Universidad Nacional del Litoral
Facultad de Ciencias Agrarias

RESPUESTA EN PRODUCCIÓN Y CALIDAD DE DOS
GENOTIPOS COMERCIALES DE BATATA (*IPOMOEA BATATAS* (L.) LAM) FRENTE A INFECCIÓN CON
“ENCRESPAMIENTO AMARILLO”

Ing. Agr. Erik Germán Buxmann

Directora de Tesis: Dra. Liliana Di Feo – IPAVE, CIAP (INTA)
Co-Directora de Tesis: Dra. Jonicélia Araujo Vieira – FCA (UNL)

-2019-
Dedico

A nuestro grandioso DIOS

A mi fervoroso abuelo
Agradecimientos

Agradezco infinitamente a nuestro brillante Dios por iluminar siempre mi vida. A mi abuelo Alberto, quien me acompaña desde la infancia en esta maravillosa pasión.

Al Instituto de Patología Vegetal (IPAVE), perteneciente al Centro de Investigación Agropecuaria (CIAP) del INTA, por permitirme realizar los ensayos experimentales en dicho establecimiento.

A la Universidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, por el acuerdo establecido junto con el CIAP para la ejecución de esta tesis. Agradezco inmensamente y con mucho orgullo que pertenezco a esta Facultad.

A la FCA-UNL y a todo su personal docente por la trasferencia de conocimientos y hacer que me apasione aún más por esta profesión.

Al Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC - CONICET - UNC), por poner a disposición el uso de sus equipos y permitir concretar parte de esta tesis.

A mi Directora, Dra. Liliana Di Feo, que me ha conducido hasta la finalización de este trabajo y me ha sostenido en todos mis proyectos profesionales. Te aprecio muchísimo y estoy muy agradecido a vos por tu apoyo incondicional.

A mi colega, Fernando Pedri por toda colaboración en este trabajo, por mi formación profesional y por su estimada amistad.

A mis compañeros de un gran equipo de trabajo (Dra. Eliana López Colomba, Ing. Agr. Antonella Vilanova Perez, Ramón Suasnabar, Dr. Andrés Luque, Biól. Julia Martino), por su valiosísima colaboración y por su amistad en estos años y que, además, participaron en parte de los ensayos y evaluaciones de esta tesis.

A mi familia por todo el apoyo, acompañamiento, amor y sostén que me dan fuerzas para seguir adelante. Los amo y agradezco mucho por darme la posibilidad una vez más de hacer realidad mis sueños.
CONTENIDO

Dedicatoria... i
Agradecimientos... ii
Índice.. iii
Índice de figura... v
Índice de tablas.. vi
Abreviaturas.. vii
Artículos en resúmenes en las cuáles fueron presentados, hasta la fecha, los resultados obtenidos en este trabajo.. x
Resumen.. xi
Abstract.. xiii

INTRODUCCIÓN GENERAL

1. Importancia de la producción Ipomoea batatas (L.) Lam. en el mundo... 1

2. Descripción de la especie y características culturales.. 3

3. Principales usos... 5

4. Hipótesis... 7

5. Objetivos... 7

5.1. Objetivo General... 7

5.2. Objetivos Específicos... 7

5.3. Estructura del Trabajo.. 8

CAPÍTULO 1: Influencia del “encrespamiento amarillo” en componentes del rendimiento y contenido de clorofila de dos genotipos comerciales de batata, bajo condiciones experimentales

Resumen.. 10
I. Introducción .. 11
II. Materiales y Métodos.. 14
III. Resultados y Discusión.. 22
IV. Conclusiones ... 34

CAPÍTULO 2: Efecto del “encrespamiento amarillo” en las características del almidón de raíces de batata

Resumen ... 35
I. Introducción .. 36
II. Materiales y Métodos.. 38
III. Resultados y Discusión.. 45
IV. Conclusiones ... 60

