatura de adsorción. La cantidad de
moleads adsorbidos antes y después de la reducción de las especies Ag_2O permanece inalterable. Sin embargo, la cantidad de tolueno retenido es menor en comparación con la muestra $\text{Ag}(15)\text{M}$ sin reducir. La capacidad de retención disminuye alrededor de 22\% y también se observó una débil señal correspondiente a la generación de CO_2 y H_2O.

Por lo tanto, se deduce que las especies Ag_2O no están específicamente involucradas en el proceso de adsorción de tolueno, pero son importantes para aumentar la capacidad de retención. Probablemente, esto se debe a la interacción entre el tolueno y los sitios Ag_2O, que promueve la oxidación parcial del hidrocarburo a temperaturas elevadas (~500 °C).

Un aspecto adicional que refuerza los resultados observados, está relacionado a la ubicación de los cationes Ag^+ en los canales de la mordenita. Según la Tabla IV.3, los iones Ag^+ se localizan preferencialmente en el canal principal (sitios α, con anillo de 12 miembros) que son los más accesibles para la adsorción de butano o tolueno. El canal secundario (sitios β, con 8 miembros) o los “side-pockets” (sitios γ), con aperturas de 2,9 x 5,7 Å y 3,4 x 4,8 Å, presentarían impedimento estérico para el acceso de las moléculas de butano o tolueno, cuyos diámetros cinéticos son de 4,3 y 5,8 Å, respectivamente.

De la Tabla IV.6, se observa que la capacidad de retención (Φ) es máxima tanto para el butano como para el tolueno cuando el contenido de plata es 10 \% p/p. Este comportamiento se vincula con una elevada proporción de iones Ag^+ en sitios α y un valor mínimo en sitios β.

La cantidad de butano adsorbido ($Q_\text{ADS}^{\text{but}}$) es prácticamente constante en Ag(x)M, ya que la interacción entre el hidrocarburo lineal y los sitios $\text{Ag}^+\alpha$ o $\text{Ag}^+\beta$ es muy débil.

IV.4. ESTUDIO FTIR

En esta sección se hace referencia a los resultados obtenidos mediante espectroscopía FTIR de las especies de butano y tolueno adsorbidas y de la interacción con las especies de Ag presentes en los catalizadores Ag(x)M.

En las Figs. IV.13 y IV.14 se presentan los espectros FTIR de butano y tolueno, respectivamente; reportados en la biblioteca electrónica NIST Chemistry Webbook [36]
y correspondientes a las vibraciones de la molécula gaseosa del correspondiente hidrocarburo.

En el caso específico de un hidrocarburo lineal como el butano (Fig. IV.13) se observan bandas en la región 3100-2770 cm\(^{-1}\) debidas a las vibraciones de los enlaces –C-H. En fase gas, el butano presenta bandas características a 2976 y 2882 cm\(^{-1}\), correspondientes a las vibraciones del estiramiento asimétrico y simétrico, respectivamente, del enlace C-H de los grupos terminales de la cadena lineal (\(\nu_{CH_3}\)). Además, se observa otra señal a 2938 cm\(^{-1}\) asignada al estiramiento simétrico del grupo CH\(_2\). También se destacan dos señales de menor intensidad en la región de bajos números de onda, a 1453 y 908 cm\(^{-1}\), debidas a las deformaciones CH\(_2)/CH_3\).

Figura IV.13. Espectro FTIR de butano en fase gas.

Figura IV.14. Espectro FTIR de tolueno en fase gas.
El espectro FTIR del tolueno gaseoso (Fig. IV.14) presenta 3 regiones características. Una de ellas corresponde a las vibraciones del enlace C-H del anillo aromático que se manifiestan entre 3100 y 3000 cm\(^{-1}\). La segunda región está comprendida entre 2000 y 1650 cm\(^{-1}\), correspondientes a los sobretonos (en forma de peineta) de las bandas de sustitución. Y la última zona espectroscópica aparece entre 1630 y 1400 cm\(^{-1}\), vinculada a las vibraciones del estiramiento C-C del esqueleto anular.

El espectro presenta bandas a 3099, 3032, 2925, 1614, 1506, 1465, 1450 y 1385 cm\(^{-1}\). En la región de elevados números de onda, la señal de gran intensidad a 3032 cm\(^{-1}\) corresponde al estiramiento =C-H del anillo aromático del tolueno, mientras que la banda a 2925 cm\(^{-1}\) es asignada al estiramiento –C-H del grupo metilo. En la región de menores números de onda, las señales a 1614, 1506 y 1450 cm\(^{-1}\) se deben a los modos vibracionales del estiramiento C=C del anillo aromático, mientras que las bandas a 1465 y 1385 cm\(^{-1}\) son asignadas a la deformación del enlace C-H del grupo metilo.

IV.4.a. Estabilidad térmica del butano adsorbido en Ag(x)M.

La Fig. IV.15 presenta los espectros obtenidos luego de la adsorción de butano a 100 °C sobre el soporte NaMOR y los catalizadores Ag(x)M, seguidas de un barrido en inerte a la misma temperatura de adsorción.

Figura IV.15. FTIR de butano adsorbido y purga en flujo de inerte a 100 °C sobre las muestras (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.
La banda IR observada a 2934 cm\(^{-1}\) es asignada al estiramiento asimétrico C-H del grupo –CH\(_2\) de la molécula de butano \([\nu^a(CH_2)]\), mientras que las bandas a 2960 y 2868 cm\(^{-1}\) corresponden a las vibraciones del estiramiento –C-H asimétrico y simétrico del grupo metilo \([\nu^a(CH_3)\) y \(\nu^s(CH_3)\)], respectivamente. Estas bandas se encuentran corridas hacia menores números de onda en comparación con la molécula en fase gas.

En la región de bajos números de onda, las bandas a 1466 y 1381 cm\(^{-1}\) se deben a la deformación del enlace CH del grupo CH\(_x\) (δ CH\(_2/CH_3\)) [37]. Al aumentar el contenido de plata, se intensifican las bandas de absorción principales del butano adsorbido (región 3000-2750 cm\(^{-1}\)), como consecuencia de la interacción entre el hidrocarburo con especies Ag\(^+\), Na\(^+\) y/o H\(^+\). En la región entre 1550 y 1300 cm\(^{-1}\), la muestra Ag(5)M (Fig. IV.15, espectro b) presenta un pico principal en 1466 cm\(^{-1}\) correspondiente a la interacción del butano con sitios Na\(^+\) y H\(^+\) remanentes en el soporte, y una banda adicional a 1460 cm\(^{-1}\) como consecuencia de la interacción con iones Ag\(^+\) mayoritarios a medida que aumenta el contenido metálico. Luego de barrer las muestras con He a 150 ºC, no se observan bandas FTIR de butano adsorbido en ninguna de las muestras, lo que sugiere una débil adsorción del hidrocarburo sobre los catalizadores, como se observó en las experiencias dinámicas de desorción de butano a temperatura programada (Fig. IV.11).

IV.4.b. Estabilidad térmica del tolueno adsorbido en Ag(x)M.

La Fig. IV.16 presenta el espectro FTIR de tolueno adsorbido a 100 ºC y desorbido en flujo de inerte a 200, 300 y 400 ºC sobre el soporte NaMOR.

En la región espectral de elevados números de onda, se observan bandas débiles por encima de 3000 cm\(^{-1}\) (3033 y 3073 cm\(^{-1}\)) que corresponden al estiramiento C-H del anillo aromático del tolueno. Por debajo de 3000 cm\(^{-1}\), las señales a 2924 y 2877 cm\(^{-1}\) se deben al estiramiento –C-H del anillo aromático del grupo metilo. Las mismas bandas se observaron para las muestras intercambiadas Ag(x)M.

En la región de bajos números de onda, hay una señal a 1495 cm\(^{-1}\) correspondiente a los modos vibracionales del estiramiento C=C del anillo aromático interactuando con los iones Na\(^+\) y H\(^+\) pertenecientes al soporte NaMOR. Esta señal exhibe un corrimiento de 10 cm\(^{-1}\) hacia menores números de onda en comparación con el tolueno en fase gas, cuya señal aparece a 1506 cm\(^{-1}\) (Fig. IV.14).
Además, se aprecia una banda amplia centrada en 1467 cm\(^{-1}\) junto a otra señal a 1386 cm\(^{-1}\) correspondientes a la deformación asimétrica del enlace –C-H del grupo metilo en la molécula de tolueno [38]. También, se observa un hombro a 1448 cm\(^{-1}\) asignado a vibraciones degeneradas del enlace C=C del anillo aromático [39].

La Fig. IV.16 muestra los espectros FTIR de tolueno adsorbido a 100 ºC y desorbido en flujo de inerte a 200, 300 y 400 ºC para el catalizador Ag(15)M.

Al adsorber tolueno sobre el sólido Ag(15)M (Fig. IV.17, espectro b), se produce un corrimiento de 10 cm\(^{-1}\) de la señal a 1495 cm\(^{-1}\) (espectro a) hacia menores números de onda, mediante la aparición de una banda a 1485 cm\(^{-1}\), que puede atribuirse a la interacción entre el hidrocarburo y los iones Ag\(^+\) [25]. La presencia de esta última banda se mantiene aún a 400 ºC, lo que indica una fuerte interacción entre los iones Ag\(^+\) y la molécula de tolueno. Además, las señales centradas en 1460 y 1397 cm\(^{-1}\), son asignadas a la deformación del enlace C-H del grupo –CH\(_3\) interactuando con iones Ag\(^+\). A medida que aumenta la temperatura de desorción (espectros c-e), aparece la señal a
1386 cm$^{-1}$ como consecuencia de la interacción entre los iones Ag$^+$, Na$^+$ y H$^+$ del soporte.

![Figura IV.17. FTIR de tolueno adsorbido sobre el soporte (a) NaMOR y la muestra Ag(15)M, (b) adsorción de tolueno y desorción en flujo de inerte a 100 ºC, desorción de tolueno en flujo de inerte a (c) 200 ºC, (d) 300 ºC y (e) 400 ºC.](image)

Por encima de 300 ºC (Fig. IV.17, espectros d y e), aparece una nueva señal a 1473 cm$^{-1}$ que es asignada a las vibraciones simétricas del estiramiento del enlace C=O perteneciente a los grupos carboxílicos. La aparición de esta banda, posiblemente sea consecuencia de la oxidación parcial del hidrocarburo sobre los sitios Ag$_2$O [40, 41]. Esta señal no se observa en el soporte zeolítico NaMOR. Además, en las muestras con menor contenido de Ag, se exhiben bandas similares a las mostradas en la Fig. IV.17. Esto se encuentra en concordancia a las señales de CO$_2$ observadas durante las experiencias de desorción de tolueno (Fig. IV.12).

En la Fig. IV.18 se comparan los espectros de tolueno adsorbido a 100 ºC y desorbido en flujo de inerte a 400 ºC sobre el soporte NaMOR y las muestras intercambiadas.
Figura IV.18. FTIR de tolueno adsorbido a 100 ºC y desorbido en flujo de inerte a 400 ºC sobre las muestras (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.

A 400 ºC se observa en todas las muestras Ag(x)M la aparición de la banda a 1473 cm\(^{-1}\), lo que sugiere la oxidación parcial de tolueno sobre especies de plata en flujo de inerte, como se observó en las experiencias dinámicas de desorción de tolueno. Como se explicó recientemente, las bandas a 1485, 1448 y 1386 cm\(^{-1}\) se asocian a la interacción entre las moléculas de tolueno con iones Ag\(^+\), señales que son diferentes a las observadas sobre el sustrato NaMOR.

IV.4.c. Reactividad del butano en Ag(x)M en corriente de NO.

La Fig. IV.19 presenta los espectros de los sólidos Ag(x)M y NaMOR obtenidos luego de adsorber 10000 ppm de butano en He a 100 ºC y purgar con 1000 ppm de NO/He. En ambos casos, las muestras fueron purgadas en inerte luego de la adsorción para eliminar el butano o el NO fisisorbido.

En todas las muestras Ag(x)M, se observan las bandas correspondientes a butano adsorbido (región 2700-3000 cm\(^{-1}\)) con una amplia señal entre 2250 y 2100 cm\(^{-1}\). El
hombro a 2240 cm$^{-1}$ se puede atribuir a especies isocianatos (-NCO) adsorbidas en sitios iónicos Ag$^+$, mientras que la banda en 2181 cm$^{-1}$ sugiere la presencia de especies Ag$^+(\text{NOx})$-CO [42], lo que demuestra la reacción a baja temperatura entre el butano adsorbido, el oxígeno de las especies Ag$_2$O y las moléculas de NO en fase gaseosa.

Figura IV.19. Medidas FTIR luego de adsorber butano y desorber en flujo de inerte a 100 ºC sobre (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.

No se observaron bandas características de especies NOx, NO$_2$, NO$_3^-$, NO$_2^-$ adsorbidas, que normalmente aparecen en la región entre 2000 y 1300 cm$^{-1}$.

IV.4.d. Reactividad del tolueno en Ag(x)M en corriente de NO.

La Fig. IV.20 presenta las señales obtenidas para las muestras Ag(5)M y Ag(15)M a 400 ºC en flujo de inerte y los espectros de tolueno adsorbido y desorbido en flujo de NO/He a 250 (espectro b) y 400 ºC (espectro c). La banda a 1485 cm$^{-1}$ correspondiente al estiramiento del enlace C=C del anillo aromático que interactúa con iones Ag$^+$, se observa a 250 ºC para ambas muestras.
Con el catalizador Ag(5)M (Fig. IV.20A) aparecen dos señales a 1460 y 1430 cm\(^{-1}\) que se asignan a especies NO\(_2^-\) superficiales (nitro, nitrito o nitro-nitrito). A 400 ºC se observa una banda a 1687 cm\(^{-1}\) asociada a especies NO\(_2\). También, por encima de 250 ºC se observa la vibración asimétrica C=O del grupo carboxilato (1473 cm\(^{-1}\)) [42]. Cuando el contenido de Ag es de 15 % p/p (Fig. IV.20B), se observa la presencia de especies NO\(_2\) a 250 ºC (espectro b). También, aparece una señal amplia entre 1550 y 1500 cm\(^{-1}\) acompañada por otra banda a 1344 cm\(^{-1}\). Estas señales son más intensas a 400 ºC (espectro c) y corresponden a las vibraciones de compuestos nitro-orgánicos (R-NO\(_2\)) [43]. Además, se observa una banda amplia en la región 1750-1530 cm\(^{-1}\) que podría ser consecuencia del solapamiento entre la señal a 1642 cm\(^{-1}\) correspondiente al agua adsorbida con la banda a 1626 cm\(^{-1}\) perteneciente a la estructura zeolítica.

La formación de agua por encima de 250 ºC sugiere la interacción entre el tolueno y el NO de acuerdo a la siguiente reacción:

\[
C_7H_8 + 18 \text{NO} \rightarrow 7 \text{CO}_2 + 4 \text{H}_2\text{O} + 9 \text{N}_2 \quad \text{(Rq. IV.8)}
\]
Además, la Fig. IV.21 muestra nuevas bandas en la región entre 2300 y 2050 cm\(^{-1}\), correspondientes a especies intermedias producidas por la interacción entre el tolueno adsorbido y la corriente de NO/He a 400 ºC. La banda a 2266 cm\(^{-1}\) es usualmente asignada a la vibración del estiramiento de los grupos isocianatos (N=C=O) sobre iones Ag\(^+\) mientras que, las señales que aparecen a 2130 y 2100 cm\(^{-1}\) corresponden a especies cianuros (Ag-CN) e isocianuros (Ag-NC) adsorbidas en la superficie catalítica, respectivamente [43, 44].

![Espectros FTIR de tolueno adsorbido a 100 ºC y desorbido a 400 ºC en flujo de NO/He sobre las muestras (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.](image)

Figura IV.21. Espectros FTIR de tolueno adsorbido a 100 ºC y desorbido a 400 ºC en flujo de NO/He sobre las muestras (a) NaMOR, (b) Ag(5)M, (c) Ag(10)M y (d) Ag(15)M.

Las señales observadas en la zona espectral 2200-2150 cm\(^{-1}\) son asignadas a los modos vibracionales de especies monocarbonil –(CO) y –(CO)\(_2\) altamente coordinadas sobre iones Ag\(^+\) o pequeñas partículas de Ag\(^\circ\) [45]. La aparición de agua como producto de reacción entre el HC y NO, produce la disminución de la intensidad de las bandas y corrimiento hacia menores números de onda, promocionando la formación de especies Ag\(^+\)-(H\(_2\)O)-(CO) o Ag\(^+\)-(NO\(_x\))-(CO) [46].

En todos los catalizadores Ag(x)M se observa que al aumentar la temperatura, prevalece la adsorción preferencial del anillo aromático sobre los sitios Ag\(^+\) y de este
IV. Catalizadores AgNaMordenita.

En este contexto, se promueve la formación de especies intermedias (nitro, nitrito, nitro-nitrito, NO₂, cianuro, isocianuro e isocianatos) interactuando con los iones Ag⁺ debido a la reacción con los óxidos de nitrógeno a 400 ºC.

IV.4.e. Efecto del agua en las propiedades de adsorción.

El estudio de la influencia de agua en la interacción entre las especies adsorbidas por los catalizadores Ag(x)M con las especies de Ag, es de gran importancia para aplicaciones ambientales. Esto se debe a que el agua está presente en cantidades significativas en las emisiones de escape típicas a partir de procesos de combustión y la adsorción competitiva con los hidrocarburos genera el bloqueo de los sitios activos de los catalizadores. De este modo, se introdujo en la celda una mezcla de 8000 ppm de tolueno y 0,5 % de vapor de agua.

La Fig. IV.22 presenta los espectros FTIR de tolueno y agua co-adsorbidos a 100 ºC sobre la muestra Ag(15)M y desorbidos en flujo de inerte a 200, 300 y 400 ºC.

![Figura IV.22. Espectros FTIR de tolueno y H₂O co-adsorbidos sobre Ag(15)M; (a) muestra pretratada en inerte a 400 ºC, (b) co-adsorción de tolueno y agua a 100 ºC y purgados en inerte a 100 ºC, desorción en flujo de inerte a (c) 200, (d) 300 y (e) 400 ºC.](image)
IV. Catalizadores AgNaMordenita.

Cuando se incorpora agua en la corriente reaccionante, se observa un incremento en el ancho de la banda localizada entre 1700 y 1550 cm$^{-1}$. Este ensanchamiento es consecuencia del aumento de la intensidad del pico a 1642 cm$^{-1}$ que corresponde a H$_2$O adsorbida y que se superpone con las bandas a 1626 y 1595 cm$^{-1}$ debidas a la estructura de la zeolita y a la interacción C=C con los iones Ag$^+$, respectivamente. Además, se pueden observar las bandas a 1465 y 1388 cm$^{-1}$ correspondientes a la interacción del grupo metilo con los cationes Na$^+$, H$^+$ y Ag$^+$. En el espectro b de la Fig. IV.22, las señales observadas a 1595 y 1488 cm$^{-1}$ se deben a la adsorción del tolueno sobre los sitios iónicos Ag$^+$.

Por lo tanto, se destaca que la presencia de agua en la corriente reaccionante inhibe la interacción entre el anillo aromático del hidrocarburo con los sitios Na$^+$ y H$^+$, pero no afecta la interacción con las especies cationicas Ag$^+$.

La intensidad de la banda a 1642 cm$^{-1}$ disminuye cuando la temperatura aumenta desde 200 ºC (espectro c) a 400 ºC (espectro e) y, solamente permanecen las señales correspondientes a la estructura zeolítica NaMOR. Además, por encima de 300 ºC se observan los picos asignados al grupo C=O, como resultado de la oxidación parcial sobre sitios Ag (1575 y 1473 cm$^{-1}$).

La Fig. IV.23 presenta los resultados obtenidos para el catalizador intercambiado con 15 % p/p de Ag, luego de co-adsorber tolueno y agua y desorber en flujo de NO a diferentes temperaturas.

La región espectral entre 1750 y 1300 cm$^{-1}$ (Fig. IV.23A) muestra los picos a 1485 y 1642 cm$^{-1}$ debidos a la co-adsorción de tolueno y agua, respectivamente. También se observan, las bandas a 1575 y 1472 cm$^{-1}$ correspondientes a la oxidación parcial del tolueno sobre sitios Ag.