REFERENCIAS BIBLIOGRÁFICAS .. 61

ANEXO .. 78
ÍNDICE DE FIGURAS

Figura 1.1.- Producción de batatas por países ... 2

Figura 1.2.- Fases del crecimiento de las guías y batatas.. 4

Figura 2.1.- Regeneración de los cultivares de sanidad controlada a partir de cultivo in vitro de meristemas.. 15

Figura 2.2.- Detección molecular de sweepovirus de batata. Electroforesis en gel de agarosa de los fragmentos de ácido nucleico (900kb) de sweepovirus, amplificados por PCR... 23

Figura 2.3.- Partículas filamentosas (potyvirus) decoradas con SPFMVas (provenientes de savia de I. Setosa sanas injertadas con Arapey INIA).. 24

Figura 2.4.- Injertos de púa lateral de una planta correspondiente al cv. Arapey.............. 25

Figura 2.5.- Multiplicación de plantas saneadas y enfermas de EA cv Beauregard, en jaulas con malla antiáfidos, mantenidas en invernadero. Presencia de síntomas foliares, bandeado nerval y aclaramiento de nervadura, punteado clorótico, mosaico con diseños cloróticos.. 26

Figura 2.6.- Raíces reservantes provenientes de plantas sanas e infectadas con EA correspondientes a los cv Beauregard y Arapey INIA... 28

Figura 2.7.- Porcentajes de daño (valores medios porcentuales de la variable en plantas infectadas con EA en relación a la media de las sanas) en la variedad Arapey INIA......... 30

Figura 2.8.- Porcentajes de daño (valores medios porcentuales de la variable en plantas infectadas con EA en relación a la media de las sanas) en la variedad Beauregard........... 31

Figura 2.9.- Análisis de sendero (Path analysis) entre PRC y su relación con los caracteres componentes NG, AF, NRC, PTR, NTR y PFA para la condición sanitaria sana y enferma del cv. Arapey INIA y Beauregard... 32,33

Figura 3.1.- Proceso de extracción de almidón de batata de los cv Arapey INIA y Beauregard de plantas sanas y enfermas... 39

Figura 3.2.- Modelo general del perfil de viscosidad de almidón y parámetros de viscosidad... 42

Figura 3.3.- Modelo general de perfil de textura. Análisis de Perfil de Textura (TPA)...... 43

Figura 3.4.- Modelo de termograma de una corrida de DSC (calorimetría diferencial de barrido) y sus principales indicadores... 44

Figura 3.5.- Rendimiento porcentual del contenido de almidón de plantas sanas y enfermas de los cultivares Arapey INIA y Beauregard... 46

Figura 3.6.- Distribución de frecuencia relativa (%) del tamaño de partícula (µm) de las muestras de almidón de batata en suspensión para dos condiciones sanitarias (sana y enferma) y dos variedades (Arapey INIA y Beauregard)... 50
Figura 3.7.- Imágenes obtenidas a partir de microscopía electrónica de barrido (SEM). Variedad Beauregard infectada con EA y sana; variedad Arapey INIA infectada con EA y sana..........................52

Figura 3.8.- Firmeza de los geles elaborados a partir de almidones de plantas sanas y enfermas de los cultivares Arapey INIA y Beauregard...56

ÍNDICE DE TABLAS

Tabla 2.1.- Promedios de los datos meteorológicos registrados en el área de influencia del ensayo durante el experimento..........................19

Tabla 2.2.- Porcentajes de regeneración y contaminación de meristemas de Arapey INIA y Beauregard, a los 45 días desde la siembra...........................22

Tabla 2.3.- Estadística descriptiva del contenido de clorofila en Arapey INIA y Beauregard para las condiciones sanitarias sana y enferma..........................27

Tabla 2.4.- Estadística descriptiva de caracteres componentes del rendimiento en el cultivar Arapey INIA y Beauregard para las condiciones sanitarias sana y enferma........................30