La presencia de agua inhibe la formación de especies NO$_2$. Al mismo tiempo, la Fig. IV.23B muestra la región entre 2400 y 2000 cm$^{-1}$ característica de grupos isocianatos (2266 cm$^{-1}$) y cianuros (2130 cm$^{-1}$) adsorbidos sobre iones Ag$^+$, los que son intermediarios de la RCS-NOx.
IV. Catalizadores AgNaMordenita.

Figura IV.23. Espectros FTIR de tolueno y H₂O co-adsorbidos sobre Ag(15)M: (a) muestra pretratada en inerte a 400 ºC, (b) co-adsorción de tolueno y agua a 100 ºC y purgados en inerte a 100 ºC, desorción en 1000 ppm de NO a (c) 250 y (d) 400 ºC.

La Fig. IV.23B muestra un pico a 2191 cm⁻¹, el que es asignado al modo vibracional de especies monocarbonil –(CO) y -(CO)₂ formadas sobre iones Ag⁺ insaturados altamente coordinados o pequeñas partículas Ag° [47].

IV.5. CONCLUSIONES

La incorporación de Ag en la estructura zeolítica provoca cambios químicos y texturales que influyen en la capacidad de adsorción y desorción de hidrocarburos, como así también en la reducción catalítica selectiva de NOx usando butano o tolueno como reductores.

Se mostró que el agregado de Ag mediante intercambio iónico con NaMordenita genera protones en diferente proporción, según el contenido de Ag incorporado. Además, provoca una disminución en el volumen de poro y una pérdida de cristalinidad en comparación con el soporte original.
IV. Catalizadores AgNaMordenita.

Mediante TPR fue posible identificar las especies presentes tales como, partículas de Ag$_2$O altamente dispersas, cuya proporción aumenta con el contenido de plata; junto a iones Ag$^+$ ubicados principalmente en sitios α (canal principal), β (canal secundario) y una fracción muy pequeña en sitios γ (side-pocket). A través de las espectroscopías UV-Vis y XPS fue posible corroborar la presencia estas especies.

El comportamiento catalítico de las muestras Ag(x)M en la RCS, mostró que la conversión de NO a N$_2$ varía con la carga de Ag y el catalizador más activo fue Ag(10)M en condiciones secas, alcanzando un valor máximo de 32,4 % con butano y 38,2 % con tolueno a 525 °C y 500 °C, respectivamente. Sin embargo, la presencia de 2 % de vapor de agua en la corriente de alimentación, promociona la conversión a N$_2$ en todos los catalizadores evaluados. Esto se debe a que probablemente ocurre una reacción secundaria de reformado del hidrocarburo con vapor de agua en la que se produce hidrógeno, el cual a su vez reduce los NOx. Además, el agua contribuye a eliminar de la superficie el carbón depositado durante la reacción.

La capacidad de adsorción, la temperatura y el coeficiente de retención, se evaluaron midiendo las curvas de quiebre durante la adsorción de butano y tolueno y cuantificando la desorción a temperatura programada. Son varios los factores que influyeron en este proceso de adsorción/desorción:

(i) La naturaleza del hidrocarburo, ya que el compuesto aromático se adsorbe más fuertemente debido a la interacción de los electrones de la nube π del anillo con los cationes Na$^+$, Ag$^+$ o H$^+$, junto a la interacción de los grupos C-H con los oxígenos de la red próximos al catión. Sin embargo, el butano por ser alifático sólo presenta esta última interacción, lo que implicó una adsorción más débil.

(ii) El carácter ácido-base del material, caracterizado por su electronegatividad promedio (Si) y la carga del oxígeno (-δ_{ox}). Estos valores indicaron que la muestra Ag(10)M con mayor Si (menor -δ_{ox}), tiene el mayor coeficiente de retención Φ.

(iii) La reactividad de los centros activos Ag$^+$ y H$^+$ permite que el tolueno adsorbido por encima de los 300 °C reaccione para producir H$_2$, CO$_2$ y H$_2$O.

(iv) La ubicación de los iones Ag$^+$ en los sitios α del canal principal favorece la adsorción del tolueno, el cual posee limitaciones estéricas para interactuar con los cationes en los sitios β y γ. La adsorción de butano no es influenciada.
IV. Catalizadores AgNaMordenita.

Finalmente, mediante FTIR se determinó una fuerte interacción entre la molécula de tolueno y los iones Ag⁺ presentes. Además, se observaron los grupos C=O como consecuencia de la descomposición del tolueno en corriente de inerte. También, en presencia de NO en He y a 400 °C, se identificaron especies intermediarias (nitro, nitrito, nitro-nitrito, NO₂, cianuro, isocianuro e isocianatos) interactuando con los iones Ag⁺ debido a la reacción con los óxidos de nitrógeno. Un comportamiento similar se observó para el caso del butano, identificando especies Ag⁺(NOx)-CO e isocianatos (\(-\text{NCO}\)) adsorbidas en sitios iónicos Ag⁺.

Cuando se estudió la influencia del agua en la interacción entre las especies de Ag presentes y el tolueno adsorbido, se observó que el agua inhibe la interacción entre el anillo aromático y los sitios Na⁺ o H⁺, pero no afecta la interacción con las especies Ag⁺.
IV. Catalizadores AgNaMordenita.

IV.6. REFERENCIAS

IV. Catalizadores AgNaMordenita.

Capítulo V

Catalizadores Ag/AlMCM-41

Síntesis y Caracterización Fisicoquímica

Evaluación Catalítica

Trampa de Hidrocarburos

Estudio FTIR
En este capítulo se presenta la síntesis y caracterización fisicoquímica de los soportes mesoporosos del tipo MCM-41 y AlMCM-41. Se estudió la incorporación de plata a los soportes sintetizados mediante impregnación húmeda incipiente. Las muestras preparadas fueron caracterizadas mediante FTIR, XPS, DRS, SAXS, DRX, TEM y SEM, como así también, se obtuvieron resultados de sus propiedades texturales mediante la adsorción y desorción de nitrógeno a -196 °C. También, se presentan resultados preliminares de la deposición de partículas de plata sobre los soportes mesoporosos mediante CO$_2$ supercrítico.

Además, se estudió el comportamiento de los materiales más promisorios como trampas de hidrocarburos mediante la adsorción dinámica de tolueno a baja temperatura. A través de la espectroscopia FTIR se analizó la interacción entre el hidrocarburo aromático con las especies presentes en el sólido sintetizado.

V.1. SÍNTESIS Y CARACTERIZACIÓN FISICOQUÍMICA DE MCM-41 Y ALMCM-41 FUNCIONALIZADOS CON PLATA

V.1.a. Soportes MCM-41 y AlMCM-41.

Los soportes MCM-41 y AlMCM-41 se sintetizaron según lo reportado por Szegedi et al. [1] mediante el proceso sol-gel, con la finalidad de obtener partículas esféricas. Éstas son de gran interés porque poseen baja densidad, elevada estabilidad térmica y mecánica. Estas propiedades convierten a estos sólidos en soportes adecuados para reacciones catalíticas que generalmente involucran condiciones oxidantes y temperaturas extremas (inciso III.1.a.2).

V.1.a.1. Estudio de la degradación del surfactante mediante espectroscopía infrarrojo con transformada de fourier (FTIR).

Durante la etapa de preparación de los soportes MCM-41 y AlMCM-41, las moléculas de surfactante se descomponen en una serie de productos cuando se las somete a tratamientos térmicos. El mecanismo de degradación depende fuertemente de la atmósfera y, principalmente de la presencia de oxígeno. Sin embargo, la estructura
final obtenida luego de un tratamiento en aire o en inerte exhibe casi siempre propiedades estructurales idénticas [2].

Mediante FTIR se estudió la eliminación del surfactante oculto en el interior de la estructura mesoporosa sílica, la cual se llevó a cabo de forma convencional mediante un tratamiento térmico de calcinación a 550 °C en flujo de aire. Este método provoca una variación en las propiedades texturales del material final, como la contracción de la estructura porosa y la pérdida de grupos hidroxilos superficiales.

El silicio presente en el material MCM-41 presenta diferentes tipos posibles de coordinación, que se muestran en la Fig. V.1.

![Figura V.1. Esquema de las diferentes coordinaciones posibles del Si en la estructura MCM-41.](a)

Un átomo de Si puede estar enlazado a otros 2 átomos de Si a través de un enlace Si-O-Si, quedando los otros 2 enlaces ocupados por especies del tipo –OH, -OH₂ o –OR, correspondiente a una fracción orgánica (Fig. V.1a). Además, otra posibilidad es que átomos de Si se enlacen a otros 3 átomos de Si a través de un enlace Si-O-Si, quedando el cuarto enlace ocupado por otra especie del tipo –OH, -OH₂ o –OR (Fig. V.1b). Este tipo de coordinación del Si, normalmente corresponde a los grupos silanol generados por defectos estructurales y superficiales. Por último, las especies de silicato pueden estar completamente condensadas, es decir, átomos de Si enlazados a otros 4 átomos de Si a través de un enlace Si-O-Si. Es importante destacar que, la presencia de numerosos grupos OH es indicativa de un grado de condensación bajo el que puede originar un aumento del carácter hidrofílico del material [3-5].
Por lo tanto, mediante espectroscopía FTIR se siguió la evolución de los grupos orgánicos pertenecientes al surfactante. Se analizaron alícuotas de los soportes MCM-41 y AlMCM-41 calcinados a distintas temperaturas; 150, 200, 300, 400, 500, 550 y 600 °C, hasta verificar la desaparición de los grupos orgánicos. Pudo corroborarse que a partir de 550 °C no se detectan las bandas correspondientes a las moléculas de C_{16}TMABr.

En la Fig. V.2 se muestran los espectros FTIR de los soportes MCM-41 y AlMCM-41 diluidos en KBr, antes y después de calcinar a 550 °C.

![Figura V.2. Espectros FTIR para las muestras (a), (d) AlMCM-41 y (b), (c) MCM-41 diluidas en KBr.](image)

Las muestras frescas (Fig. V.2, espectros c y d) presentan tres bandas de absorción en la región de altos números de onda a 2966, 2922 y 2852 cm^{-1} correspondientes a las vibraciones de los enlaces –C-H presentes en el grupo hexadeciltrimetil proveniente del agente estructurante y anclado en la superficie. Además, se observó una pequeña señal en la región de bajos números de onda, a 1460 cm^{-1} asignada a las deformaciones del enlace CH_{3}-N⁺ de la molécula de surfactante. Estas bandas no se observan en las muestras calcinadas (Fig. V.2, espectros a y b), lo que indica que, mediante el
tratamiento en flujo de aire a 550 °C, se produce la eliminación eficaz de los compuestos orgánicos del surfactante obteniendo así, materiales con buenas propiedades estructurales y texturales [6].

A su vez, los grupos silanoles (Fig. V.1b) pueden unirse entre sí de diferentes formas. De este modo, se conocen los silanoles terminales y geminales (Fig. V.3) y se caracterizan por la banda a 3550 cm\(^{-1}\), la cual se solapa con la correspondiente al estiramiento y flexión del enlace O-H del agua fisisorbida [7-9].

![Figura V.3](image)

Figura V.3. Estructura del grupo silyl (a) aislado, (b) vecino y (c) geminal.

En la región espectral entre 1500 y 400 cm\(^{-1}\) aparecen bandas vibracionales correspondientes a los grupos Si-O-H del soporte que se mostrarán en la siguiente sección [10].

También, en la Fig. V.4 se presentan los perfiles termogravimétricos y su primer derivada, correspondientes al soporte MCM-41 antes y después de calcinar en flujo de aire a 550 °C.

La muestra fresca (Fig. V.4, perfil a) presenta principalmente dos contribuciones, siendo de 46 % la pérdida global de masa. La primera, a temperaturas por debajo de 150 °C (región I) se debe a la pérdida de masa por evaporación del agua ocluida en el soporte. La segunda señal, comprendida entre 150 y 400 °C (región II) corresponde a la pérdida de masa por descomposición del CTMABr. La máxima velocidad de descomposición del surfactante ocurre alrededor de 270 °C. Sin embargo, por encima de 300 °C aún se observa pérdida de masa.
El tratamiento térmico de los materiales mesoestructurados a 550 °C en flujo de aire, elimina completamente el surfactante residual. Esto se comprueba mediante los perfiles (b) de la Fig. V.4, correspondientes al sustrato MCM-41 luego del tratamiento de calcinación. Se observa una sola contribución correspondiente a la pérdida de agua generada por la condensación de grupos hidroxilos superficiales [11]. Por lo tanto, la disminución global de masa fue de 16 %.

V.1.a.2. Morfología de los sustratos mesoporosos.

La técnica de microscopia electrónica de barrido (SEM) se utilizó con la finalidad de obtener información sobre la morfología de las partículas de los soportes mesoporosos sintetizados. Los resultados obtenidos se muestran en las Figs. V.5 y V.6.

Se aprecia que la morfología y disposición de las partículas es característica de los materiales MCM-41 puramente silíceos y coincidentes con lo reportado por Szègedi et al. [1]. Se trata de agregados en forma de esferas con una distribución de tamaños entre 200 y 600 nm. Ambos soportes presentan las mismas características morfológicas.
V. Catalizadores Ag/AlMCM-41.

Figura V.5. Imágenes SEM obtenidas para el soporte MCM-41 calcinado con una magnificación de (A) 200000 x y (B) 20000 x.

Figura V.6. Imágenes SEM obtenidas para el soporte AlMCM-41 calcinado con una magnificación de (A) 200000 x y (B) 30000 x.

Los resultados obtenidos por EDX para el sustrato MCM-41 se muestran en la Fig. V.7 y arrojan una composición de 74,4 % p/p O, 24 % p/p Si y trazas de impurezas.
V. Catalizadores Ag/AlMCM-41.

Figura V.7. Resultados de EDX obtenidos para el soporte MCM-41 calcinado.

En cambio, para el soporte AlMCM-41 (Fig. V.8) se obtuvo una composición de 74 % p/p O, 23,8 % p/p Si, 1,06 % p/p Al y trazas de impurezas. De este modo, se observa que la relación Si/Al atómica es de 21,6.

Figura V.8. Resultados de EDX obtenidos para el soporte AlMCM-41 calcinado.

Con la finalidad de determinar el ordenamiento, morfología y tamaño de los poros de los materiales preparados, en las Figs. V.9A y V.9B se presentan las imágenes TEM obtenidas para los sustratos mesoporosos MCM-41 y AlMCM-41, respectivamente.
Figura V.9. Micrografías TEM en la dirección paralela al eje de los poros de las muestras (A) MCM-41 y (B) AlMCM-41 calcinadas.
En ellas se observa un ordenamiento hexagonal mesoporoso. Cabe destacar que el mismo no es uniforme en toda la muestra y que, la distribución de tamaño de poros oscila entre 2 y 5 nm.

V.1.b. Incorporación de Ag mediante impregnación a humedad incipiente.

Uno de los métodos empleados para el agregado de Ag fue el de impregnación a humedad incipiente de los soportes mesoporosos con una solución de AgNO₃, siendo la cantidad de solución agregada suficiente para llenar los mesoporos del soporte. La concentración de la solución de nitrato de plata se modificó de modo tal, de obtener catalizadores con diferentes contenidos de Ag (inciso III.1.c.1).

V.1.b.1. Propiedades físicas, químicas y texturales.

En la Fig. V.10 se presentan las isotermas de adsorción y desorción de N₂ obtenidas para los sólidos sintetizados después del tratamiento de calcinación.

Figura V.10. Isotermas de adsorción/desorción de N₂ a -196 °C obtenidas para las muestras funcionalizadas con Ag sobre los soportes (A) MCM-41 y (B) AlMCM-41.
V. Catalizadores Ag/AlMCM-41.

En todos los casos, se observa que se trata de isotermas de adsorción tipo IV según la clasificación de la IUPAC [12], propias de materiales mesoporosos.

En la Tabla V.1 se resumen las propiedades texturales obtenidas para las muestras preparadas.

<table>
<thead>
<tr>
<th>Catalizadores</th>
<th>% Ag(1)</th>
<th>$S_{BET} \text{ (m}^2\text{·g}^{-1})$</th>
<th>$t_p \text{ (nm)}$</th>
<th>$v_p \text{ (cm}^3\text{·g}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41</td>
<td>0</td>
<td>1295</td>
<td>4,6</td>
<td>0,39</td>
</tr>
<tr>
<td>Ag(2)MCM-41</td>
<td>2</td>
<td>658</td>
<td>3,9</td>
<td>0,15</td>
</tr>
<tr>
<td>Ag(15)MCM-41</td>
<td>15</td>
<td>322</td>
<td>2,0</td>
<td>0,04</td>
</tr>
<tr>
<td>AlMCM-41</td>
<td>0</td>
<td>807</td>
<td>4,8</td>
<td>0,34</td>
</tr>
<tr>
<td>Ag(2)AlMCM-41</td>
<td>2</td>
<td>707</td>
<td>2,3</td>
<td>0,15</td>
</tr>
</tbody>
</table>

(1) Porcentaje en peso de Ag determinado mediante Absorción Atómica.
(2) Tamaño medio de poro (nm).
(3) Volumen de poro (cm3·g$^{-1}$).

La incorporación de una pequeña fracción de aluminio (Si/Al = 20) al soporte MCM-41 durante la síntesis (método hidrotérmico) generó una disminución del área específica del soporte, próxima al 38 %. Sin embargo, el volumen y el tamaño promedio de poro permanecen prácticamente constantes.

Además, se aprecia una notable disminución de la superficie específica de los sólidos, de 73 y 93 % con el agregado de 2 y 15 % p/p de plata, respectivamente. El tamaño de poro promedio calculado a partir de la adsorción y desorción de N$_2$ mostró valores de 4,6 y 4,8 nm para los soportes MCM-41 y AlMCM-41, respectivamente. Al agregar 2 % p/p de Ag al sustrato MCM-41, el valor fue de 3,9 nm, mientras que al incorporarse la misma cantidad sobre el sólido AlMCM-41 resultó ser de 2,3 nm.

Para estudiar el ordenamiento mesoporoso de las muestras preparadas, se realizaron medidas de difracción de rayos X a bajos ángulos (SAXS). Esta técnica se aplica habitualmente para determinar la presencia de fases cristalinas. En el caso de materiales amorfos como los mesoporosos, la disposición regular de los poros produce reflexiones que se manifiestan como señales a bajos ángulos de difracción [13]. Los soportes mesoporosos del tipo MCM-41 presentan reflexiones características correspondientes a los planos de difracción (1 0 0), (1 1 0) y (2 0 0) [14].

La Fig. V.11 presenta los difractogramas de rayos X en un intervalo de 20 comprendido entre 1° y 7° para los soportes mesoporosos y las muestras impregnadas.
con plata. El difractograma obtenido para el sustrato MCM-41 calcinado presenta tres señales de difracción (Fig. V.11A), una de mayor intensidad (2θ ~ 2,4°) que se atribuye al plano (1 0 0) y dos de menor intensidad a 4,2 y 5°, correspondientes a las difracciones de los planos (1 1 0) y (2 0 0), que son típicos de un sistema hexagonal plano con elevado ordenamiento mesoporo [15, 16]. Al incorporar 2 y 15 % p/p de Ag en el sustrato MCM-41 se observa la disminución abrupta de las intensidades de las señales de difracción, y un corrimiento del máximo valor de 2θ del plano principal. Esto indica la pérdida del ordenamiento mesoporo como consecuencia del agregado de Ag y se vincula con la disminución de superficie específica y volumen de poro reportada en la Tabla V.1.

Figura V.11. Difractogramas de rayos X a bajo ángulo (SAXS) obtenidos para las muestras functionalizadas con Ag sobre los soportes (A) MCM-41 y (B) AlMCM-41.