Tabla 2.5.- Composición química de las raíces reservantes de batata..........................36

Tabla 2.6.- Valores de las propiedades de hidratación de los almidones de batata. Capacidad de retención de agua (g de agua/g muestra) y fracción soluble (%)..................................48

Tabla 3.1.- Valores de tamaño de partícula de almidones (μm) de diferentes diámetros (D) 10, 50 y 90, en el cv Arapey INIA y Beauregard para condición sanitaria sana y enferma. 51

Tabla 3.2.- Valores de las propiedades de pasting de almidones de Beauregard y Arapey INIA en condición sanitaria sana y enferma. PV, pico de viscosidad; VM, viscosidad media; BD, breakdown (PV - VM); VF, viscosidad final; SB, setback (VF - VM); PTime, tiempo de pico; PTemp, temperatura de pico...54

Tabla 3.3.- Parámetros térmicos de almidón. To: temperatura de inicio de gelatinización; Tp: temperatura de pico gelatinización; Tf: temperatura final de gelatinización; ΔH: entalpía de gelatinización..59
ABREVIATURAS

AACC: American Association of Cereal Chemistry
ADN: ácido desoxirribonucleico
AF: área foliar
ANOVA: análisis de la varianza
ARN: ácido ribonucleico
Buffer: solución reguladora
CIAP: Centro de Investigación Agropecuaria
cm: centímetro
cP: centipoise
CRA: capacidad de retención de agua
cv: cultivar
D: diámetro
DAS: double antibody sandwich
DSC: Calorimetría Diferencial de Barrido
EA: Encrespamiento Amarillo
EC: Enanismo Clorótico
ELISA: enzyme-linked immunosorbent assay
F: fecha
FS: fracción soluble
g: gramos
h: horas
h: altura
H₂O: agua
ha: hectárea
INTA: Instituto Nacional de Tecnología Agropecuaria
IPAVE: Instituto de Patología Vegetal
J g⁻¹: joule por gramo
l: litro
m: metros
MET: microscopio electrónico de transmisión
M: molar
mL: mililitros
mg L$^{-1}$: miligramo por litro
min: minutos
mol L$^{-1}$: mol por litro
μm: micrómetro
μl: microlitros
μM: micromolar
μmol: micromoles
N°: número
N: Newtons
NCM: nitrocellulose membrane
NEA: región nordeste argentino
NG: número de guías principales
NOA región noroeste argentino
NRC: número de raíces comerciales
NTR: número total de raíces
pb: pares de bases nucleótidos
PCR: reacción en cadena de la polimerasa
PFA: peso fresco de parte aérea
pH: potencial hídrico
ppm: parte por millón
p-valor: valor de probabilidad
PRC: peso de raíces comerciales
PTR: peso total de raíces
PV: pico de viscosidad
rpm: revoluciones por minuto
RVA: Analizador de Viscosidad
s: segundos
SEM: Microscopía Electónica de Barrido
SPCSV-WA: Sweet potato chlorotic stunt virus raza WA
SPFMV: Sweet potato feathery mottle virus
SPLCGV: Sweet potato leaf curl Georgia virus
SPLCV: Sweet potato leaf curl virus
SPSMV-1: Sweet potato symptomless virus 1
SPMSV: Sweet potato mild speckling virus
SPVC: Sweet potato virus C
SPVMV: Sweet potato vein mosaic virus
SPVG: Sweet potato virus G

\(t \): toneladas

\(T_f \): temperatura de finalización de gelatinización

\(t \ \text{ha}^{-1} \ \text{año}^{-1} \): toneladas por hectárea por año

\(T_0 \): temperatura de inicio de gelatinización

\(T_p \): temperatura de pico de gelatinización

TPA: Análisis de Perfil de Textura

Tris: tris (hidroximetil) aminometano

UCC: Universidad Católica de Córdoba

UNL: Universidad Nacional del Litoral

\(v \): volumen

\(\text{VF} \): viscosidad final

\(\text{VM} \): viscosidad media

\(\Delta H \): entalpía de gelatinización
Los resultados obtenidos en el presente trabajo de Tesis han sido difundidos parcialmente a través de los siguientes congresos con publicación de resúmenes:

RESUMEN

La batata, *Ipomoea batatas* (L.) Lam., es un cultivo de gran importancia en la alimentación humana, debido a la composición nutricional de sus raíces. Además, todos sus órganos son aprovechables como alimento del ganado. Posee un gran potencial industrial y es materia prima para la producción de biocombustibles. Su demanda es creciente en el mercado internacional, por sus características de alimento saludable. Es una especie amistosa con el ambiente, rústica y con bajos requerimientos de insumos. Su propagación agámica favorece la dispersión y acumulación de las infecciones virales, que constituyen una de las principales limitantes en la producción. Esto es notable, ya que los virus producen pérdidas en la cantidad y calidad de raíces reservantes en todo el mundo y, en particular, en Argentina.

En este contexto, el presente trabajo tuvo como objetivo evaluar componentes de rendimiento y contenido y calidad de almidón en raíces reservantes de dos clones de batata sanos e infectados con EA.

En una primera etapa, se analizó la influencia del EA en los componentes del rendimiento de dos variedades de batata: Arapey INIA y Beauregard. Se registraron diferencias significativas entre plantas sanas y enfermas, en el contenido relativo de clorofílas (lecturas obtenidas con SPAD). También hubo mermas en caracteres de rendimiento, donde peso y número de raíces comerciales, en ambos genotipos, fueron los más afectados cuando las plantas estuvieron infectadas con EA (daños de alrededor del 90%).

En la siguiente etapa del estudio, se evaluaron los efectos de la virosis en el rendimiento de almidón, en el tamaño, distribución y forma de sus partículas, y en sus propiedades funcionales (capacidad de retención de agua, fracción soluble, propiedades de pasting (RVA), gelatinización (DSC), y textura del gel: TPA) Se demostró que hubo un mayor rendimiento de almidón en el cv Arapey INIA. En cuanto a las propiedades de los almidones, no se observaron diferencias estadísticas en la capacidad de retención de agua y en la fracción de sólidos solubles entre variedades ni entre condiciones sanitarias. El tamaño promedio de los gránulos fue significativamente diferente entre ambos genotipos y entre plantas sanas y enfermas. En las imágenes de microscopía electrónica (SEM), los almidones mostraron forma esférica y poligonal. Por otra parte, a partir de los
perfiles obtenidos por RVA, se observaron diferencias significativas entre ambas variedades en su condición sana para las variables breakdown, tiempo y temperatura de pico. A partir de los termogramas de DSC, se detectaron diferencias significativas entre variedades de la misma condición sanitaria para la temperatura de gelatinización y entalpía.

Palabras clave: batata, encrespamiento amarillo, rendimiento, almidón, propiedades funcionales.
ABSTRACT

Sweet potato *Ipomoea batatas* (L.) Lam. is one of the ten vegetables species most important for food. It is the fifth global food crop and virosis is the main limitation of its production. In Argentina, the viral complex “yellow curl”, which involves seven agents, causes great losses in the different genotypes planted in all the crop area. The quality of the planting material is mainly due to the variety and the sanitation. The global trend is the use of starch-rich cultivars, with healthy