El soporte AlMCM-41 (Fig. V.11B) también presenta la señal a 2θ ~ 2,4°, lo que indica la existencia de ordenamiento mesoporo. De igual manera, la incorporación de 2 % p/p de Ag sobre AlMCM-41 provoca una disminución de la intensidad y corrimiento del máximo valor de 2θ desde 2,4° a 2,6°, como consecuencia de una pérdida del ordenamiento hexagonal original.
Por otro lado, los patrones de difracción de rayos X para valores de 2θ entre 5° y 85° (Fig. V.12), presentan una señal ancha y centrada en $2\theta = 23°$, correspondiente a la sílice amorfa. Además, los difractogramas (d) y (e) del soporte MCM-41 impregnado con 2 y 15 % p/p de plata muestran picos de difracción a 38°, 44°, 64,3° y 77° que corresponden a la fase cristalina de la Ag metálica y una señal menos intensa a 32,5° debida al óxido de plata (Ag$_2$O) [17].

Figura V.12. Difractogramas de rayos X a altos ángulos (DRX) obtenidos para las muestras calcinadas: (a) AlMCM-41, (b) Ag(2)AlMCM-41, (c) MCM-41, (d) Ag (2)MCM-41 y (e) Ag(15)MCM-41. Refs.: (*) Ag° y (o) Ag$_2$O.

Mediante la ecuación de Scherrer [18] se estimó un tamaño promedio de 25 y 9 nm para las partículas de Ag° y Ag$_2$O detectadas mediante DRX para el sólido Ag(15)MCM-41, mientras que para la muestra Ag(2)MCM-41, el dominio cristalino para Ag° fue de 21 nm.

Cuando se impregnó el sustrato AlMCM-41 con 2 % p/p de Ag no se observó la presencia de especies metálicas oxidadas ni reducidas detectables por DRX (Fig. V.12, difractograma b).
Por lo tanto, los resultados de SAXS y DRX sugieren que la incorporación de Al a la red de sílice pura estabiliza la estructura, de modo que no genera una pérdida apreciable del ordenamiento mesoporoso. A su vez, la incorporación de grandes cantidades de plata (15 % p/p) produce una disminución importante del volumen de poro y área superficial, como así también la pérdida del ordenamiento hexagonal mesoporoso. El tamaño de las partículas de Ag° y Ag₂O depositadas justifica la disminución de área superficial y volumen de poro reportada en la Tabla V.1 y la pérdida de ordenamiento mesoporoso del sustrato original MCM-41 observado mediante SAXS. El agregado de pequeñas cantidades de Ag al soporte AlMCM-41 mejora la dispersión de las especies de Ag, evitando el colapso de la estructura mesoporosa.

V.1.b.2. Espectroscopía infrarrojo con transformada de Fourier (FTIR).

La Fig. V.13 muestra los espectros FTIR para los soportes y las muestras con Ag calcinadas a 550 °C y diluidas en KBr.
V. Catalizadores Ag/AlMCM-41.

Las bandas a 1082 y 804 cm\(^{-1}\) corresponden a las vibraciones del estiramiento asimétrico (\(\nu_{as}\text{SiO}^2\)) y simétrico (\(\nu_{s}\text{SiO}^2\)) del enlace Si-O, respectivamente [19]. Además, las señales a 975 y 472 cm\(^{-1}\) se deben a las vibraciones del estiramiento asimétrico (\(\nu_{as}\text{SiO}^2\)) y la flexión (\(\rho_{\text{SiO}^2}\)), respectivamente; de los grupos Si-O supercífricos o terminales [20]. La banda observada a 1242 cm\(^{-1}\) se debe a la vibración del estiramiento asimétrico de los puentes Si-O-Si [21].

Varios autores reportaron un corrimiento de la banda de absorción a 975 cm\(^{-1}\) como consecuencia de la sustitución del silicio por iones de diferentes metales [22-24]. En este sentido, Hui et al. [21] observaron un desplazamiento hacia menores números de onda, de la banda correspondiente a la vibración del estiramiento asimétrico del enlace Si-O-M (M: iones metálicos). El corrimiento se atribuye al aumento de la distancia media del enlace Si-O en las paredes causado por la sustitución del silicio por iones metálicos como Al, Na, Ti o Fe.

Los espectros FTIR de las muestras calcinadas no presentan ninguna diferencia en la banda a 975 cm\(^{-1}\), como consecuencia de la incorporación de Al y Ag a las estructuras mesoporosas. Sin embargo, se verificó que el empleo de una baja velocidad de calentamiento (5 °C·min\(^{-1}\)) hasta 550 °C en corriente de aire, permite eliminar completamente el surfactante, conservando una estructura donde los centros de silicio se coordinan con grupos –OH [25].

V.1.b.3. Reducibilidad de las especies metálicas.

La técnica de reducción a temperatura programada (TPR) permite diferenciar las especies de plata depositadas sobre los sustratos mesoporosos. En la Fig. V.14 se presentan los perfiles de reducción obtenidos para los sólidos Ag(x)MCM-41 y Ag(2)AlMCM-41 comparadas con dos muestras de referencia, preparadas por mezcla mecánica de Ag\(_2\)O con ambos soportes MCM-41 o AlMCM-41 y con un contenido de 2 \% p/p de Ag cada una de ellas.

Los sólidos Ag(x)MCM-41 y Ag(2)AlMCM-41 fueron calcinados en flujo de aire a 550 °C y previo a la medida de TPR, se deshidrataron en flujo de inerte hasta la misma temperatura de calcinación. Este mismo pretratamiento in-situ fue realizado para las muestras de referencia.
Los sólidos de referencia Ag$_2$O/AlMCM-41 y Ag$_2$O/MCM-41 (Fig. V.14, perfiles a y c) presentan un solo pico a 243 y 260 °C, respectivamente, los que corresponden a la reducción completa de partículas de óxido de plata (Ag$_2$O) dispersas y/o formando clústeres (Tabla V.2).

![Figura V.14. Perfiles de TPR obtenidos para las muestras (a) Ag$_2$O/AlMCM-41, (b) Ag(2)AlMCM-41, (c) Ag$_2$O/MCM-41, (d) Ag(2)MCM-41 y (e) Ag(15)MCM-41.](image)

La muestra Ag(2)AlMCM-41 (Fig. V.14, perfil b) presenta un pico ancho de consumo de H$_2$, que se inicia en 150 °C y finaliza cerca de 500 °C. La forma de esta curva sugiere la reducción de tres especies diferentes de plata, ya que se observan picos a 155, 286 y 405 °C, junto a otro pico ancho y poco definido por encima de 500 °C.

Para la muestra Ag(2)MCM-41 (perfil d) aparece un pico muy pequeño a 118 °C y otras dos señales importantes a 405 y 658 °C, por medio de los cuales se completa la reducción (Tabla V.2). Sin embargo, al aumentar a 15 % p/p el contenido de plata, aparece un pico ancho a 405 °C y otros dos pequeños a 145 y 836 °C. El consumo de H$_2$
indicaría que sólo se reduce el 42% de la plata incorporada al sistema (Tabla V.2). Esto es coincidente con que una fracción importante se encuentra como Ag metálica, según lo detectado por DRX (Fig. V.12).

Tabla V.2. Reducibilidad de las especies de Ag en los sólidos Ag(x)MCM-41 y Ag(x)AlMCM-41.

<table>
<thead>
<tr>
<th>Sólidos(1)</th>
<th>H₂/Ag (T_{máx}, °C)(2)</th>
<th>H₂/Ag_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25-300 °C</td>
<td>300-600 °C</td>
</tr>
<tr>
<td>Ag₂O/MCM-41</td>
<td>0,50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(260)</td>
<td></td>
</tr>
<tr>
<td>Ag(2)MCM-41</td>
<td>0,03</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>(118)</td>
<td>(405)</td>
</tr>
<tr>
<td>Ag(15)MCM-41</td>
<td>0,07</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>(145)</td>
<td>(405)</td>
</tr>
<tr>
<td>Ag₂O/AlMCM-41</td>
<td>0,50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(243)</td>
<td></td>
</tr>
<tr>
<td>Ag(2)AlMCM-41</td>
<td>0,46</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(155, 286, 405)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Los soportes impregnados con Ag fueron calcinados en flujo de O₂ a 550 °C. Los sólidos de referencia se deshidrataron a 550 °C en flujo de inerte.

(2) Máxima temperatura de reducción en cada región.

El pico que se observa alrededor de 405 °C puede asignarse a iones de Ag⁺ que interactúan con los grupos silanoles de la estructura y los picos que aparecen a 155 y 286 °C estarían relacionados con iones en interacción con el Al de la red o partículas de Ag₂O dispersas en los mesoporos.
V.1.b.4. UV-Vis DRS.

Los resultados obtenidos mediante difracción de rayos X se confirmaron mediante espectroscopía UV-Vis por reflectancia difusa. Los espectros DRS de los sustratos y las muestras impregnadas con Ag se muestran en la Fig. V.15.

Ambos soportes, AlMCM-41 (espectro a) y MCM-41 (espectro c), no muestran bandas de absorción. Sin embargo, la intensidad observada en Ag(2)AlMCM-41 (espectro b) se incrementa significativamente para valores de longitudes de onda menores a 300 nm. Es conocido que en la región entre 200 y 220 nm aparecen las bandas de absorción atribuidas a la transición $4d^{10} \rightarrow 4d^{9}s^{1}$ de iones Ag$^+$ altamente dispersos en el soporte mesoporoso [26, 27]. Además, este sólido presenta una débil banda entre 350 y 450 cm$^{-1}$, correspondiente a nanopartículas de Ag$_2$O dispersas sobre el sustrato. Estas especies de óxido de plata se caracterizan porque presentan capacidad de absorción de luz en la región 200-650 nm [28]. Esta señal es similar a la observada en las muestras AgNaMordenita calcinadas (Capítulo IV).

Figura V.15. Espectros de reflectancia difusa en UV-Vis para las muestras (a) AlMCM-41, (b) Ag(2)AlMCM-41, (c) MCM-41, (d) Ag(2)MCM-41 y (e) Ag(15)MCM-41 calcinadas.
Las muestras Ag(x)MCM-41 calcinadas presentan además de la banda de absorción correspondiente a las partículas de Ag₂O, una señal débil por encima de 500 nm correspondiente a partículas de plata metálica o clústers metálicos Ag° n con n < 8 [29]. Esta señal probablemente se encuentre solapada con la banda del óxido de plata en la muestra Ag(15)MCM-41, debido a que aparece un pico muy ancho e intenso centrado en 404 nm. En consecuencia, los resultados obtenidos mediante UV-Vis y en concordancia con los de DRX indican la presencia de especies de óxido de plata, como así también de clústers metálicos.

V.1.b.5. Caracterización superficial (XPS).

En la Tabla V.3 se presentan los resultados obtenidos del análisis superficial mediante XPS. Para los soportes MCM-41 y AlMCM-41 los valores de energía de enlace (EE) medidos para Si 2p y Al 2p resultaron de 103,6 y 75,2 eV respectivamente, en acuerdo con datos reportados en la bibliografía para dichos soportes [30]. De acuerdo a estos valores, se consideró la EE del Si 2p como referencia interna para las muestras con agregado de Ag. De igual manera, la EE medida del O 1s perteneciente a la estructura del material resultó en 532,9 ± 0.1 eV con un ancho a la altura media cercano a 2,2 eV en todas las muestras analizadas.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>EE 5/2 (eV)</th>
<th>EE 3/2 (eV)</th>
<th>EC (eV)</th>
<th>(\alpha) (eV)</th>
<th>Ag/Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(2)MCM-41</td>
<td>368,1 (2,1)</td>
<td>374,2 (2,2)</td>
<td>356,9</td>
<td>725,0</td>
<td>0,01</td>
</tr>
<tr>
<td>Ag(15)MCM-41</td>
<td>368,6 (2,1)</td>
<td>374,6 (2,2)</td>
<td>355,5</td>
<td>724,1</td>
<td>0,04</td>
</tr>
<tr>
<td>Ag(2)AlMCM-41</td>
<td>368,9 (2,3)</td>
<td>375,0 (2,1)</td>
<td>355,1</td>
<td>724,0</td>
<td>0,01</td>
</tr>
</tbody>
</table>

(1) Energía de Enlace (eV).
(2) Energía Cinética (eV).
(3) Parámetro Auger modificado: \(\alpha' \) (eV) = EC (Ag M₄VV) – EC (Ag 3d₃/₂) + 1253,6 eV.
La Fig. V.16 muestra los espectros fotoelectrónicos de la región Ag 3d medidos para las muestras Ag(x)MCM-41 y Ag(x)AlMCM-41, como así también la energía cinética de la transición Auger Ag M$_4$VV (Fig. V.17). La energía de enlace del nivel electrónico Ag 3d, para la muestra Ag(2)MCM-41 presenta dos picos a 368,1 y 374,2 eV (FWHM ~ 2,1), asignados al doblete Ag 3d$_{5/2}$ y Ag 3d$_{3/2}$, respectivamente. Además, se observa un corrimiento de + 0,5 eV, cuando aumenta el contenido de Ag al 15 % p/p. Según los datos de la bibliografía, estos valores podrían corresponder a especies Ag$_2$O (368,4 eV), AgO (368,0 eV) o también a Ag metálica (368,2 eV).

Figura V.16. Espectros XPS de la región Ag 3d obtenidos para las muestras calcinadas (a) Ag(2)MCM-41, (b) Ag(15)MCM-41 y (c) Ag(2)AlMCM-41.

Además, al medir la energía cinética de la transición Auger Ag M$_4$VV (Fig. V.17), la señal resultó algo ruidosa y para el caso de la muestra Ag(2)AlMCM-41 puede observarse un espectro poco definido. Sin embargo, se calculó el parámetro Auger modificado, α' (Tabla V.3), considerando el pico de mayor energía cinética. Los valores obtenidos concuerdan con los reportados por Bera et al. [28], quienes reportaron un valor de 724,5 eV para Ag$_2$O.
V. Catalizadores Ag/AlMCM-41.

Según lo observado por DRX, una fracción de Ag en Ag(15)MCM-41 se encuentra en estado metálico. Sin embargo, ésta no pudo corroborarse por XPS.

V.1.b.6. Morfología determinada mediante SEM y TEM.

Al analizar las micrografías obtenidas para la muestra Ag(2)MCM-41 calcinada (Fig. V.18), se destaca la presencia de partículas cristalinas con un tamaño entre 20 y 30 nm en la superficie externa de las esferas mesoporosas. Estos valores son coincidentes con los calculados a partir de DRX. Además, no se evidencia la aglomeración de las esferas silíceas mesoporosas y el diámetro y distribución del tamaño de las partículas del soporte se conservan luego de la impregnación con 2 % p/p de Ag.
V. Catalizadores Ag/AlMCM-41.

Figura V.18. Imágenes SEM obtenidas para la muestra Ag(2)MCM-41 calcinada.

Un comportamiento similar mostraron las muestras impregnadas con 2 % p/p de plata sobre el soporte AlMCM-41 (Fig. V.19).

Figura V.19. Imágenes SEM obtenidas para la muestra Ag(2)AlMCM-41 calcinada.

En la Fig. V.20 se presentan las micrografías obtenidas por TEM para la muestra Ag(2)MCM-41 calcinada. Se aprecia la distribución uniforme y homogénea de nanopartículas esféricas sobre la superficie de las esferas mesoporosas del soporte, con un diámetro promedio entre 20 y 30 nm. El sólido Ag(15)MCM-41 calcinado (Fig. V.21) presenta una distribución de tamaño de las nanopartículas esféricas menos homogénea sobre la superficie del soporte. Probablemente, estos aglomerados metálicos son los responsables de la pérdida del ordenamiento hexagonal de los poros, como así también, de la disminución del área superficial.
Figura V.20. Micrografías TEM de la muestra Ag(2)MCM-41 calcinada.
La Fig. V.22 presenta las micrografías obtenidas por TEM para la muestra Ag(2)AlMCM-41 calcinada, en donde, se aprecian nanopartículas de morfología esférica con un diámetro promedio entre 8 y 10 nm, en concordancia con los resultados obtenidos mediante DRX.

Además, se observan los planos de los cristales de las especies metálicas. Las distancias interplanares medidas a partir de las micrografías TEM son de 0,24 y 0,21 nm, las que corresponden a los planos (1 1 1) y (2 0 0) de la estructura cúbica centrada en las caras (FCC) de la plata metálica [31, 32].
Las micrografías TEM obtenidas para la muestra Ag(15)MCM-41 calcinada en flujo de aire a 550 °C, se muestran en la Fig. V.23. En este caso, se observa la diferencia de contraste entre las partículas esféricas del soporte y las metálicas depositadas sobre la superficie externa del sustrato. Además, se destaca la aglomeración de nanopartículas metálicas impregnadas, debido a la elevada concentración de plata.
Figura V.23. Micrografías TEM de las nanopartículas obtenidas en la muestra Ag(15)MCM-41.
V. Catalizadores Ag/AlMCM-41.

A modo de resumen puede decirse que, mediante impregnación a humedad incipiente se logró depositar 2 y 15 % p/p de plata sobre el sustrato MCM-41, como así también 2 % p/p de Ag sobre el soporte AlMCM-41. A través de DRX, DRS y TEM se observó la presencia de cristales de Ag° (21-25 nm) y pequeñas partículas de Ag₂O (9 nm) dispersas sobre los sustratos mesoporosos. Además, las técnicas de reducción a temperatura programada (TPR) y XPS, permitieron determinar la presencia de pequeñas cantidades de iones Ag⁺ en interacción con los grupos silanoles presentes en MCM-41 y AlMCM-41.

V.1.c. Incorporación de Ag empleando CO₂ supercrítico.

V.1.c.1. Determinación de los parámetros de operación de la DFSC.

El empleo del método de deposición reactiva con CO₂ supercrítico (DFSC) para incorporar nanopartículas de plata sobre los sustratos mesoporosos del tipo MCM-41 y AlMCM-41 calcinados en flujo de aire hasta 550 ºC, requirió de ensayos exploratorios que permitieron elegir las variables de operación. El método implica dos etapas que se realizaron de manera consecutiva: la disolución del precursor acetilacetonato de plata (acacAg) en CO₂ supercrítico y la descomposición y deposición propiamente dicha.

La presión que se utilizó en cada una de las etapas, se eligió en función de lo reportado por Shah et al. [33]. La primera fase de disolución del precursor se llevó a cabo a 70 ºC y 13,0 MPa, mientras que la segunda etapa se realizó a 200 ºC y 16,0 MPa.

La temperatura de descomposición del acacAg en scCO₂ se determinó mediante estudios termogravimétricos en flujo de N₂. El precursor de plata se descompone en una sola etapa a una temperatura máxima de 153 ºC.

Por otro lado, se probaron distintos tiempos de operación de cada una de las etapas; 1, 3 y 5 horas. Se emplearon dos concentraciones diferentes de precursor, de modo de obtener contenidos teóricos de 2 y 15 % p/p de Ag.

También, en las mismas condiciones de síntesis se realizaron experimentos de deposición con el agregado de un surfactante polimérico llamado comercialmente FOMBLIN HC/P2-1000, para dispersar y estabilizar las partículas a escala nanométrica [34]. Se impregnó el precursor con una concentración de 1 mmol·dm⁻³ de Fomblín.
V.1.c.2. Caracterización fisicoquímica.

Las Figs. V.24 y V.25 presentan las micrografías obtenidas para las muestras Ag(2)MCM-41-2 y Ag(2)MCM-41-10, que corresponden a un tiempo de 1 y 5 horas de cada etapa, respectivamente; sin el agregado de Fomblín.

![Micrografía SEM de la muestra Ag(2)MCM-41-2.](image)

Figura V.24. Micrografía SEM de la muestra Ag(2)MCM-41-2. Condiciones: 0 % de Fomblín y duración de cada etapa de 1 hora.

Cuando el contenido teórico de Ag impregnado fue de 2 % p/p y el tiempo de disolución y deposición fue relativamente bajo (1 hora), se observó la formación de aglomerados de cristales cúbicos de plata, con tamaños prácticamente constantes, siendo el lado de los cubos cercanos a 2,5 μm.

En cambio, cuando la concentración de acacAg empleada fue superior (Fig. V.25), pero el tiempo de cada una de las etapas se aumentó a 5 horas, no se observa la dispersión de partículas metálicas sobre el soporte.
Figura V.25. Micrografías SEM de la muestra Ag(15)MCM-41-10. Condiciones: 0 % de Fombín y duración de cada etapa de 5 horas.
En este caso, se aprecian aglomeraciones metálicas pseudo cúbicas de gran tamaño y poco dispersas. Algunas de ellas son de contextura maciza, mientras que otras presentan cavidades internas. Por lo tanto, al aumentar el tiempo de disolución del precursor en scCO$_2$ y el de impregnación, no se favorece la dispersión de nanopartículas metálicas.

Como consecuencia de esto, se decidió utilizar el surfactante polimérico y se agregó 1 mmol·dm$^{-3}$ de Fomblín sobre el precursor, previo a la realización del experimento de DFSC. La Fig. V.26 presenta las micrografías SEM obtenidas reduciendo el tiempo de operación a 6 horas totales y con el agregado de Fomblín.

Figura V.26. Micrografías SEM de la muestra Ag(15)MCM-41-6. Condiciones: 1 mmol·dm$^{-3}$ de Fomblín y duración de cada etapa de 3 horas.

El agregado de pequeñas concentraciones de Fomblín, permitió depositar aglomeraciones de nanopartículas metálicas esféricas. Se observa que el agregado del dispersante redujo el tamaño de las aglomeraciones a un valor cercano a 500 nm.

Las imágenes obtenidas para las distintas muestras preparadas mediante scCO$_2$ presentan agregados de partículas grandes que no se dispersan en el soporte, aún con la incorporación de un dispersante. Por lo tanto, son necesarios nuevos experimentos que combinen las distintas variables de operación, entre ellas tiempos de operación, naturaleza y concentración del precursor, temperatura y presión para alcanzar mejores resultados.
V.2. EVALUACIÓN CATALÍTICA

Los sustratos mesoporosos MCM-41 y AlMCM-41, como así también, las muestras funcionalizadas con Ag mediante impregnación a humedad incipiente o CO$_2$ supercrítico fueron evaluadas en la reacción de reducción catalítica selectiva de NOx con tolueno o butano como agentes reductores. También se analizó la influencia del agregado de 2 % de vapor de agua en la corriente de entrada al reactor.

Todos los sólidos estudiados mostraron baja actividad catalítica en condiciones secas y húmedas, con tolueno o butano como reductores. De este modo, es necesario un estudio más exhaustivo sobre los diferentes métodos de incorporación de la plata para promover la actividad catalítica y la selectividad hacia el N$_2$, bajo las condiciones de reacción empleadas.

V.3. TRAMPA DE HIDROCARBUROS. CAPACIDAD DE ADSORCIÓN Y RETENCIÓN.

Los sustratos mesoporosos funcionalizados con plata a través del método de impregnación a humedad incipiente fueron estudiados como trampa de hidrocarburos y sometidos a procesos de adsorción y desorción de tolueno o butano.

V.3.a. Curvas de Ruptura.

La Fig. V.27 presenta las curvas de quiebre obtenidas para los sustratos MCM-41 (curva a) y AlMCM-41 (curva c), como así también para las muestras impregnadas Ag(15)MCM-41 (curva b) y Ag(2)AlMCM-41 (curva d), luego de adsorber 8000 ppm de tolueno en He a 100 °C.

Comparando ambos sustratos mesoporosos, se observa que el soporte AlMCM-41 presenta mayor capacidad de adsorción ya que posee el tiempo más alto para alcanzar la saturación. Por lo tanto, probablemente, la incorporación de aluminio a la estructura mesoporosa promueva la interacción con la molécula de tolueno.
La Figura V.27 muestra las curvas de ruptura para la adsorción de tolueno a 100 °C sobre (a) MCM-41, (b) Ag(15)MCM-41, (c) AlMCM-41 y (d) Ag(2)AlMCM-41. Condiciones: 0,10 g de muestra calcinada, flujo de 8000 ppm de tolueno/He.

La Tabla V.4 reporta los µmoles de tolueno adsorbidos por gramo de adsorbente empleado, determinados a partir de las curvas de quiebre o ruptura.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Q_{ADS}^{(1)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41</td>
<td>0,41</td>
</tr>
<tr>
<td>AlMCM-41</td>
<td>0,78</td>
</tr>
<tr>
<td>Ag(2)AlMCM-41</td>
<td>1,40</td>
</tr>
<tr>
<td>Ag(15)MCM-41</td>
<td>0,14</td>
</tr>
</tbody>
</table>

(1) Cantidad de tolueno adsorbido a 100 °C (µmol·g⁻¹).
V. Catalizadores Ag/AlMCM-41.

Cuando se incorpora 2 % p/p de Ag a la estructura AlMCM-41 se observa un aumento del 75 % en la cantidad de tolueno adsorvido. En este caso, probablemente la interacción entre la molécula de tolueno y los iones Ag\(^+\) presentes en la muestra promueve la adsorción del hidrocarburo.

Sin embargo, al incorporar 15 % p/p de Ag a la estructura MCM-41, la capacidad de adsorción disminuyó un 66 %, debido a la obstrucción de los poros que produce el agregado de elevadas concentraciones de plata, lo cual se corroboró a través de los valores de superficie específica y volumen de poros informados en la Tabla V.1.

También, se realizaron ensayos exploratorios de adsorción de butano a 100 °C; los que mostraron muy baja capacidad de adsorción de los soportes y la cual no mejora con la incorporación de Ag. En el futuro, se hará un estudio más profundo, modificando la temperatura y la concentración de butano en la alimentación, de modo de optimizar el proceso de adsorción y desorción de butano en los sólidos mesoporosos.

V.3.b. Desorción de C\(_7\)H\(_8\) a temperatura programada.

La muestra Ag(2)AlMCM-41 mostró un perfil de desorción de tolueno con tres picos a 193, 358 y 550 °C (Fig. V.28). Los diferentes picos de desorción pueden atribuirse a la interacción del tolueno con diversas especies presentes en la superficie del material, iones Ag\(^+\), aluminio y los distintos grupos silanos.

![Figura V.28. Perfil de desorción de tolueno sobre la muestra Ag(2)AlMCM-41, luego de la adsorción a 100 °C y desorción en flujo de inerte con una velocidad de calentamiento de 10 °C·min\(^{-1}\).](image)
Este comportamiento también fue observado por Choudhary y Mantri [35], quienes adsorbieron tolueno sobre sólidos H-AlSi-MCM-41 y Na-AlSi-MCM-41. En este trabajo encontraron diferentes picos de desorción los que fueron atribuidos al tolueno adsorbido sobre diferentes tipos de grupos silanoles existentes en el material MCM-41. Los distintos tipos de silanoles terminales (Fig. V.3) confieren heterogeneidad a la superficie en el sólido MCM-41. La cantidad de tolueno desorbida por encima de 100 °C fue de 0.29 µmoles por gramo de adsorbente, lo que representa una capacidad de retención de 21 % del total adsorbido a 100 °C.

Sin embargo, la cantidad de tolueno desorbido en los otros materiales estudiados, MCM-41, AlMCM-41 y Ag(15)MCM-41, fue despreciable, indicando que estos sólidos no son capaces de retener la molécula de tolueno.

Comparando estos resultados con los materiales microporosos Ag(x)M reportados en el capítulo anterior, puede destacarse que los sustratos mesoporosos no resultaron ser materiales adecuados para adsorber y retener hidrocarburos. Por lo tanto, se deberán optimizar las condiciones de incorporación de Ag para alcanzar una mejor dispersión, que promocione la capacidad de adsorción y la actividad catalítica.

V.4. ESTUDIO FTIR

En esta sección se presentan los resultados obtenidos mediante espectroscopía FTIR de la molécula de tolueno adsorbida y de su interacción con las especies presentes en los catalizadores mesoporosos preparados.

V.4.a. Estabilidad térmica del C₇H₈ adsorbido sobre los sustratos mesoporosos.

La Fig. V.29 muestra los espectros obtenidos luego de la adsorción de tolueno a 100 °C sobre el soporte AlMCM-41 en flujo de inerte a diferentes temperaturas, en la región de elevados números de onda. La adsorción de los hidrocarburos aromáticos, resulta de la interacción de los electrones π del anillo y del grupo metilo con los grupos silanoles terminales del soporte [36].

Luego de adsorber tolueno a 100 °C y barrer en inerte a la misma temperatura de adsorción (espectro a) sobre el sólido, se observa la aparición de bandas por encima de
3000 cm\(^{-1}\) (3089, 3062, 3029 cm\(^{-1}\)) que corresponden al estiramiento del enlace C-H del anillo aromático de la molécula de tolueno. Por debajo de 3000 cm\(^{-1}\), las bandas a 2984, 2936 y 2906 cm\(^{-1}\) son asignadas a las vibraciones del estiramiento –C-H del grupo metilo pertenecientes al hidrocarburo. El sustrato MCM-41 presentó el mismo comportamiento [37].

Figura V.29. Estudio de estabilidad térmica mediante FTIR de tolueno adsorbido sobre el soporte AlMCM-41 calcinado a 550 °C y pretratado en inerte a 400 °C, (a) adsorción de tolueno y desorción en flujo de inerte a 100 °C, desorción de tolueno en flujo de inerte a (b) 150, (c) 200, (d) 300 y (e) 400 °C.

En la región de menores números de onda (Fig. V.30), las bandas a 1600, 1495 y 1451 cm\(^{-1}\) corresponden a los modos vibracionales del estiramiento del doble enlace C=C del anillo aromático del tolueno. La banda a 1395 cm\(^{-1}\) es asignada a la deformación asimétrica del enlace C-H del grupo metilo [38]. También, se observa la banda a 1642 cm\(^{-1}\) como consecuencia de la presencia de agua residual.
Figura V.30. Estudio de estabilidad térmica mediante FTIR de tolueno adsorbido sobre los soportes (A) MCM-41 y (B) AlMCM-41 calcinados y pretratados en inerte a 400 °C, (a) adsorción de tolueno y desorción en flujo de inerte a 100 ºC, desorción en flujo de inerte a (b) 150, (c) 200, (d) 300 y (e) 400 ºC.

Aún a 400 °C en flujo de inerte se observan bandas muy débiles por debajo de 3000 cm⁻¹ (Fig. V.29), debidas a la interacción en forma puente hidrógeno del enlace C-H del grupo metilo con el oxígeno del grupo silanol (Fig. V.31) [39].

Figura V.31. Esquema de la interacción entre el enlace C-H del grupo metilo de la molécula de tolueno y el grupo silanol del soporte.
V.4.b. Estabilidad térmica del tolueno adsorbido sobre Ag(2)AlMCM-41.

Las Figs. V.32 y V.33 presentan los espectros obtenidos luego de la adsorción de tolueno a 100 °C sobre el sólido Ag(2)AlMCM-41 calcinado, con un posterior barrido en inerte a diferentes temperaturas, en la región de bajos y altos números de onda, respectivamente.

Luego de adsorber tolueno a 100 °C, el espectro b (Fig. V.32) muestra las bandas centradas a 1489 y 1383 cm\(^{-1}\), correspondientes a los modos vibracionales del estiramiento C=C del anillo aromático interactuando con los iones Ag\(^+\). Esta señal exhibe un corrimiento hacia menores números de onda en comparación con el tolueno adsorbido sobre el sustrato AlMCM-41 (Fig. V.32, espectro a). Además, se aprecia una banda amplia que se debe a la contribución de dos señales a 1462 y 1452 cm\(^{-1}\), asignadas a la deformación asimétrica del enlace –C-H del grupo metilo en la molécula de tolueno y a las vibraciones degeneradas del enlace C=C del anillo aromático, respectivamente. Estas bandas se observan débilmente a 300 °C [40].

Figura V.32. Estudio de estabilidad térmica mediante FTIR de tolueno adsorbido sobre la muestra Ag(2)AlMCM-41 calcinada y pretratada en inerte a 400 °C. Adsorción de tolueno y desorción en flujo de inerte a 100 °C sobre (a) AlMCM-41, (b) Ag(2)AlMCM-41, desorción de tolueno en flujo de inerte a (c) 150, (d) 200, (e) 300 y (f) 400 °C.
En la región de altos números de onda (Fig. V.33), al igual que con el soporte AlMCM-41 se observa la presencia de bandas por encima y por debajo de 3000 cm$^{-1}$. Las señales a 3089, 3062, 3029 cm$^{-1}$ corresponden al estiramiento del enlace C-H del anillo aromático de la molécula de tolueno y son coincidentes con las bandas de adsorción del tolueno sobre el sustrato AlMCM-41. Sin embargo, las señales por debajo de 3000 cm$^{-1}$ asignadas a las vibraciones del estiramiento –C-H del grupo metilo son fuertemente afectadas por la presencia de Ag y presentan un corrimiento de 59 cm$^{-1}$ hacia menores números de onda.

Figura V.33. (A) Estudio de estabilidad térmica mediante FTIR de tolueno adsorbido sobre la muestra Ag(2)AlMCM-41 calcinada y pretratada en inerte a 400 °C, (a) adsorción de tolueno y desorción en flujo de inerte a 100 °C, desorción de tolueno en flujo de inerte a (b) 150, (c) 200, (d) 300 y (e) 400 °C. (B) Adsorción de tolueno y desorción en flujo de inerte a 100 °C sobre el soporte AlMCM-41 y la muestra Ag(2)AlMCM-41.

V.4.c. Reactividad del C$_7$H$_8$ adsorbido sobre los sustratos mesoporosos y la muestra Ag(2)AlMCM-41 en presencia de NO.

Para analizar la reactividad del tolueno adsorbido con una corriente de NO en He, se realizaron ensayos de adsorción de tolueno en He a 100 °C sobre los soportes MCM-41
y AlMCM-41 calcinados en flujo de aire hasta 550 °C y luego, se barrió con 1000 ppm de NO/He a 200, 300 y 400 °C (Fig. V.34).

Luego de adsorber con 8000 ppm de C\textsubscript{7}H\textsubscript{8}/He, se observaron las señales características del tolueno adsorbido por encima y debajo de 3000 cm-1. La intensidad de estas bandas disminuye a medida que aumenta la temperatura, como consecuencia de la desorción del hidrocarburo adsorbido. En esta región, no se observó ningún cambio como consecuencia de la interacción entre la molécula de NO con el tolueno adsorbido.

En cambio, en la región de menores números de onda (1800-1200 cm-1) se aprecian diferencias significativas en ambos soportes y en la muestra AlMCM-41 impregnada con 2 % p/p de plata (Fig. V.34). Por encima de 200 °C se observa una banda a 1690 cm-1 asociada a especies NO\textsubscript{2} [41]. Además, a medida que aumenta la temperatura desde 200 a 400 °C (espectros b-d) se definen tres señales a 1550, 1500 y 1344 cm-1 correspondientes a las vibraciones de compuestos nitro-orgánicos (R-NO\textsubscript{2}) [42]. También, se destaca la banda amplia entre 1750 y 1530 cm-1 que corresponde a la contribución de la estructura mesoporosa (1630 cm-1), de los modos vibraciones del estiramiento C=C del anillo aromático (1604 cm-1), solapados con la contribución del agua residual (1642 cm-1) [39, 40].

Figura V.34. Espectros FTIR de tolueno adsorbido sobre (A) AlMCM-41 y (B) Ag(2)AlMCM-41 calcinada y pretratada en inerte a 400 °C; (a) adsorción de tolueno y desorción en flujo de inerte a 100 °C, desorción de tolueno en flujo de NO/He a (b) 200, (c) 300 y (d) 400 °C.
Es importante destacar que tanto para los sustratos mesoporosos como para la muestra Ag(2)AlMCM-41 no se observó la señal a 1473 cm\(^{-1}\) correspondiente a la vibración asimétrica C=O del grupo carboxilato, la cual fue observada en los sólidos Ag(x)M (sección IV.4.d). Además, en la región entre 2300 y 2050 cm\(^{-1}\) no aparecen las bandas correspondientes a los grupos isocianatos, cianuros e isocianuros, los que representan otros compuestos intermediarios típicos de la reducción catalítica selectiva de NOx en presencia de hidrocarburos [43-45].

V.5. CONCLUSIONES

En este capítulo se presentaron los resultados obtenidos para los soportes mesoporosos MCM-41 y AlMCM-41 sintetizados mediante el método sol-gel. El material obtenido tiene morfología esférica con diámetros entre 200 y 600 nm. El sólido MCM-41 mostró una estructura hexagonal, con un área superficial próxima a 1300 m\(^2\)·g\(^{-1}\) y un tamaño promedio de poro de 4,6 nm. El agregado de una pequeña fracción de Al (Si/Al = 20), generó una disminución del área superficial y el volumen de poro. Sin embargo, la morfología externa no fue afectada significativamente.

La adición de Ag en ambos soportes se realizó mediante impregnación a humedad incipiente y con CO\(_2\) supercrítico. Al agregar 2 % p/p de Ag con el primer método, se produjo una disminución significativa del volumen de poro, la cual se intensificó con la incorporación de 15 % p/p de Ag.

Mediante TPR, se identificaron diferentes especies que pueden corresponder a partículas de Ag\(_2\)O altamente dispersas y cationes Ag\(^+\) en interacción con la estructura, mientras que, al aumentar la carga se observó una fracción de Ag metálica, generada durante la preparación. Mediante UV-Vis se determinaron las mismas especies, sin embargo, el parámetro Auger calculado por medio de los resultados de XPS, sólo indica la presencia de Ag\(_2\)O en la superficie.

A través de SEM y TEM pudieron identificarse partículas esféricas de Ag\(^0\) y Ag\(_2\)O con un tamaño entre 10 y 30 nm, sobre la superficie esférica del soporte.

Además, se estudiaron las variables del proceso de deposición con fluido supercrítico para incorporar nanopartículas de Ag a partir del precursor acetilacetonato de plata. En las condiciones de preparación empleadas, se obtuvieron agregados cúbicos de Ag de...
V. Catalizadores Ag/AlMCM-41.

2,5 µm, que formaron grandes aglomerados poco dispersos sobre el soporte. La incorporación de un agente surfactante polimérico generó agregados más pequeños con un tamaño similar a las esferas del sustrato (500 nm).

Los materiales obtenidos no resultaron ser catalizadores activos en la RCS de NOx a N₂ con butano o tolueno.

La capacidad de adsorción de tolueno a 100 ºC mostró el siguiente orden: Ag(2)AlMCM-41 > AlMCM-41 > MCM-41 > Ag(15)MCM-41. Sólo la muestra Ag(2)AlMCM-41 retuvo tolueno hasta 550 ºC. Mediante FTIR se detectaron las bandas características de la molécula de tolueno en interacción con los grupos silanoles. Sin embargo, cuando el tolueno adsorbido se trató con una corriente de NO en He, sólo se observaron las bandas pertenecientes a los compuestos nitro-orgánicos, intermediarios de la RCS de NOx.
V. Catalizadores Ag/AlMCM-41.

V.6. REFERENCIAS

V. Catalizadores Ag/AlMCM-41.

Capítulo VI

Catalizadores CoNaMordenita

Evaluación Catalítica

Trampa de Hidrocarburos

Caracterización Fisicoquímica
VI. Catalizadores CoNaMordenita.

Es conocido que los catalizadores de cobalto intercambiados en zeolitas (ZSM-5, MOR, BEA, entre otros) son activos y selectivos para reducir los NOx en presencia de O$_2$ usando CH$_4$ como reductor [1-5]. En este capítulo, se presentan los resultados obtenidos empleando un hidrocarburo de cadena más larga como el butano o un compuesto aromático como el tolueno. Se estudió el efecto sobre la actividad catalítica del agregado de 2 % de agua y la capacidad de adsorción y retención de butano o tolueno.

Se emplearon diversas técnicas de caracterización, tales como TPR, y espectroscopias UV-Vis, XPS y Láser Raman para determinar las características fisicoquímicas del catalizador de Co en NaMordenita fresco y luego de usado en reacción química.

VI.1. REDUCCIÓN SELECTIVA DE NOx CON HIDROCARBUROS

Mediante intercambio iónico de NaMOR comercial (Si/Al = 6,5) con una solución de AcCo 0,025 M, se obtuvo un sólido con 2,9 % p/p de Co. El catalizador CoM calcinado en flujo de oxígeno a 400 °C se evaluó en la reducción de NOx con dos hidrocarburos de naturaleza diferente.