Sweet potato, *Ipomoea batatas* (L.) Lam. is a crop of great importance in human food, due to the nutritional composition of its roots. In addition, all its organs are usable as livestock feed. It has great industrial potential and is a raw material for the production of biofuels. Its demand is growing in the international market, due to its characteristics of healthy food. It is a rustic, environment-friendly species, with low input requirements. Its agamic propagation favors the dispersion and accumulation of viral infections, which constitute one of the main limitations in production. This is remarkable, since viruses produce losses in the quantity and quality of reserve roots worldwide and, in particular, in Argentina. In this context, the present work aimed on evaluate performance components and content and quality of starch in reserve roots of two sweet potato clones healthy and infected with Yellow Curl (YC). In a first stage, the influence of YC on the performance components of two sweet potato varieties (Arapey INIA and Beauregard) was analyzed. Significant differences were observed between healthy and infected plants, in the relative content of chlorophylls (results obtained with SPAD). There were also losses in performance characters, where weight and number of commercial roots, in both genotypes, were the most affected when the plants were infected with YC (damage of about 90%). In the next stage, the effect of the virosis on in the starch performance, particles size, distribution and shape and on its functional properties (water retention capacity, soluble fraction, pasting properties, gelatinization and gel texture) were evaluated. A great starch performance in Arapey INIA was observed. Regarding to the starch properties, no significant differences between varieties and sanity conditions were observed in the water retention capacity and soluble fraction. The average granule size was statistical different between genotype and sanity condition. In the sweep electron microscopy (SEM), starches presented a spherical and polygonal shape. From the pasting
profiles and thermograms, significant differences among all samples in breakdown and peak time and temperature (RVA) and gelatinization temperature and enthalpy (DSC) were observed.

Key words: sweet potato, yellow curl, performance, starch, functional properties.
1. Importancia de la producción de *Ipomoea batatas* (L.) Lam. en el mundo

La batata, *Ipomoea batatas* (L.) Lam., pertenece al orden Solanales, familia botánica de las convolvuláceas; es una especie alohexaploide (2n=6x=90), alógama (polinización cruzada, de tipo entomófila) debido a su alta incompatibilidad. Pese a ser una hierba perenne, en condiciones de clima templado, se cultiva como anual. El hábito de crecimiento puede ser erecto, semi-erecto, o extendido, aunque es predominantemente postrado (Huaman, 1992). Su origen se ubica en el noroeste de Sudamérica: Guatemala, Colombia, Ecuador y norte de Perú (Austin, 1988; Martí, 2013a).

Se ubica entre las 10 especies vegetales más importantes destinadas a la alimentación, con una producción cercana a 104.453.966 t/año en 8.029.864 ha plantadas en el mundo (FAOSTAT, 2016). Las áreas más extensas de producción están en China y alrededor de los Grandes Lagos del Este de África, pero el cultivo es importante también en otros países (Bourke y Vlassak, 2004). Sin embargo, en general, en países en desarrollo, los rendimientos son bajos a pesar de ser la quinta especie cultivada luego del arroz, trigo, maíz y mandioca. En América Latina se producen sólo 3,82 millones de toneladas (FAOSTAT, 2016). En la actualidad, recibe atención especial como cultivo que “salva vidas” en países en desarrollo (Fuglie, 2007). Raíces y follaje se emplean en alimentación humana y animal; posee un mercado potencial para la exportación en fresco (Canadá, Inglaterra, Países Bajos, Suecia y otros) de aproximadamente 200 mil t/año, que excede a nuestra producción nacional y del que Argentina aún no participa (Martí, 2013b).
Figura 1.1.- Producción (t) de batatas por países 2017.

Pese a sus ventajas como alimento y, salvo en China y Nueva Zelandia, es un cultivo en retroceso. Este fenómeno se vio reflejado en Argentina, ya que según el INDEC (2002), la superficie con batata fue en franco retroceso, y llegó a ser de un 40% en 2002 respecto a 1998. La producción es de unas 120.000 t en 10.000 ha plantadas, siendo de 3 kg el consumo por habitante y por año (SAGPyA, 2008). La región pampeana (Buenos Aires, Córdoba y Santa Fe) y el NEA son las de mayor superficie plantada (43 y 40%, respectivamente), el NOA posee el 15% y Cuyo, el 2% restante (SAGPyA, 2008). En la primera, se plantan especialmente los cultivares Arapey INIA y Morada INTA; en el NEA se emplean variedades con pulpa anaranjada como Gem, salvo en Corrientes, donde se posee preferencia por Okinawa 100, de pulpa blanca; en el NOA, diferentes variedades en cuanto a color de piel y pulpa; y en Mendoza: Arapey INIA (Gacetilla de Frutas y Hortalizas del Convenio INTA – CMCBA N° 21, marzo 2013).
2. Descripción de la especie y características culturales