La Fig. VI.1A presenta la conversión de NOx a N$_2$ en función de la temperatura obtenida con butano en condiciones secas y con el agregado de 2 % de agua en la corriente de alimentación. El comportamiento catalítico del sólido se analizó entre 300 y 500 °C. Las máximas conversiones a nitrógeno alcanzadas fueron de 50 y 58 % en ausencia y presencia de 2 % H$_2$O, respectivamente. En ambos casos, se alcanzó el 100 % de conversión de butano en el intervalo de temperaturas estudiado. En condiciones húmedas y secas, la temperatura correspondiente a la máxima conversión de NOx fue de 400 °C, siendo la conversión de butano cercana al 95 %.

Con la finalidad de comparar la actividad reductora empleando un hidrocarburo aromático como reductor, se evaluó el catalizador CoM con tolueno en iguales condiciones de reacción. La Fig. VI.1B exhibe la conversión de NOx a nitrógeno y de tolueno entre 350 y 600 °C, en ausencia y en presencia de 2 % de agua.
VI. Catalizadores CoNaMordenita.

En condiciones secas, se alcanzó una conversión máxima a N\textsubscript{2} de 69 % a 550 °C, mientras que, en presencia de 2 % H\textsubscript{2}O, la conversión de NOx aumentó a 79 % a 525 °C. El tolueno se convirtió totalmente en ambos casos.

![Diagrama de conversión de NOx](image)

Figura VI.1. Resultados de RCS-NOx sobre CoM calcinada, usando (A) butano o (B) tolueno como reductor. Conversión de (●, o) C\textsubscript{7}H\textsubscript{8} o C\textsubscript{4}H\textsubscript{10} y (■, □) NOx. Condiciones de reacción: GHSV = 20000 h-1, 1000 ppm NO, 2 % O\textsubscript{2}, 500 ppm C\textsubscript{4}H\textsubscript{10} o C\textsubscript{7}H\textsubscript{8}; símbolos llenos: 0 % H\textsubscript{2}O, vacíos: 2 % H\textsubscript{2}O.

En consecuencia, cuando se utilizó tolueno como agente reductor se obtuvieron mayores conversiones a nitrógeno, siendo al mismo tiempo, mayor la temperatura correspondiente al máximo de conversión de NOx. El catalizador CoM es menos activo en presencia de un hidrocarburo lineal como el butano. Probablemente, esto se relaciona con que se utilizaron 1000 ppm de NO y 500 ppm de tolueno o butano, siendo la relación C/N de 3,5 para el tolueno y de 2,0 para el butano.

En esta línea de trabajo, existen numerosos estudios sobre catalizadores del tipo Co-zeolitas evaluados en la reducción selectiva de NOx empleando diferentes hidrocarburos como agentes reductores. Así, el grupo de Campa [6], estudió el comportamiento catalítico de soportes HMOR y NaMOR intercambiados con cobalto en la RCS de NOx...
VI. Catalizadores CoNaMordenita.

con CH\textsubscript{4}, empleando una mezcla equimolar de NO y CH\textsubscript{4} con una velocidad espacial de 15000 h-1, 2 % O\textsubscript{2} y sin el agregado de vapor de agua. En estas condiciones, obtuvieron una conversión máxima a nitrógeno cercana al 60 % a 500 °C para ambos catalizadores estudiados. La conversión de metano fue menor a 100 % en el intervalo de temperaturas bajo estudio. En consecuencia, siendo que la actividad catalítica obtenida es la misma para los sólidos CoNaMOR y CoHMOR, concluyeron en que es despreciable la influencia de sitios ácidos presentes en los sólidos para la reducción de NOx [7].

Además de analizar el comportamiento catalítico del metano como agente reductor, se estudió la capacidad reductora de otros hidrocarburos lineales como propano e isobutano. Shichi et al. [8] analizaron el comportamiento catalítico de sólidos CoNaMOR en la reacción NO-HC-O\textsubscript{2} utilizando 1000 ppm de metano o propano y 6,7 % O\textsubscript{2} y velocidades espaciales entre 2000 y 45000 h-1. Ellos destacan que la reactividad del C\textsubscript{3}H\textsubscript{8} es significativamente más alta que la obtenida con el CH\textsubscript{4}. La conversión máxima de NO a N\textsubscript{2} con 8000 h-1, 1000 ppm de CH\textsubscript{4} y de NO, fue de 30 % a 500 °C. Sin embargo, con 23000 h-1, 1000 ppm de NO y de C\textsubscript{3}H\textsubscript{8}, la conversión a nitrógeno no atravesó un valor máximo, sino que aumentó con la temperatura. A 500 °C, la conversión de NO fue cercana a 50 %. La cadena más larga es más reactiva.

También, este mismo grupo [9] estudió el efecto del agregado de 2 % de vapor de agua en la RCS-NOx con C\textsubscript{3}H\textsubscript{8} sobre catalizadores de Co intercambiado en zeolitas MFI. Empleando 1000 ppm de NO, 2000 ppm de C\textsubscript{3}H\textsubscript{8}, 6,7 % O\textsubscript{2} y una velocidad espacial de 38000 h-1, alcanzaron una conversión de NO a N\textsubscript{2} cercana al 80 % en condiciones secas y húmedas, a 375 y 400 °C, respectivamente. Del mismo modo, no observaron desactivación del catalizador en el tiempo con el agregado de 2 % de agua, situación que ocurrió en condiciones secas. Por medio de estudios FTIR, encontraron que en condiciones secas, se acumulan en el sólido especies NCO produciendo la posterior desactivación del catalizador. Sin embargo, en condiciones húmedas las especies NCO se hidrolizan rápidamente a amoníaco y dióxido de carbono, obteniendo de este modo, elevadas actividades catalíticas [10, 11].

También, Martínez-Hernández y Fuentes [12] analizaron las especies de cobalto involucradas en la desactivación por la presencia de agua en la RCS-NOx con propano sobre catalizadores Co-ZSM5. La presencia de H\textsubscript{2}O en la alimentación del reactor, promueve la redistribución de especies de cobalto, probablemente a través de la formación de especies hidratadas y oxi-hidróxidos.
El iso-butano es otro de los hidrocarburos estudiados como agente reductor. Wang et al. [13] reportaron la actividad catalítica obtenida con catalizadores Co/ZSM5 obtenidos por diferentes métodos de preparación. En general, alcanzaron conversiones entre 70 y 90 % a 475 °C, con 2000 ppm de NO e iso-C\textsubscript{4}H\textsubscript{10}, 3 % O\textsubscript{2}, 10 % H\textsubscript{2}O y 42000 h-1.

Con respecto al estudio de los hidrocarburos aromáticos en la RCS-NOx, Demidyuk et al. [14] estudiaron la desactivación química producida por especies aromáticas y azufre durante la reducción de NOx sobre catalizadores de Ag soportados en Al\textsubscript{2}O\textsubscript{3}. Los hidrocarburos analizados fueron octano, tolueno y p-xileno, con una relación C/N = 6 en todos los casos. En el trabajo concluyen en que el efecto de inhibición causado por las especies aromáticas es reversible y depende de su tamaño y concentración. La evaluación catalítica se realizó con 300 ppm de NO, 300 ppm de CO, 7 % H\textsubscript{2}O, 12 % O\textsubscript{2} y 6 % CO\textsubscript{2}. En estas condiciones, la conversión máxima de NO a N\textsubscript{2} es de 29 y 71 % con tolueno y octano, respectivamente. Cuando la reacción se realiza con una mezcla de tolueno y octano, es evidente que la presencia de tolueno disminuye significativamente la performance del octano. Además, la temperatura correspondiente a la máxima conversión a nitrógeno fue de 350 °C para el octano y por encima de 420 °C empleando tolueno. En comparación con los resultados obtenidos empleando solamente octano, cuando analizaron la mezcla octano y tolueno, la conversión máxima de NO disminuye a 45 % y la temperatura del máximo de conversión aumenta a 375 °C, efecto producido por la molécula de tolueno. Del mismo modo, el grupo de Yoshimoto [15] analizó la reducción selectiva de NOx con tolueno sobre una mezcla mecánica entre la zeolita Na-ZSM-5 y el sólido Pd/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/SiO\textsubscript{2} (Pd/HPW/SiO\textsubscript{2}). El sólido obtenido fue evaluado con 500 ppm de tolueno, 1000 ppm de NO, 5 % de O\textsubscript{2} y 10 % de agua. A 250 °C obtuvieron 70 % de conversión a N\textsubscript{2}, mientras que la conversión de C\textsubscript{7}H\textsubscript{8} fue de 82 %. Ellos atribuyen este comportamiento a un efecto cooperativo entre la zeolita y el sólido Pd/HPW/SiO\textsubscript{2}. El rol de la zeolita corresponde a la adsorción fuerte del tolueno y la posterior oxidación parcial del adsorbato para producir compuestos oxigenados como el anhídrido ftálico y benzaldehído, los cuales luego reaccionan con el NO generando nitrógeno.

En nuestro caso, se observa que se alcanzan mayores conversiones de NOx a N\textsubscript{2} empleando tolueno como reductor. Sin embargo, la temperatura del máximo de conversión a nitrógeno es 100 °C mayor en comparación con el butano.
VI. Catalizadores CoNaMordenita.

VI.2. TRAMPA DE HIDROCARBUROS. CAPACIDAD DE ADSORCIÓN Y RETENCIÓN.

VI.2.a. Curvas de Ruptura.

La evolución de la concentración de tolueno o butano medida a la salida del adsorbedor, permitió el monitoreo continuo de la carga de adsorbato en función del tiempo. Los µmoles de tolueno o butano adsorbidos a 100 ºC (Q_{ADS}) fueron calculados a partir del área relacionada con las curvas de quiebre (Tabla VI.1).

<table>
<thead>
<tr>
<th>Sólidos</th>
<th>% Co</th>
<th>Tolueno</th>
<th>Butano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q_{ADS}</td>
<td>Q_{DES}</td>
</tr>
<tr>
<td>NaMOR</td>
<td>0</td>
<td>0,93</td>
<td>0,38</td>
</tr>
<tr>
<td>CoM</td>
<td>2,9</td>
<td>0,33</td>
<td>0,09</td>
</tr>
</tbody>
</table>

(1) Cantidad de tolueno o butano adsorbido a 100 ºC (µmol·mg⁻¹).
(2) Cantidad de tolueno o butano desorbido por encima de 100 ºC (µmol·mg⁻¹).
(3) Capacidad de retención de tolueno o butano por encima de 100 ºC; Φ = (Q_{DES}/Q_{ADS}) x 100 (%).

Las Figs. VI.2A y 2B comparan las curvas de ruptura para la adsorción de butano o tolueno a 100 ºC sobre el soporte NaMOR y la muestra CoM, respectivamente.

Cuando se incorpora 2,9 % p/p de cobalto al soporte NaMOR, la cantidad de butano o tolueno adsorbido disminuye significativamente respecto al sustrato original. Este efecto probablemente esté relacionado con la naturaleza del catión intercambiado.

La adsorción de una gran variedad de hidrocarburos en zeolitas fue intensamente estudiada [16-18]. Las propiedades de adsorción dependen de una serie de factores como ser: el número, fuerza, distribución y accesibilidad a los sitios de adsorción, como así también de la estructura zeolítica.
VI. Catalizadores CoNaMordenita.

Figura VI.2. Curvas de ruptura para la adsorción de (A) butano o (B) tolueno a 100 °C sobre (a) NaMOR y (b) CoM. Condiciones: 0,10 g de muestra calcinada, 20 cm³·min⁻¹ de tolueno (8000 ppm) o butano (10000 ppm) en He.

Como se ha mencionado en los capítulos anteriores, el reemplazo de un átomo Si⁴⁺ en la red de la zeolita por otro átomo de menor valencia Al³⁺ produce una carga negativa en la estructura, la cual puede ser neutralizada por un protón o bien, por un catión metálico [19, 20]. En consecuencia, se forma un par ácido-base conjugado, donde el catión actúa como ácido de Lewis, mientras que sobre los oxígenos de la estructura se distribuye la carga parcial negativa la cual se desempeña como base de Lewis [21, 22]. El carácter básico de las zeolitas se incrementa con un aumento del valor absoluto del δO, y está asociado a cationes con baja electronegatividad y acidez débil. En consecuencia, el catión Na⁺ de la muestra NaMOR interacciona con la nube de electrones π del tolueno, mientras que los grupos –C-H lo hacen con los oxígenos de la estructura próximos al catión.
VI.2.b. Desorción de \(\text{C}_7\text{H}_8 \) o \(\text{C}_4\text{H}_{10} \) a temperatura programada.

Las Figs. VI.3A y 3B presentan los perfiles de desorción de butano o tolueno adsorbido, respectivamente, sobre el soporte NaMOR y el catalizador CoM.

La desorción de tolueno (Fig. VI.3B) para el soporte NaMOR (perfil a) presenta dos zonas, una a baja temperatura entre 150 y 300 °C y otra entre 300 y 500 °C. La primera región es asociada a tolueno adsorbido débilmente, mientras que a temperaturas elevadas se desorbe el tolueno que interactúa más fuertemente con los sitios catiónicos, como ser los iones Na\(^+\). El sólido CoM (perfil b) presenta un pequeño pico de desorción de tolueno a baja temperatura (< 300 °C). Esto indica que, la interacción entre la molécula de tolueno y los sitios Co\(^{2+}\) es débil, la cual reduce significativamente la cantidad de tolueno retenido (Tabla VI.1).

Figura VI.3. Perfiles de desorción a temperatura programada (TPD) de (A) butano o (B) tolueno, sobre las muestras (a) NaMOR y (b) CoM, luego de la adsorción de 10000 ppm de butano o 8000 ppm de tolueno a 100 °C y desorción en flujo de inerte con una velocidad de calentamiento de 10 °C·min\(^{-1}\).
VI. Catalizadores CoNaMordenita.

A diferencia del tolueno, el butano se desorbió en un solo intervalo de temperaturas, tanto para el soporte zeolítico como para la muestra CoM (Fig. VI.3A). Esta temperatura coincide con el primer pico de desorción del tolueno (~ 200 °C). La cantidad de butano desorbido (Tabla VI.1) disminuye un 91 % en relación al soporte NaMOR, del mismo modo que con el tolueno.

En comparación con las muestras Ag(x)M, estudiadas en el Capítulo IV, en este caso no se observaron productos de descomposición de tolueno, como ser hidrógeno, CO₂ o H₂O.

Al incorporar 2,9 % p/p de cobalto al soporte NaMOR, se obtuvieron valores de electronegatividad promedio de 2,905, mientras que la carga sobre el oxígeno es de (|δox| = 0,189). Esto indica un carácter menos básico respecto de los valores de NaMOR (|δox| = 0,203). Sin embargo, esta diferencia observada no es suficientemente importante para justificar la baja capacidad de adsorción al incorporar cobalto a la estructura zeolítica. Otros estudios más exhaustivos deberán realizarse para argumentar dicho comportamiento.

VI.3. CARACTERIZACIÓN FÍSICOQUÍMICA

VI.3.a. Propiedades físicas y químicas.

Los resultados cuantitativos de superficie específica (A_BET), volumen de microporos (V_µ) y porcentaje de intercambio para el soporte NaMOR y el sólido CoM calcinados obtenidos se exhiben en la Tabla VI.2. La forma de las curvas obtenidas son típicas de los materiales microporosos.

<table>
<thead>
<tr>
<th>Catalizador</th>
<th>% Co</th>
<th>A_BET</th>
<th>V_µ</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaMOR</td>
<td>0</td>
<td>409</td>
<td>0,165</td>
<td>0</td>
</tr>
<tr>
<td>CoM</td>
<td>2,9</td>
<td>380</td>
<td>0,143</td>
<td>52</td>
</tr>
</tbody>
</table>

(1) Porcentaje en peso de Co obtenido mediante absorción atómica.
(2) Superficie específica calculada a partir de las isotermas de adsorción de N₂ a -196 °C (m²·g⁻¹).
(3) Volumen de microporos calculados a partir del método t-plot (cm³·g⁻¹).
(4) Porcentaje de intercambio iónico.
El valor de la superficie específica y volumen de microporos del soporte NaMOR comercial es de 409 m2·g$^{-1}$ y 0.165 cm3·g$^{-1}$, respectivamente; lo cual concuerda con lo reportado por el proveedor Zeolyst International [23]. Al incorporar 2.9 % p/p de cobalto a los canales de la mordenita, se observa una leve disminución del área superficial y volumen de poros a valores de 380 m2·g$^{-1}$ y 0.143 cm3·g$^{-1}$, respectivamente.

Además, en la Tabla VI.2 se aprecia que el porcentaje de intercambio iónico alcanzado es de 52 %, considerando que dos iones Na$^+$ se intercambian por cada catión de Co$^{2+}$.

VI.3.b. Reducibilidad de las especies de Co.

La técnica de reducción a temperatura programada se utilizó con la finalidad de identificar las diferentes especies de cobalto presentes en el catalizador CoM calcinado y usado luego de la reacción de reducción de NOx con butano y 2 % H$_2$O. En la Tabla VI.3 se muestra el consumo de H$_2$ por mol de Co, mientras que la Fig. VI.3 presenta el perfil de reducción obtenido para el sólido CoM calcinado y usado en reacción.

![Figura VI.3. TPR del sólido CoM (a) calcinado en flujo de O$_2$ a 400 °C, (b) usado en RCS con C$_4$H$_{10}$, 2 % H$_2$O durante 30 h.](image-url)
El perfil de TPR correspondiente al sólido CoM calcinado (Fig. VI.3, perfil a) presenta un pico ancho entre 200 y 500 °C y otro con un máximo a 687 °C. Por debajo de 500 °C, el consumo de H₂ por mol de Co indica que el 22 % del cobalto total se reduce en esta región, mientras que a temperaturas mayores, el grado de reducción alcanza el 47 % (Tabla VI.3). El primer pico podría ser asignado a una fracción de especies de óxido de cobalto (CoOₓ) soportado, mientras que el máximo de reducción a 687 °C se debe a iones Co²⁺ en posición de intercambio dentro de la estructura zeolítica [15, 24, 25].

Tabla VI.3. Reducibilidad de la muestra CoM.

<table>
<thead>
<tr>
<th>Condiciones</th>
<th>Tₘₐₓ (H₂/Co)</th>
<th>(H₂/Co) total</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂, 400 °C</td>
<td>311 (0,22)</td>
<td>687 (0,47) 0,69</td>
</tr>
<tr>
<td>RCS-C₄H₁₀, 2 % H₂O, 400 °C, 30 h</td>
<td>227 (0,20)</td>
<td>656 (0,76) 0,96</td>
</tr>
</tbody>
</table>

Comparando el perfil de TPR correspondiente al sólido CoM calcinado con el obtenido para la muestra usada en reacción (Fig. VI.3, perfil b), éste último presenta un pico bien definido a 227 °C y un aumento a 76 % de los iones Co²⁺ reducidos a 656 °C (Tabla VI.3). Este perfil corresponde al sólido CoM luego de usarse con 2 % H₂O durante 30 horas, en donde la conversión de NOx a N₂ se mantuvo cercana a 60 %.

La muestra CoM calcinada posee una relación molar total entre el H₂ y el Co menor a la unidad, lo que implica que, probablemente iones Co²⁺ se encuentren en sitios muy estables dentro de la mordenita con fuerte interacción con la estructura, como los sitios β y γ. Luego de la reacción de reducción en presencia de agua, se produce la migración de una fracción de iones Co²⁺ desde las posiciones más internas a sitios α.

VI.3.c. Caracterización superficial.

La técnica XPS se utilizó para determinar el estado de oxidación del cobalto presente en la muestra CoM calcinada. La Tabla VI.4 presenta la relación Co/Si obtenida a partir de los resultados de XPS y la Fig. VI.4 presenta el espectro XPS de la región Co 2p del catalizador CoM calcinado y usada en reacción química en condiciones secas y húmedas.
Tabla VI.4. Energía de enlace de la región Co 2p\(_{3/2}\) y relación Co/Si obtenidas a partir de XPS para la muestra CoM.

<table>
<thead>
<tr>
<th>Condiciones</th>
<th>EE Co 2p(_{3/2})(^{(1)})</th>
<th>Co/Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_2), 400 °C</td>
<td>782,0</td>
<td>0,05</td>
</tr>
<tr>
<td>RCS-C(4H{10}), 0 %</td>
<td>782,1</td>
<td>0,05</td>
</tr>
<tr>
<td>H(_2O), 400 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCS-C(4H{10}), 2 %</td>
<td>782,1</td>
<td>0,09</td>
</tr>
<tr>
<td>H(_2O), 400 °C, 30 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Energía de enlace correspondiente al pico Co 2p\(_{3/2}\) (eV).

El valor de energía de enlace del nivel electrónico Co 2p\(_{3/2}\) de 782,0 eV es característico del ión Co\(^{2+}\) ubicado en sitios de intercambio de la estructura zeolítica, el cual es significativamente mayor al valor de 780,0 eV reportado para el Co\(^{2+}\) del óxido de cobalto CoOx [26, 27]. En esta región, el pico principal está acompañado por el satélite *shake-up* de la transición 3d \(\rightarrow\) 4s a 787,5 eV, característico de las especies Co\(^{2+}\). La diferencia de energía de enlace medida entre 2p\(_{3/2}\) y 2p\(_{1/2}\) fue de 16 eV [28].

Figura VI.4. Espectros XPS de la región Co 2p obtenidos para la muestra CoM (a) calcinada y usada en RCS, (b) 0 % H\(_2O\) y (c) 2 % H\(_2O\).
VI. Catalizadores CoNaMordenita.

Para todas las muestras se observa que el valor de energía de enlace del pico Co 2p$_{3/2}$ es de 782,1 eV y su correspondiente shake-up se observa a 787,7 eV. Estos valores son indicativos de la presencia de Co$^{2+}$ en posición de intercambio dentro de la NaMordenita, lo que concuerda con lo observado mediante TPR. Sin embargo, no se detecta la presencia de especies de óxido de cobalto en la superficie de los catalizadores aún después de usado con 2 % de agua.

Además, en la Tabla VI.4 se observa que la relación Co/Si es de 0,05 para la muestra calcinada y usada en reacción con butano y en seco. En cambio, este valor aumenta a 0,09 luego de reaccionar en presencia de 2 % H$_2$O. Esto indica que existe un enriquecimiento superficial con especies Co$^{2+}$ como consecuencia del agregado de vapor de agua en la corriente reaccionante, lo cual concuerda con lo observado mediante TPR.

La Fig. VI.5 presenta los espectros Raman del soporte NaMOR (espectro a) y del sólido CoM calcinado (espectro b) y usado en RCS con butano y 2 % H$_2$O (espectro c).

La muestra NaMOR, usada como referencia (espectro a), presenta varias bandas a 636, 515, 458 (ancha), 400 y 350 cm$^{-1}$. El catalizador CoM calcinado a 400 °C (espectro b) muestra solamente las bandas correspondientes al soporte zeolítico NaMOR. Luego de haber sido evaluadas en la RCS-NOx con butano y 2 % H$_2$O (espectro c), la muestra CoM presentó una banda adicional a 684 cm$^{-1}$, la cual corresponde a la señal principal de la especie Co$_3$O$_4$. Además, no se observan las otras bandas características de la espinela Co$_3$O$_4$, debido a la baja concentración de la especie [28, 29]. No se detecta la presencia de iones Co$^{2+}$, debido a que la técnica espectroscópica Raman es sensible a las especies oxidadas.
VI.3.e. UV-Vis DRS.

Los espectros de absorción en la región UV-Vis de las muestras de Co intercambiado en mordenita, fueron utilizados para describir las especies de cobalto localizadas en los sitios catiónicos de la estructura NaMOR. La Fig. VI.6 exhibe los espectros obtenidos entre 200 y 800 nm para el catalizador CoM calcinado (espectro a) y usado en RCS-NOx con C₄H₁₀ y 2 % H₂O (espectro b).

En ambos casos, se destacan tres bandas de absorción a 500, 580 y 650 nm. Los espectros observados son similares a los reportados y discutidos en profundidad por el grupo de Wichterlová [31, 32] para muestras de Co intercambiado en diferentes zeolitas (mordenita, ferrierita y ZSM-5). El triplete es característico de las transiciones d-d de los iones Co(II) en coordinación tetraédrica.
VI. Catalizadores CoNaMordenita.

Figura VI.6. Espectros UV-Vis DRS obtenidos para la muestra: CoM (a) calcinada y (b) usada en RCS-C₃H₁₀ + 2 % H₂O.

También, Dedecek y Wichterlová [32], estudiaron mediante UV-Vis la ubicación de los iones Co²⁺ en una zeolita pentasil y encontraron tres sitios de coordinación diferentes para la estructura de la mordenita. Diferentes componentes espectrales pueden ser conectados con especies de Co localizadas en tres sitios de intercambio catiónico de la estructura NaMOR. Las bandas principales pueden resumirse de la siguiente manera:

- Sitios α, se caracterizan por una banda de absorción a 15000 cm⁻¹ (660 nm)
- Sitios β, caracterizados por una banda asimétrica compleja con un máximo a 16500 cm⁻¹ (593 nm)
- Sitios γ, se caracterizan por dos bandas a 20000 cm⁻¹ (500 nm) y 22000 cm⁻¹ (454 nm).

A partir de los espectros UV-Vis medidos para las muestras CoM (Fig. VI.6), es difícil definir los sitios catiónicos preferenciales donde los iones Co²⁺ están ubicados, ya
que posiblemente los tres sitios (α, β y γ) estén parcialmente ocupados por dichos cationes. Para ello, sería necesario el empleo de las asignaciones y coeficientes de absorción reportados por Wichterlová [31, 32] con el fin de determinar la población relativa de los iones Co$^{2+}$ a través de la deconvolución de los espectros.

En la muestra calcinada aparece una señal a 380 nm, la cual se intensifica luego de ser usada en la reacción de reducción. Además, en esta última muestra aparece un pequeño hombro a 688 nm. De acuerdo a la literatura, las bandas de absorción a 380 y 710 nm son asignadas a la estructura de la espinela Co$_3$O$_4$, que está compuesta por iones Co(II) y Co(III) en coordinación tetraédrica y octaédrica, respectivamente [33].

Usualmente la banda a 250 nm (región UV) resulta de una transferencia de carga del oxígeno al metal [34].

VI.3.f. Estudio de las especies carbonosas por XPS y TPO. Efecto del H$_2$O.

Con la finalidad de estudiar el efecto que provoca la incorporación de 2 % de agua en la alimentación, se estudió la muestra CoM luego de ser usada en RCS de NOx con butano en condiciones secas y húmedas. Se caracterizaron los depósitos carbonosos mediante experiencias de oxidación a temperatura programada (TPO) y medidas de XPS.

La Fig. VI.7 presenta los espectros XPS (a-c) en la región C 1s del sólido CoM calcinado y usado en la RCS con butano con y sin agua. La contribución principal del C 1s se ubica en un valor de energía de enlace de 284,6 eV, la cual corresponde al carbón residual [35], probablemente originado de la atmósfera, manejo o contaminación en la cámara del XPS. El pico a 281,2 eV corresponde a depósitos de carbón del tipo grafitico que aparecen luego de la reacción en condiciones secas (espectro c).

Además, en la Tabla VI.5 claramente se observa que la relación superficial C/Si calculada a partir de los datos de XPS, indica que la cantidad de carbón depositado en condiciones secas es mayor que en presencia de 2 % de agua.
Figura VI.7. Depósitos de carbón sobre la muestra CoM usada en RCS-C_{4}H_{10}. (A) Espectros XPS región C 1s: (a) calcinada a 400 °C, usada (b) 2 % H_{2}O y (c) 0 % H_{2}O; (B) Perfiles de TPO.

Tabla VI.5. Caracterización del carbón depositado sobre CoM usado en C_{4}H_{10}-RCS.

<table>
<thead>
<tr>
<th>Conds. reacción (a)</th>
<th>% p/p C [TPO (T máx)]</th>
<th>C 1s grafito /Si 2p [XPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 % H_{2}O</td>
<td>0,11 (420 °C)</td>
<td>0,70</td>
</tr>
<tr>
<td>2 % H_{2}O</td>
<td>0,06 (395 °C)</td>
<td>0,19</td>
</tr>
</tbody>
</table>

(a) Cond. de reacción: GHSV = 20000 h^{-1}, 500 ppm C_{4}H_{10}, 1000 ppm NO, 2 % O_{2} en He.

Los resultados obtenidos con ambas técnicas indicaron claramente que la promoción en la actividad reductora en presencia de agua es debida a la disminución de carbón presente en la superficie activa.
Schichi et al. [36] estudiaron en catalizadores de Cu, Ag y Co en zeolitas MFI, el efecto de la cantidad de átomos de carbón presentes en la molécula del hidrocarburo sobre la actividad reductora en RCS de NOx. Ellos encontraron que para hidrocarburos livianos, la actividad catalítica es mayor cuando aumenta el número de carbonos en la molécula del agente reductor. Tal efecto, se explica por el aumento de la reactividad del hidrocarburo. En cambio, se observó una disminución de la actividad cuando emplearon moléculas de hidrocarburos más pesadas, probablemente debido a la formación de depósitos carbonosos. De este modo, en condiciones secas obtuvieron la máxima conversión de NOx usando butano, mientras que, en condiciones húmedas, el n-hexano es mejor reductor. Bajo las condiciones empleadas en el trabajo citado [36], en ausencia de agua, la conversión de NOx fue de 20 % con etano, 55 % con propano y 65 % con butano, lo que indica que la deposición de carbón comienza a ser importante a partir del butano. En condiciones húmedas, la conversión a N\textsubscript{2} fue de 3 % con etano, 20 % con propano, 42 % con butano y 70 % con hexano, lo que sugiere que la formación de depósitos carbonosos no es importante cuando los n-alcanos poseen menos de 6 átomos de carbono.

Estos resultados junto a los obtenidos para las muestras AgM y CoM indican que cuando se emplea butano o tolueno como reductores, prevalece el efecto de limpieza de los depósitos carbonosos que posee el agua, en comparación con la inhibición de los sitios adsorción. De hecho, la máxima conversión de NOx a N\textsubscript{2} aumenta desde 50 a 58 % y desde 69 a 79 % cuando se agrega 2 % de H\textsubscript{2}O, con butano o tolueno como agente reductor, respectivamente.

A partir de los resultados catalíticos obtenidos en esta Tesis con los catalizadores CoM y AgM, junto a otros trabajos del grupo [37, 38], se puede inferir que la presencia de agua en la alimentación resulta en diferentes consecuencias dependiendo de las condiciones de reacción y del agente reductor empleado: (i) efecto benéfico, porque mantiene la superficie limpia de depósitos carbonosos y/o produce una redistribución favorable de las especies de Co intercambiadas; (ii) inhibe la reacción catalítica, porque se adsorbe sobre los sitios activos Co2+, evitando así la adsorción de NOx y (iii) contribuye a deteriorar la estructura zeolítica. En consecuencia, los iones Co2+ migran de los sitios de intercambio formando especies oxidadas CoOx y Co\textsubscript{3}O\textsubscript{4}. Estas últimas especies producen la desactivación del catalizador para la RCS-NOx. Estos fenómenos mencionados han sido previamente reportados en la literatura [39].
VI. Catalizadores CoNaMordenita.

VI.4. Conclusiones

Los catalizadores de cobalto intercambiado en la estructura zeolítica NaMOR presentaron características fisicoquímicas específicas que fueron determinadas mediante diversas técnicas de caracterización, en muestras frescas y usadas en la reducción catalítica selectiva de NOx con hidrocarburos (tolueno o butano) y en la capacidad de adsorción y retención de los mismos.

Mediante adsorción y desorción de N\textsubscript{2} a -196 °C no se determinaron cambios significativos en el área superficial y volumen de poro, luego de la adición de 2,9 % p/p de Co en NaMOR. Por medio de técnicas como TPR, Raman, XPS y UV-Vis, fue posible identificar la presencia de una pequeña fracción de especies Co\textsubscript{3+}O\textsubscript{4} (20 %) altamente dispersas, junto a iones Co2+ ubicados en posición de intercambio dentro de los sitios α, β y γ de la estructura NaMOR.

Los catalizadores CoM mostraron baja capacidad de adsorción y retención de tolueno o butano a 100 °C, en comparación con el soporte NaMOR.

La muestra CoM presentó comportamientos diferentes en la reducción catalítica selectiva de NOx con hidrocarburos, los que se vinculan al agregado de agua en la corriente de entrada y al empleo de hidrocarburos de diferente naturaleza como tolueno o butano (número de átomos de carbono).

El empleo de un hidrocarburo aromático (tolueno) como agente reductor permitió obtener mayores conversiones a nitrógeno, siendo al mismo tiempo, mayor la temperatura correspondiente al máximo de conversión de NOx. Por lo que, el catalizador CoM es más activo en presencia de un hidrocarburo aromático como el tolueno.

La incorporación de 2 % H\textsubscript{2}O produce un efecto positivo sobre la conversión de NOx a N\textsubscript{2} en presencia de ambos hidrocarburos. A través de ensayos de oxidación a temperatura programada (TPO) y del estudio de los espectros XPS de la región C 1s de las muestras usadas en condiciones secas y húmedas con butano, se observa que una concentración baja de vapor de agua en la alimentación mantiene la superficie limpia de depósitos carbonosos. Además, los resultados obtenidos por medio de TPR, XPS y UV-Vis sobre las muestras usadas, indicaron que existe una migración de iones Co2+ de alta interacción con la estructura (sitios β y γ) hacia sitios menos estables (sitios α).
VI.5. REFERENCIAS

VI. Catalizadores CoNaMordenita.

VI. Catalizadores CoNaMordenita.

Capítulo VII

Catalizadores $CoO_x/AlMCM-41$

Estudio de parámetros supercríticos

Caracterización Fisicoquímica

Trampa de Hidrocarburos

Evaluación Catalítica
En este capítulo, se presenta un estudio sistemático del proceso de deposición de nanopartículas de cobalto mediante CO\textsubscript{2} supercrítico sobre soportes mesoporosos previamente sintetizados MCM-41 y AlMCM-41. La deposición con fluidos supercríticos (DFSCs), se realizó utilizando dióxido de carbono supercrítico (scCO\textsubscript{2}), el cual representa un método promisorio para la obtención de nanopartículas soportadas.

Para determinar los parámetros óptimos de operación del proceso supercrítico se realizaron experiencias exploratorias de la deposición de las nanopartículas sobre las esferas mesoporosas. En este sentido, se analizó la solubilidad del precursor en el fluido supercrítico, la temperatura de descomposición del precursor, y la influencia de la presión y tiempo en la etapa de deposición. Finalmente, se exhiben los resultados del comportamiento catalítico de las muestras Co(x)MCM-41 y Co(x)AlMCM-41 en la oxidación preferencial de CO en corriente rica en hidrógeno, empleada como reacción test.

VII.1. Determinación de los parámetros de operación de la DFSC

Mediante la deposición reactiva con CO\textsubscript{2} supercrítico, se incorporaron nanopartículas de óxido de cobalto sobre los sustratos mesoporosos del tipo MCM-41 y AlMCM-41 calcinados hasta 550 °C en flujo de aire. Como se desarrolló en el Capítulo III de esta Tesis, el método implica dos etapas que se llevaron a cabo de manera consecutiva: la disolución del precursor cobaltoceno (CoCp\textsubscript{2}) en CO\textsubscript{2} supercrítico y la descomposición y deposición propiamente dicha. Para ello, se realizó un estudio exhaustivo de los parámetros de operación: temperatura, presión y tiempo óptimos de cada una de las etapas.

VII.1.a. Determinación de la temperatura de descomposición y deposición.

La temperatura de descomposición del precursor cobaltoceno se determinó mediante el análisis termogravimétrico en flujo de N\textsubscript{2} y a presión atmosférica. De esta manera, se identificó el intervalo de temperaturas óptimo en el que se realizó la deposición de nanopartículas metálicas sobre los soportes.

El termograma obtenido para el cobaltoceno (Fig. VII.1) exhibe una pérdida total de masa de 90 %, que se inicia aproximadamente a 110 °C y finaliza a 215 °C, con un
máximo a 192 °C. Esta pérdida se atribuye a la descomposición de los grupos ciclopentadienilo de la molécula de CoCp₂. En función de esto, la temperatura de operación para la deposición se estableció en 200 °C.

También, se aplicó la técnica de calorimetría de barrido diferencial (DSC) para medir la variación de energía en el intervalo de temperatura de descomposición del precursor, que previamente se determinó mediante TGA. La Fig. VII.2 muestra la curva DSC obtenida. En ella se observa la presencia de un pico exotérmico con un máximo a 179 °C, coincidente con el intervalo de temperaturas de descomposición del precursor observado mediante TGA. El área del pico corresponde a 60,5 J liberados cada 2,32 mg de CoCp₂ durante el proceso de descomposición.

Además, se utilizó la técnica FTIR, con la finalidad de analizar la estructura molecular del precursor puro y luego de ser disuelto en CO₂ supercrítico a 200 °C y 11,0 MPa durante 3 horas. Este valor de presión y tiempo se seleccionó según lo reportado por Hunde et al. [1].
El espectro FTIR obtenido para el precursor CoCp$_2$ puro se presenta en la Fig. VII.3. Los espectros vibracionales de los complejos bis(η5-ciclopentadienil) metálicos (C$_5$H$_5$)$_2$M (Cp$_2$M) han sido estudiados en detalle y reportados en la literatura abierta [2]. En la Fig. VII.3 se observan varias señales atribuidas a diferentes modos vibraciones de la molécula CoCp$_2$. Las señales a 1415 y 1108 cm$^{-1}$ corresponden a las vibraciones del estiramiento C=C y C-C en la molécula de cobaltoceno, respectivamente. Las bandas a 861 y 774 cm$^{-1}$ son atribuidas a los diferentes modos vibracionales del estiramiento del enlace C-H del ciclopentadieno, mientras que, las señales a 992 y 1007 cm$^{-1}$ son asignadas a la flexión del enlace C-H. Estas bandas son las reportadas para el precursor metálico CoCp$_2$ en su estado basal. Sin embargo, en la Fig. VII.3 se observan otras bandas correspondientes al ligando η5-Cp. Se destacan dos señales de gran intensidad a 1571 y 1512 cm$^{-1}$ debidas a las vibraciones del estiramiento simétrico del enlace C-C y C-H del C unido al Co, respectivamente [3, 4]. Las bandas que aparecen en la región 1350-1120 cm$^{-1}$ corresponden a otros modos vibracionales del enlace C-C del ciclopentadieno.
Además, a bajos números de onda aparece un pico a 664 cm\(^{-1}\), que se encuentra relacionado a las deformaciones vibracionales producidas por el enlace Cp-Co-Cp entre el cobalto y los ligandos [5].

En la región entre 1800 y 1200 cm\(^{-1}\) del espectro FTIR se observaron diferencias importantes de la estructura molecular del precursor puro y luego de la adición de scCO\(_2\) a 11,0 MPa y 200 °C (Fig. VII.4). Se observan dos bandas a 1357 y 1315 cm\(^{-1}\) que corresponden a los modos vibracionales del enlace C-C del ciclopentadieno. Estas señales se definen mejor al tratar el precursor con scCO\(_2\) a temperatura y presión. También, se produce un corrimiento (45 cm\(^{-1}\)) hacia menores números de onda de las bandas a 1572 y 1514 cm\(^{-1}\) que se vinculan a las vibraciones del estiramiento simétrico del enlace C-C y C-H del C unido al Co, respectivamente. Por lo tanto, este desplazamiento podría deberse a la ruptura de los ligandos ciclopentadienos (Cp) del metal Co\(^{2+}\). Además, se destaca una nueva banda centrada en 1644 cm\(^{-1}\), la cual podría corresponder a residuos del anillo unido al cobalto.

Figura VII.3. Espectro FTIR del precursor bis(\(\eta^5\)-ciclopentadienil) de cobalto (II) puro; * señales principales del CoCp\(_2\) en su estado basal.
VII. Catalizadores CoOx/AlMCM-41.

Figura VII.4. Espectro FTIR de CoCp$_2$ (a) puro y (b) luego de la exposición con scCO$_2$ a 11,0 MPa y 200 °C.