Es considerada como una especie fácilmente cultivable y manejable, ya que se adapta a condiciones ambientales poco favorables con mínima cantidad de insumos agrícolas y, aun así, es factible obtener una producción considerable de raíces reservantes, si se maneja adecuadamente. Se debe en gran parte a que lo que se cosecha es una raíz engrosada, que continúa creciendo si se le dan las condiciones apropiadas. Esto hace que no dependa de un punto de madurez óptimo para su cosecha. Por ser subtropical, es un cultivo muy sensible a las bajas temperaturas (menores a 10 ºC detienen su crecimiento) y para alcanzar altos rendimientos necesita, en promedio, cuatro meses libres de heladas y temperaturas medias de 24 ºC durante su ciclo, con amplitud térmica que oscile de 15 a 33 ºC durante la noche y el día respectivamente. La temperatura nocturna parece ser un factor importante para el crecimiento de las batatas, probablemente porque la translocación es máxima durante la noche (Martí et al., 2014). La temperatura del suelo también es un factor importante para el crecimiento y desarrollo; entre 20 y 30 ºC, promueven la formación de raíces reservantes. Si bien es tolerante a la sequía, presenta dos períodos críticos: el de implantación donde la humedad es determinante porque en ese período se define la iniciación de los primordios de raíces reservantes y el número de raíces reservantes (formación de los primordios radicales). El otro período crítico es el inicio de la tuberización (llenado de raíces reservantes), que determina el tamaño de las mismas. Se logran óptimos rendimientos con 600 mm durante la estación de crecimiento. Por otra parte, para su óptimo rendimiento son importantes tanto las propiedades físicas y químicas del suelo, ya que los de textura liviana son más favorables en cuanto a apariencia y forma de las batatas que los suelos pesados. Su propagación comercial se realiza vegetativamente, que asegura la pureza varietal y, para la misma se emplean trozos de guías o bien plantines. Si bien la batata produce semilla sexual, proveniente de la polinización cruzada, por autoincompatibilidad, llevada a cabo por insectos o lograda artificialmente, la misma es usada únicamente con fines de mejoramiento genético, para ampliar la base germoplásmica y obtener nuevas variedades o clones por selección.

La batata tiene tres fases de crecimiento, con una duración muy variable dependiendo del ciclo del cultivar como también de las condiciones ambientales según Cusumano y Zamudio, (2013): fase 1 o inicial: crecimiento lento del follaje y un rápido desarrollo de las raíces adventicias que aparecen en los nudos de la parte subterránea del...
tallo. En esta fase, que dura aproximadamente 66 días desde la plantación, la planta usa casi todos los carbohidratos producidos para el crecimiento de las guías y raíces absorbentes. La fase 2 o de iniciación de la formación de raíces reservantes, cuya duración es cercana a los 47 días, se caracteriza por un crecimiento rápido del follaje y un aumento del área foliar, junto con el inicio del desarrollo de las raíces reservantes. A medida que el desarrollo del follaje comienza a declinar, la tasa de crecimiento de las raíces se incrementa con el consiguiente engrosamiento de las raíces reservantes. La fase 3 o final (aproximadamente de 40 días) implica la paralización en el desarrollo de las guías y rápido crecimiento de tamaño de las batatas, definiendo la producción de raíces reservantes o batatas. En la figura 1.2 se observa la relación entre la producción de guías y el engrosamiento de las raíces reservantes en el cultivar precoz Porto Rico.