En la Fig. VII.5 se presenta el espectro FTIR obtenido para el precursor puro y tratado con scCO$_2$ en la región 950-600 cm$^{-1}$. Se observa la presencia de dos señales a 861 y 774 cm$^{-1}$ para ambas muestras. Sin embargo, considerando que el espectro del precursor con tratamiento en condiciones supercríticas presentó un aumento en la intensidad de todas sus señales, es importante resaltar la disminución de la intensidad de absorción que se observa en la banda a 664 cm$^{-1}$, luego de que el precursor metálico estuvo en contacto con scCO$_2$. Este descenso podría deberse a la ruptura del enlace Cp-Co-Cp.
De este modo, se evidenció que trabajando a 11,0 MPa y 200 °C, se alcanza la descomposición del cobaltoceno en CO₂. Por lo tanto, se seleccionó la temperatura de 200 °C para la etapa de descomposición y deposición de las nanopartículas sobre los sustratos MCM-41 y AlMCM-41.

VII.1.b. Influencia de la presión y tiempo de descomposición y deposición.

Con la finalidad de determinar la presión y tiempo óptimo de cada una de las etapas se realizaron experiencias exploratorias empleando una concentración de 0,48 g·L⁻¹ de cobaltoceno sobre el soporte MCM-41 calcinado. Los resultados obtenidos se resumen en la Tabla VII.1.

Al estudiar el tiempo de cada una de las etapas, se observó que el período de descomposición y deposición (etapa 2) es crucial para obtener contenidos de cobalto elevados. En este sentido, se muestra que la concentración de Co resulta de 0,77 % p/p cuando el tiempo fue de 3 horas, a 70 °C y 11,0 MPa.

Figura VII.5. Espectro FTIR de CoCp₂ (a) puro y (b) luego de la exposición con scCO₂ a 11,0 MPa y 200 °C.
Sin embargo, cuando se suprimió la etapa de disolución e impregnación (etapa 1) y se llevó a cabo directamente la descomposición y deposición del cobaltoceno en CO₂ a 200 °C y 15,0 MPa se observó un incremento del contenido de cobalto cercano al 75 %. Además, se destaca un aumento de la carga de Co adicional cuando el tiempo es de 2 o 3 horas.

En función de los resultados obtenidos cuando se realizaron las etapas de manera individual, se optó por unificar ambas secciones en un tiempo total de 6 horas. De esta manera, se obtuvo una concentración de 4,3 % p/p de cobalto.

Tabla VII.1. Influencia del tiempo y la presión en la cantidad de cobalto depositado durante la primera y segunda etapa del proceso de DFSC.

<table>
<thead>
<tr>
<th>Presión (MPa)</th>
<th>Tiempo (h)</th>
<th>% Co<sup>(3)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa 1<sup>(1)</sup></td>
<td>Etapa 2<sup>(2)</sup></td>
<td>Etapa 1<sup>(1)</sup></td>
</tr>
<tr>
<td>11,0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>11,0</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>11,0</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>15,0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>15,0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>15,0</td>
<td>-</td>
</tr>
<tr>
<td>11,0</td>
<td>9,0</td>
<td>3</td>
</tr>
<tr>
<td>11,0</td>
<td>15,0</td>
<td>3</td>
</tr>
<tr>
<td>11,0</td>
<td>22,0</td>
<td>3</td>
</tr>
</tbody>
</table>

(1) La etapa de disolución e impregnación se realizó a 70 °C.
(2) La etapa de descomposición y deposición se realizó a 200 °C.
(3) Contenido en peso de Co determinado mediante ICP-OES.

La influencia de la presión se estudió sobre las condiciones óptimas de operación, es decir sobre un intervalo entre 9 y 22 MPa a una temperatura constante de 200 °C y una duración de cada etapa de 3 horas. Bajo estas condiciones, se observó un aumento del 72 % del contenido de Co cuando la presión de descomposición y deposición aumentó desde 9 a 15 MPa. Sin embargo, al aumentar aún más la presión (22 MPa), no se observaron cambios significativos en la concentración de cobalto.
Por lo tanto, los parámetros de operación seleccionados para la deposición de nanopartículas de cobalto mediante CO$_2$ supercrítico sobre los sustratos mesoporosos MCM-41 y AlMCM-41 fueron los que se presentan en la Tabla VII.2. Además, las concentraciones de precursor utilizadas fueron 0,48 y 0,07 g·L$^{-1}$, con la finalidad de obtener sólidos con diferentes concentraciones de cobalto.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Etapa 1</th>
<th>Etapa 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión (MPa)</td>
<td>11,0</td>
<td>15,0</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td>Tiempo (h)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VII.1.c. Solubilidad del precursor CoCp$_2$ en scCO$_2$.

El valor de solubilidad del precursor cobaltoceno en scCO$_2$ bajo las condiciones de operación determinadas en la Tabla VII.2, se estimó según lo reportado por Aschenbrenner et al. [6] y se correlacionó empleando el modelo obtenido por Chrastil [7], mediante la siguiente ecuación:

\[
\ln S = k \ln D - C \quad \text{(Ec. VII.1)}
\]

donde, \(S \), solubilidad del soluto (g·L$^{-1}$).
\(D \), densidad del fluido supercrítico (g·L$^{-1}$).
\(k = 3,4787 \), constante para el sistema soluto-solvente e indica la solvatación del soluto en el FSC.
\(C = 20,86 \), constante dependiente de la temperatura y relacionada con la volatilidad del soluto.
De acuerdo a lo reportado por Aschenbrenner et al. [6], el valor de solubilidad para el cobaltoceno en CO$_2$ a 70 °C y 11,0 MPa es 0,336 g·L$^{-1}$.

VII.1.d. Efecto de los parámetros de operación sobre los soportes mesoporosos.

Con el fin de evaluar el efecto sobre la estructura mesoporosa de las elevadas presiones y temperaturas empleadas durante el proceso de deposición de las nanopartículas, se sometieron los soportes MCM-41 y AlMCM-41 a 200 °C y 15,0 MPa en CO$_2$ durante 6 h.

En la Fig. VII.6 se presentan las imágenes TEM obtenidas para los sustratos mesoporosos tratados con CO$_2$ en estado supercrítico.

![Figura VII.6. Imágenes TEM obtenidas para las muestras (A) MCM-41 y (B) AlMCM-41, luego de ser tratadas por 6 h en CO$_2$ a 200 °C y 15,0 MPa.](image)

No se observaron cambios en el ordenamiento hexagonal de los poros de la estructura, ni en la distribución de tamaño de poros.
VII. Catalizadores CoOx/AlMCM-41.

VII.2. CARACTERIZACIÓN FÍSICOQUÍMICA

VII.2.a. Propiedades físicas, químicas y texturales.

Los experimentos de adsorción y desorción de nitrógeno a -196 °C junto a las medidas de SAXS fueron utilizados para estudiar el efecto del scCO₂ y la adición de Co, sobre el arreglo hexagonal de los mesoporos y distribución de tamaño de poro en las muestras preparadas.

La Fig. VII.7 presenta las isotermas de adsorción y desorción de N₂ obtenidas para los soportes mesoporosos y las muestras Co(x)MCM-41 y Co(x)AlMCM-41. Todos los sólidos mostraron isotermas de adsorción tipo IV, típicas de materiales mesoporosos con una fuerte inflexión a presiones relativas P/P₀ > 0,3, lo que indica la uniformidad de la distribución del tamaño de mesoporos.

Figura VII.7. Isotermas de adsorción/desorción de N₂ a -196 °C obtenidas para las muestras funcionalizadas con Co sobre los soportes (A) MCM-41 y (B) AlMCM-41.
La Tabla VII.3 presenta los resultados cuantitativos de adsorción y desorción de N$_2$ para las muestras Co(x)MCM-41 y Co(x)AlMCM-41, los que se comparan con los obtenidos en sus respectivos soportes. Además, se exhiben los valores de distancia interplanar d_{100} y parámetro celda unidad a_0, obtenidos mediante SAXS y señalados en la Fig. VII.8.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>% Co $^{(1)}$</th>
<th>A_{BET} (m2/g$^{-1}$)</th>
<th>v_p (cm3/g$^{-1}$)</th>
<th>t_p $^{(2)}$</th>
<th>d_{100} $^{(3)}$</th>
<th>a_0 $^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41</td>
<td>0</td>
<td>1295</td>
<td>0,194</td>
<td>4,6</td>
<td>3,7</td>
<td>4,3</td>
</tr>
<tr>
<td>Co(0,6)MCM-41</td>
<td>0,63</td>
<td>1183</td>
<td>0,173</td>
<td>4,5</td>
<td>3,7</td>
<td>4,3</td>
</tr>
<tr>
<td>Co(4,3)MCM-41</td>
<td>4,34</td>
<td>1034</td>
<td>0,085</td>
<td>3,9</td>
<td>3,7</td>
<td>4,3</td>
</tr>
<tr>
<td>AlMCM-41</td>
<td>0</td>
<td>807</td>
<td>0,216</td>
<td>4,8</td>
<td>3,7</td>
<td>4,3</td>
</tr>
<tr>
<td>Co(0,8)AlMCM-41</td>
<td>0,82</td>
<td>752</td>
<td>0,198</td>
<td>4,1</td>
<td>3,4</td>
<td>3,9</td>
</tr>
<tr>
<td>Co(5)AlMCM-41</td>
<td>5,10</td>
<td>709</td>
<td>0,156</td>
<td>3,9</td>
<td>3,4</td>
<td>3,9</td>
</tr>
</tbody>
</table>

(1) Determinados por ICP (% p/p).
(2) Tamaño medio de poro (nm).
(3) Distancia interplanar, $d_{100} = \lambda/2\cdot\sin \theta$ (nm).
(4) Parámetro celda unidad, $a_0 = 1,1547\cdot d_{100}$ (nm).

La distancia interplanar ‘d_{100}’, en la dirección (1 0 0), se calculó mediante la Ley de Bragg ($\lambda = 2\cdot d_{hkl}\cdot \sin \theta$). También, se determinó el parámetro de celda unitaria ‘a_0’, que indica la distancia entre el centro de dos poros adyacentes en la estructura hexagonal ($a_0 = 2\cdot d_{100}/\sqrt{3}$) [8, 9]. Ambos parámetros se incluyen en la Tabla VII.3, junto al tamaño medio de poro de las muestras sintetizadas, obtenido a partir del método BJH.

Figura VII.8. Estructura hexagonal del material MCM-41 en la orientación (1 0 0); t_p: tamaño de poro, e: espesor de pared, a_0: parámetro celda unidad y d_{100}: distancia interplanar.
El agregado de aluminio al soporte MCM-41 produce una disminución aproximada de 38 % del área superficial, mientras que el tamaño promedio de los poros se mantiene relativamente constante entre 4,6 y 4,8 nm. Por otro lado, partiendo de la misma cantidad de precursor, el contenido de cobalto depositado en el soporte AlMCM-41 es ligeramente superior en comparación con la muestra MCM-41. Como se mencionó anteriormente, es conocido que la incorporación de aluminio a la sílice pura se realiza para otorgar mayor acidez a la estructura MCM-41. Por lo tanto, es probable que exista una mayor interacción como consecuencia del agregado de aluminio [10, 11].

Respecto de la incorporación de cobalto, el área específica disminuye un 9 y 20 %, con el agregado de 0,6 y 4,3 % p/p de Co al soporte MCM-41, respectivamente. En cambio, los sólidos Co(0,8)AlMCM-41 y Co(5)AlMCM-41 presentan una disminución del área de 7 y 12 %, respectivamente. Cuando el contenido de cobalto agregado es elevado (4,3 y 5 % p/p), se produce una ligera disminución del tamaño de las cavidades porosas, como consecuencia de la adición de Co en el interior de los mesoporos.

En consecuencia, para determinar si la incorporación de cobalto afecta el arreglo hexagonal de los canales mesoporosos, se utilizó la técnica de difracción de rayos X a bajos ángulos (SAXS). En el caso de materiales amorfos como MCM-41 y AlMCM-41, la disposición regular u ordenamiento de los poros produce reflexiones que aparecen como señales a bajos ángulos de difracción. Los sólidos de la familia M41S poseen difractogramas fácilmente identificables proporcionando reflexiones (h k 0).

Los resultados obtenidos por SAXS para los materiales Co(x)MCM-41 y Co(x)AlMCM-41 se presentan en la Fig. VII.9. La aparición de un pico de difracción intenso a 2,4°, es característico del plano (1 0 0) de los soportes e indica una estructura porosa ordenada. Además, existen otros picos de difracción más débiles a 4,3° y 5,0° que corresponden a los planos (1 1 0) y (2 0 0) y que verifican la estructura mesoporosa sintetizada.

Como se observa en la Fig. VII.9A, no existen cambios notables en la forma y posición de los picos de difracción para las muestras Co(x)MCM-41. En cambio, cuando se deposita 5 % p/p de Co sobre el sustrato AlMCM-41 (Fig. VII.9B), se produce un leve corrimiento del pico principal hacia mayores ángulos de difracción (2θ = 2,6°). Esto sugiere que la carga de cobalto depositada provoca una ligera pérdida del ordenamiento hexagonal. Además, la incorporación de Co en ambos soportes produce la
disminución de la intensidad de los picos de difracción, lo que indica el desorden de la disposición hexagonal, pero no ruptura de los poros [12].

Figura VII.9. Resultados obtenidos por SAXS para los sólidos funcionalizados con Co sobre los soportes (A) MCM-41 y (B) AlMCM-41.

Los difractogramas de las muestras sintetizadas, obtenidos en el intervalo de 2θ entre 5 y 85° (no se muestran), no exhiben picos de difracción característicos que correspondan a especies de cobalto en su forma oxidada o metálica, lo que indica que las nanopartículas depositadas se encuentran bien dispersas en el sustrato y, posiblemente, el tamaño de las mismas esté por debajo de 4 nm, que es el límite de detección para el dominio cristalino determinado por DRX.
VII.2.b. Caracterización de las especies de cobalto depositadas.

Las imágenes SEM de la Fig. VII.10 muestran la morfología esférica de los materiales MCM-41 (Fig. VII.10A) y AlMCM-41 (Fig. VII.10B), sintetizados con un diámetro medio cercano a 500 nm.

![Figura VII.10. Imágenes SEM obtenidas para los soportes (A) MCM-41 y (B) AlMCM-41.](image)

La temperatura y concentración de surfactante empleadas durante el proceso de síntesis son factores que afectan la forma de las partículas obtenidas. Las micelas esféricas se forman cuando la concentración del template se encuentra entre la concentración micelar crítica (cmc), con valores entre 0,1 y 2 % p/p relativa al agua a 25 °C [13]. En este caso, la concentración de C_{16}TMABr empleada fue de 1,92 % p/p, por lo cual se obtuvieron micelas esféricas durante el proceso de síntesis las cuales concluyeron a la formación de partículas esféricas mesoporosas.

Luego de la adición de Co mediante CO_{2} supercrítico, se mantiene la morfología de los soportes mesoporosos. Cabe destacar que las nanopartículas individuales depositadas no pueden ser detectadas directamente utilizando el modo de electrones secundarios. Sin embargo, cuando las imágenes se obtienen a través del modo de electrones retrodispersados (BSE), se observan zonas de elevada densidad electrónica, correspondientes a las partículas de cobalto.

Las Figs. VII.11A y VII.11B muestran las imágenes SEM obtenidas por retrodispersado para los catalizadores Co(5)AlMCM-41 y Co(4,3)MCM-41,
VII. Catalizadores CoOx/AlMCM-41.

respectivamente. En estas figuras se observan regiones más brillantes, lo que indican áreas de elevada densidad de electrones, debido a la presencia de cobalto. Estas zonas se encuentran bien dispersas y corresponden a nanopartículas de cobalto. Mediante EDX se obtuvieron concentraciones de cobalto próximas a 5,9 y 5,1 % p/p para los catalizadores Co(4,3)MCM-41 y Co(5)AlMCM-41, respectivamente.

Figura VII.11. Imágenes SEM obtenidas por retrodispersado (BSE) de las muestras (A) Co(5)AlMCM-41 y (B) Co(4,3)MCM-41.
Las Figs. VII.12 y VII.13 presentan los resultados obtenidos por el mapeo de las imágenes SEM de las muestras con bajo y alto contenido de Co sobre el soporte MCM-41, respectivamente.

Figura VII.12. Mapeo de las imágenes SEM de la muestra Co(0.6)MCM-41; (A) imagen electrónica, (B) SiKα y (C) CoKα.
Diferentes tonos en la escala de grises se asocian con diversas líneas de emisión. De esta forma, cada tono en la imagen se refiere a la emisión de energía única del elemento de interés.

Cuando el contenido de Co es de 0,6 % p/p, se observa una distribución homogénea de las diferentes especies de Co sobre las esferas mesoporosas. Sin embargo, cuando la carga de cobalto aumenta a 4,3 % p/p, se aprecian nanopartículas esféricas en la superficie externa del sustrato MCM-41.

Cuando la concentración de CoCp₂ empleado fue mayor que el límite de solubilidad calculado (0,336 g·L⁻¹), las partículas de cobalto obtenidas poseen un diámetro entre 10
VII. Catalizadores CoOx/AlMCM-41.

y 20 nm. Por lo tanto, durante la fase de descomposición, la deposición de las nanopartículas se produce en la superficie exterior y en el interior de la partícula esférica del soporte.

Por lo tanto, con la finalidad de determinar el tamaño y la naturaleza de las nanopartículas depositadas se utilizó la Microscopía Electrónica de Transmisión. Las micrografías TEM obtenidas para las muestras Co(4,3)MCM-41 y Co(5)AlMCM-41 (Fig. VII.14A y 14B) muestran la presencia de nanopartículas esféricas de cobalto en la superficie, cuyos diámetros varían entre 15 y 20 nm.

Cuando las imágenes se magnifican (Figs. VII.15 y VII.16), se observan las distancias interplanares de los planos cristalinos, las cuales pueden ser medidas y comparadas con los valores teóricos y característicos de las diferentes especies de cobalto (Tabla VII.4).

<table>
<thead>
<tr>
<th>Especies</th>
<th>Plano</th>
<th>(d^{(1)}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Co}_3\text{O}_4)</td>
<td>311</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>0,28</td>
</tr>
<tr>
<td>(\text{CoO})</td>
<td>200</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>0,15</td>
</tr>
<tr>
<td>(\text{Co}^\circ)</td>
<td>111</td>
<td>0,21</td>
</tr>
</tbody>
</table>

(1) Distancia interplanar teórica (nm), \(d = 2/\lambda \cdot \text{sen} (\theta)\).

El valor de la distancia interplanar de 0,20 nm puede corresponder al plano (2 0 0) perteneciente a la fase del óxido \(\text{CoO}\) o al plano cristalográfico (1 1 1) de la especie cobalto metálico. Sin embargo, no se considera la presencia de \(\text{Co}^\circ\) debido a que las muestras nunca fueron reducidas.

Asimismo, en la Fig. VII.16, se observan distancias interplanares medidas de 0,26, 0,24 y 0,26 nm, asignadas a los planos cristalográficos (4 4 0), (3 1 1) y (2 2 0) de la especie \(\text{Co}_3\text{O}_4\), respectivamente [14].
Por otro lado, la presencia de nanopartículas de CoO y Co$_3$O$_4$ pudo ser determinada mediante espectroscopía Láser Raman. La Fig. VII.17 presenta los espectros Raman obtenidos para las muestras Co(x)MCM-41 y Co(x)AlMCM-41. Los espectros de los materiales con bajo contenido de cobalto, Co(0,6)MCM-41 y Co(0,8)AlMCM-41, presentan varias bandas a 495, 602, 818 y 973 cm$^{-1}$ correspondientes al soporte mesoporoso. Además, aparece una pequeña señal a 690 cm$^{-1}$. En presencia de elevadas cargas de cobalto, (espectros b y d), aumenta la intensidad de la banda a 690 cm$^{-1}$ y aparece una nueva a 520 cm$^{-1}$. Ambas señales corresponden a los picos más intensos de la espinela Co$_3$O$_4$ [15].

Debido a la estabilidad de la molécula de CO$_2$, la oxidación de las especies de cobalto a Co$_3$O$_4$ puede ser atribuida a trazas de oxígeno presente en el solvente. En
todos los experimentos, el CO\textsubscript{2} comercial empleado posee un grado de pureza > 99,99 \%, siendo el contenido de O\textsubscript{2} de 10 mg·L-1. Este valor equivale a una cantidad cercana a 150 mg de O\textsubscript{2} en el reactor, suficiente para oxidar el Co2+ presente en el precursor cobaltoceno a Co\textsubscript{3}O\textsubscript{4} [16].

Estos resultados fueron complementados con el análisis químico de la superficie de los materiales. La técnica XPS se empleó para determinar el estado de oxidación del las nanopartículas depositadas en las muestras preparadas. Los espectros XPS de la región Co 2p de los materiales sintetizados se presentan en la Fig. VII.18. La energía de enlace del pico principal Co 2p\textsubscript{3/2} es cercana a 781,2 eV y se encuentra acompañado por un satélite shake-up 3d → 4s a 786,4 eV, característico de las especies Co2+. Estos valores de EE corresponden a especies altamente dispersas de óxidos de cobalto en fuerte interacción con la estructura. Esto produce un corrimiento de 1,1 eV hacia mayores energías de enlace del pico Co 2p\textsubscript{3/2} sobre Co\textsubscript{3}O\textsubscript{4} o CoO masivo (~ 780,2 eV) [17]. Además, los valores de energía de enlace para el nivel electrónico Co 2p\textsubscript{3/2} cercanos a 782,0 eV corresponden al Co2+ en posición de intercambio sobre muestras del tipo Co-zeolita, mientras que la EE de 780,0 eV corresponde al catión Co2+ del CoOx [15, 18].

Figura VII.18. Espectros XPS de la región Co 2p para las muestras (a) Co(0,6)MCM-41, (b) Co(0,8)AlMCM-41, (c) Co(4,3)MCM-41 y (d) Co(5)AlMCM-41.
VII.3. TRAMPA DE HIDROCARBUROS. CAPACIDAD DE ADSORCIÓN Y RETENCIÓN.

Se consideraron las muestras con elevado contenido de cobalto y se realizaron pruebas preliminares de adsorción de 8000 ppm de tolueno en He o 10000 ppm de butano en He a 100 °C, empleado el sistema de flujo descripto en el Capítulo III, sección III.4.a.1. Se observó una muy baja capacidad de adsorción de los sólidos estudiados.

En este sentido, Choudhary et al. [19] reportaron la desorción a temperatura programada de hidrocarburos aromáticos como tolueno, p-xilenos y naftaleno sobre materiales altamente silíceos como los sólidos mesoporosos MCM-41.

En consecuencia, serán necesarios estudios más profundos para poder determinar los motivos de la baja capacidad de adsorción obtenida con estos materiales.

VII.4. EVALUACIÓN CATALÍTICA

Las muestras Co(x)MCM-41 y Co(x)AlMCM-41 preparadas por medio de CO$_2$ supercrítico fueron evaluadas en la reacción de reducción de NOx, empleando tolueno o butano como agentes reductores, en atmósfera oxidante y en presencia de 2 % de vapor de agua. Sin embargo, no presentaron conversión a nitrógeno en ningún caso, y sólo se observó la combustión de los hidrocarburos produciendo CO$_2$ y H$_2$O. Este comportamiento se debe a que las únicas especies presentes son óxidos de cobalto (CoOx), las cuales representan centros activos para reacciones de oxidación [20-22].

En consecuencia, los sólidos sintetizados mediante CO$_2$ supercrítico fueron probados en la de oxidación total y preferencial de CO en presencia de H$_2$, reacción que resulta de interés, en particular para la purificación de corrientes de hidrógeno empleadas para alimentar celdas de combustibles.
VII.4.a. Oxidación Total de CO (COTox).

En la Fig. VII.19 y la Tabla VII.5 se presentan los resultados de conversión de CO a CO$_2$ para la oxidación total de CO (COTox) obtenidas para las muestras Co(5)AlMCM-41 y Co(4,3)MCM-41.

![Figura VII.19. Oxidación total de CO para los catalizadores (a) Co(5)AlMCM-41 y (b) Co(4,3)MCM-41. Condiciones: 1 % CO/He, 1 % O$_2$, W/F = 2,1 mg·cm$^{-3}$.

El 100 % de conversión de CO se alcanza a 280 °C para ambas muestras. Este comportamiento catalítico similar, es coherente debido a que las muestras poseen contenidos metálicos similares, lo que implica que el agregado de aluminio no afecta la conversión de CO. Además, se aprecia la activación de la reacción de oxidación a 200 °C (temperatura de encendido), ya que por debajo de esta temperatura la conversión de CO es inferior a 20 %.
La Tabla VII.5 presenta los resultados de conversión de CO y selectividad hacia el CO₂ cuando la reacción de oxidación de CO se realizó en presencia de 40 % de H₂. Para el catalizador Co(4,3)MCM-41 se alcanzó una conversión de CO de 59,4 % a 250 °C (Fig. VII.20-Xₐ), y una selectividad máxima a CO₂ de 100 % a 150 °C (Fig. VII.20-Sₐ).

(Figura VII.20. Oxidación preferencial de CO para (a) Co(5)AlMCM-41 y (b) Co(4,3)MCM-41. Condiciones: 1 % CO/He, 1 % O₂, 40 % H₂, W/F = 2,1 mg·cm⁻³.)
VII. Catalizadores CoOx/AlMCM-41.

Cuando el soporte catalítico es AlMCM-41, se alcanzó una conversión máxima de 61,7 % a 250 °C (Fig. VII.20-Xa), similar al soporte MCM-41. Sin embargo, la selectividad presenta un incremento a medida que aumenta la temperatura, alcanzándose un valor óptimo de 41,5 % a 200 °C (Fig. VII.20-Sa). El valor de selectividad atraviesa un valor óptimo a temperaturas relativamente bajas, con una posterior disminución a mayores valores de temperatura. Esto se debe a que se activa la reacción entre el H₂ y O₂ para producir agua a medida que la temperatura crece.

VII.5. CONCLUSIONES

El CO₂ supercrítico representa un medio óptimo para sintetizar nanopartículas de óxido de cobalto sobre sustratos mesoporosos MCM-41 y AlMCM-41.

A través de una serie de experimentos, dónde se modificaron variables de operación como; tiempo, presión, temperatura y concentración del precursor, se determinaron los parámetros óptimos para la deposición de nanopartículas de cobalto. A partir de ello, se eligieron como condiciones de síntesis: 70 °C, 11,0 MPa y 3 horas para la etapa de disolución del precursor CoCp₂ en CO₂ supercrítico, mientras que, la fase de descomposición y deposición se realizó a 200 °C y 15,0 MPa durante 3 horas. Modificando la concentración del cobaltoceno, se alcanzaron concentraciones de 0,6 y 4,3 % p/p de Co sobre el sustrato MCM-41 y 0,8 y 5 % p/p de Co sobre el soporte AlMCM-41.

Mediante SAXS se observó que la incorporación de cobalto no modifica significativamente el ordenamiento hexagonal mesoporoso, como consecuencia que el CO₂ en estado supercrítico posee una difusividad elevada y alcanza buen contacto con los mesoporos, sin producir pérdida de ordenamiento o colapso de los mismos. Por medio de SEM y TEM, se identificaron nanopartículas de CoOx ubicadas en el interior de los poros cuando el contenido de cobalto fue bajo. Sin embargo, cuando la cantidad de Co fue más alta, se observaron además nanopartículas en la superficie externa de ambos soportes. Asimismo, por TEM, XPS y Raman se detectó que las especies presentes corresponden a CoOx o Co₃O₄.

Estos sólidos no resultaron buenos adsorbentes de tolueno o butano a 100 °C, ni activos en la reducción de catalítica selectiva de NOx con hidrocarburos, en
atmosfera oxidante. Sin embargo, se observó que los catalizadores con mayor concentración de cobalto son activos para la oxidación total de CO y también para su oxidación preferencial en corriente rica de H₂, las cuales son reacciones de gran interés tanto en el campo de la catálisis ambiental como para la purificación del hidrógeno para ser usado en pilas de combustible.
VII.6. REFERENCIAS

VII. Catalizadores CoOx/AlMCM-41.

Capítulo VIII

Conclusiones y Actividades Futuras

Conclusiones Generales

Actividades Futuras
En esta Tesis se realizó un estudio exhaustivo sobre nuevas formulaciones capaces de minimizar la emisión de contaminantes gaseosos provenientes de procesos de combustión, principalmente hidrocarburos sin quedar y óxidos de nitrógeno.

Para ello, mediante intercambio iónico se prepararon catalizadores microporosos del tipo metal-zeolita (metal: Ag o Co, zeolita: NaMOR). Además, se sintetizaron y caracterizaron soportes mesoporosos de la familia MCM-41 y AlMCM-41. Se utilizaron los métodos de impregnación húmeda incipiente y CO$_2$ supercrítico para incorporar Co o Ag a los sustratos mesoporosos.

Los materiales se evaluaron como trampas de hidrocarburos a baja temperatura en procesos de adsorción y desorción. En este sentido, se empleó butano o tolueno como HCs lineales o aromáticos representativos de la corriente efluente contaminante.

Mediante FTIR se estudió la interacción entre las especies presentes en los sólidos y los hidrocarburos adsorbidos. Se analizó el efecto del agregado metálico sobre la capacidad de adsorción, retención y estabilidad térmica del HC adsorbido en flujo de inerte. Además, se estudió la reactividad del HC adsorbido en presencia de NO en He a distintas temperaturas.

Se evaluaron catalíticamente en la reducción de NOx empleando tolueno o butano como agentes reductores, en atmósfera oxidante y en presencia de vapor de agua.

Por último, los catalizadores mesoporosos modificados con Co fueron probados en la reacción de oxidación total y preferencial de CO en atmósfera reductora.

VIII.1. CONCLUSIONES GENERALES

De los resultados obtenidos en la presente Tesis, se deducen las siguientes conclusiones.

VIII.1.a. Catalizadores de Ag o Co en NaMordenita.

Mediante intercambio iónico se prepararon los catalizadores de Ag(x)M con 5, 10 y 15 % p/p de Ag y CoM con 2,9 % p/p de Co. Se emplearon diversas técnicas para caracterizar las especies presentes en estos sólidos. Se estudió el comportamiento catalítico en la RCS de NOx, empleando butano o tolueno como agentes reductores, en
VIII. Conclusiones y Actividades Futuras.

presencia de oxígeno en exceso y con agregado de 2 % de agua en la alimentación. Se analizó la capacidad de adsorción y retención de ambos hidrocarburos y se estudió mediante FTIR la interacción entre el butano o tolueno adsorbido con las especies presentes en los catalizadores.

VIII.1.a.1. Caracterización fisicoquímica.

La incorporación de 2,9 % p/p de Co, no alteró significativamente las propiedades texturales originales de la NaMOR. La muestra CoM calcinada mostró que un 20 % del cobalto total forma partículas de Co_3O_4 altamente dispersas, mientras que, el resto son iones de Co^{2+} intercambiados en los sitios α, β y γ de la estructura de la NaMordenita.

El agregado de 5, 10 y 15 % p/p de Ag a NaMOR, produjo una disminución de la superficie específica, el volumen de poro y la cristalinidad. La Ag(x)M calcinada presentó partículas de Ag_2O e iones de Ag^+ en los sitios α, β y γ. A medida que aumentó el contenido de plata, se incrementó la proporción de óxido, mientras que, la muestra Ag(10)M mostró la mayor fracción de iones Ag^+ en sitios α.

VIII.1.a.2. Actividad catalítica en la RCS de NOx.

El catalizador CoM fue el más activo y selectivo, alcanzando conversiones máximas a nitrógeno de 50 % a 400 ºC con butano y 68 % a 500 ºC usando tolueno. Con la adición de vapor de agua en la alimentación, se observó un incremento del 10 % en la conversión.

Todos los sólidos Ag(x)M resultaron menos activos que las muestras CoM, con ambos reductores. La máxima conversión a nitrógeno en condiciones secas, se obtuvo con 10 % p/p de Ag a 500 ºC, mientras que, en presencia de agua, la conversión aumentó con el contenido de plata.

Durante la RCS en condiciones secas se generaron depósitos carbonosos sobre los centros activos, los cuales disminuyeron la actividad del catalizador. La presencia de 2 % de agua en la alimentación, probablemente debido a un efecto similar al observado en CoNaMOR, tuvo un efecto positivo sobre la actividad reductora, al mantener la
superficie limpia de carbón. Este efecto compensa la pérdida de actividad debida a la inhibición de los centros activos por la adsorción de agua.

VIII.1.a.3. Capacidad de adsorción y retención de hidrocarburos.

La presencia de diferentes concentraciones de plata reveló dos efectos contrapuestos sobre la capacidad de adsorción de hidrocarburos. Por un lado, el agregado de plata provoca el bloqueo de los poros de la mordenita, debido posiblemente a la incorporación de un catión de compensación más voluminoso que el Na⁺ y a la formación de clústeres de Ag₂O, lo que conduce a una disminución del área superficial y del volumen de poro. Por otro lado, un efecto químico relativo al carácter ácido-base del material, que vincula la interacción entre las especies de plata presentes y el hidrocarburo adsorbido. La fuerza de la interacción depende en gran medida de la naturaleza del hidrocarburo, ya sea aromático o alifático. La cantidad de tolueno adsorbida a 100 °C fue mucho mayor que la cantidad de butano. El tolueno interacciona con el catión a través de la nube de electrones π y además, por medio de los grupos metilo (C=H) con los oxígenos de la red próximos al catión. En cambio, el butano sólo lo hace mediante los grupos C=H, por lo que se desorbe a menos de 250 °C. El tolueno adsorbido por encima de 300 °C reaccionó con las especies Ag₂O, Ag⁺ y H⁺, produciendo H₂, CO₂ y H₂O. Esta tendencia fue corroborada mediante FTIR, ya que a elevadas temperaturas aparecen las señales correspondientes a los grupos carboxílicos debido a la oxidación parcial del tolueno.

Al poner en contacto el tolueno adsorbido a 100 °C con una corriente de NO en He se observó la presencia de especies isocianatos, cianuros e isocianuros adsorbidas sobre iones Ag⁺, los que representan compuestos intermediarios típicos de la reducción de NOx con hidrocarburos.

Sin embargo, la incorporación de cobalto disminuyó la capacidad de adsorción y retención de butano o tolueno alcanzada con la NaMordenita original.

De este modo, con los catalizadores Ag(x)M fue posible combinar en un mismo sistema zeolítico la capacidad de adsorción y retención de un hidrocarburo con la reducción catalítica de los NOx.
VIII.1.b. Catalizadores de Ag o Co en MCM-41 y AlMCM-41.

Se sintetizaron mediante el método de sol-gel los soportes mesoporosos MCM-41 y AlMCM-41. Por medio de impregnación a humedad incipiente se prepararon muestras con 2 y 15 % p/p de Ag en MCM-41 y con 2 % p/p de Ag en AlMCM-41. Además, mediante el método de deposición reactiva con CO\textsubscript{2} supercrítico se depositó Co y Ag en ambos soportes. Las especies presentes en los materiales preparados se identificaron a través de diferentes técnicas de caracterización. Se evaluó el comportamiento catalítico en la RCS de NOx y se analizó la capacidad de adsorción y retención de tolueno o butano. Se estudió mediante FTIR la interacción entre el HC adsorbido y las especies presentes en los catalizadores. Finalmente, empleando los catalizadores preparados a partir de cobalto, se realizaron experiencias exploratorias en la oxidación preferencial de CO en corriente rica en H\textsubscript{2}.

VIII.1.b.1. Caracterización fisicoquímica.

Los soportes se sintetizaron con morfología esférica y ordenamiento hexagonal de los poros. El sustrato MCM-41 presentó una superficie específica cercana a 1300 m2 g-1, mientras que la incorporación de aluminio a la estructura provocó una disminución de la misma, con leves modificaciones en el ordenamiento mesoporoso.

La incorporación de plata mediante impregnación húmeda incipiente, disminuyó el volumen de poro y produjo una pérdida del ordenamiento hexagonal. Se identificaron nanopartículas de Ag metálica y Ag\textsubscript{2}O en coexistencia con iones Ag+ vinculados con los grupos silanoles presentes en la superficie de los soportes. Las muestras de plata preparadas por medio de la deposición con CO\textsubscript{2} supercrítico, mostraron grandes agregados de cristales cúbicos de plata. El agregado de un agente dispersante polimérico durante la síntesis disminuyó el tamaño de estos clústeres.

En cambio, la incorporación de cobalto a través de CO\textsubscript{2} supercrítico permitió depositar en forma homogénea nanopartículas de CoO\textsubscript{x} y Co\textsubscript{3}O\textsubscript{4} altamente dispersas sobre los soportes mesoporosos. El agregado de cobalto disminuyó levemente el área específica y el volumen de poro y no modifica significativamente el ordenamiento hexagonal original de las MCM-41 y AlMCM-41. Cuando el contenido de cobalto es menor al 1 % p/p, las nanopartículas (≤ 5 nm) se distribuyen uniformemente en el
VIII. Conclusiones y Actividades Futuras.

interior de los poros, mientras que para contenidos próximos al 5 % p/p, partículas esféricas más grandes (15-20 nm) se ubican en la superficie externa de los soportes.

VIII.1.b.2. Actividad catalítica.

Ninguno de los catalizadores estudiados de Ag o Co en MCM-41 o AlMCM-41 resultaron activos en la RCS de NOx con tolueno o butano.

Sin embargo, pruebas exploratorias mostraron que las nanopartículas de óxidos de cobalto dispersas en ambos soportes mesoporosos son especies activas para la oxidación preferencial de CO en corrientes ricas en hidrógeno.

VIII.1.b.3. Capacidad de adsorción y retención de hidrocarburos.

La capacidad de adsorción de tolueno a 100 °C mostró el siguiente orden: Ag(2)AlMCM-41 > AlMCM-41 > MCM-41 > Ag(15)MCM-41. El agregado de 2 % p/p de Ag al soporte AlMCM-41 promovió la adsorción incrementando la cantidad del HC adsorbido en un 70 %.

Mediante FTIR, se observó que el tolueno interacciona preferencialmente con los grupos silanoles de ambos soportes a través del grupo metilo. Las bandas características fueron detectadas hasta 300 °C en flujo de inerte.

Únicamente la muestra Ag(2)AlMCM-41 retuvo tolueno hasta 550 °C. La presencia de iones Ag⁺ favoreció la retención del tolueno por encima de los 400 °C.

Los materiales mesoporosos no resultaron adecuados para la adsorción y retención de un hidrocarburo lineal como el butano.

VIII.2. Actividades Futuras

Los resultados obtenidos durante el desarrollo de esta Tesis son promisorios y sugieren otros temas de interés que pueden ser estudiados:

- Evaluar la capacidad de adsorción y retención de los materiales AgMordenita empleando mezclas de hidrocarburos; por ejemplo, tolueno, butano y metano, debido a
VIII. Conclusiones y Actividades Futuras.

que los sistemas con Ag resultaron ser más promisорios en la RCS de NOx y en los procesos de adsorción y desorción de hidrocarburos. Analizar el efecto que produce la presencia de otros compuestos tales como, CO₂ y H₂O.

- Estudiar la estabilidad y desactivación de los sistemas catalíticos Ag(x)M en la RCS de NOx con tolueno o butano y en presencia de 2 y 10 % de agua en la corriente de alimentación.

- Modificar las condiciones de síntesis para los catalizadores mesoporosos con el objeto de mejorar la capacidad de adsorción y la actividad catalítica. Por ejemplo, funcionalizar la estructura.

- Optimizar las variables de operación supercríticas; temperatura, presión, tiempo y concentración del precursor, para la deposición de nanopartículas de plata en los soportes mesoporosos.

- Caracterizar las muestras Ag(x)M utilizadas en la RCS de NOx y en el proceso de adsorción y desorción de hidrocarburos, a través de diferentes técnicas fisicoquímicas, con la finalidad de determinar las especies responsables.

- Estudiar el entorno de las especies metálicas Co y Ag, como así también del Al en el soporte AlMCM-41 mediante técnicas como Espectroscopía de Resonancia Magnética Nuclear (NMR) y de luz sincrotrón como la Espectroscopía de Absorción de Rayos X (EXAFS y XANES), con el objetivo de profundizar la caracterización fisicoquímica y comportamiento de estos sólidos.