![Figura 1.2.- Fases del crecimiento de las guías y batatas (Adaptado de Scott, 1950).](image)

A continuación, se describen las principales características de las variedades de batata contempladas en este proyecto, que son extensamente cultivadas en Argentina:

- **Arapey INIA**: introducida desde Uruguay. Posee hojas cordadas, de color verde y sus guías de igual tono, pero con nudos morados. Presenta buen crecimiento vegetativo, lo que le permite competir favorablemente con las malezas. Sus raíces son de
forma elíptica y alargada, con piel morada y pulpa amarilla, con algunas manchas anaranjadas. Es precoz (ciclo de 110 días) y su rendimiento potencial es superior a 30 t/ha.

- **Beauregard**: es el cultivar más utilizado en EEUU. De ciclo corto (110 días), su potencial de rendimiento es de 50 t/ha. Sus raíces son de pulpa anaranjada, textura húmeda, piel de color cobrizo y fina, condición que requiere de un manipuleo cuidadoso para evitar su alteración. El color de pulpa se debe a la alta concentración de β-carotenos. Los tallos son verdes, las hojas son enteras, cordiformes, y terminadas en punta, moradas cuando son jóvenes y verdes al ser adultas (Martí, 2007). Es una variedad que produce poco follaje, resistente a nematodos, pero susceptible a enfermedades virales.

3. Principales usos

Debido a su gran diversidad genética y la consiguiente variabilidad en sus características fenotípicas y morfológicas, la batata presenta una amplia versatilidad de usos. Es muy importante aprovechar el potencial de la batata como fuente de nutrientes y poner énfasis en la investigación relativa a los componentes funcionales extraídos de ella. En los próximos diez años, los esfuerzos estarán dirigidos a intensificar el alcance de batatas de pulpa anaranjada, y se intentará contar con variedades resilientes (frente a estreses bióticos, principalmente) y nutritivas, adaptadas a diferentes condiciones ambientales y que satisfagan los gustos y preferencias de los consumidores. Paralelamente, se adoptarán nuevas tecnologías para su industrialización y se tomarán las medidas necesarias para operar en lo relativo a adopción de hábitos saludables en alimentación humana.

Muchos países utilizan diferentes órganos de la planta de batata para el consumo humano. Uno de ellos es Japón, que no solamente consume raíces reservantes sino, además, las hojas (Ishida et al., 2000), que, a diferencia de las raíces, pueden cosecharse varias veces al año, con rendimientos muchos mayores que los de las verduras de hoja verde. Las hojas de batata contienen una gran cantidad de compuestos fenólicos, de los cuales más del 70% son ácidos clorogénicos y sus derivados, y 10% a 20% son
flavonoides (Mu et al., 2017). Los ácidos clorogénicos brindan gran cantidad de beneficios a la salud humana, como la captura de radicales libres, antibacterianos y antiinflamatorios, inhibidores de tumores, protectores del hígado y, además, previenen las lesiones cerebrales (Lee et al., 2012).

El uso del follaje de batata para consumo animal, ha sido un tema relevante por los investigadores. Sologuren Villanueva (2008), evaluó la calidad nutricional del follaje de batata en la dieta de cobayos. Además, se probó que el ensilado de raíces y hojas de batata es una alternativa de almacenamiento, que resulta en productos de buena calidad para el consumo en la dieta animal (Giang et al., 2004).
4. Hipótesis

Existe una respuesta diferencial en cuanto a producción y calidad de distintos genotipos de batata frente a infección con EA.

5. Objetivos

5.1. Objetivo General

Evaluar componentes de rendimiento y contenido y calidad de almidón en raíces reservantes de dos clones de batata sanos e infectados con EA.

5.2. Objetivos Específicos

- Regenerar plantas saneadas de virus de dos clones de batata y comprobar su condición sanitaria.
- Estimar experimentalmente posibles mermas en caracteres de rendimiento.
- Determinar posibles alteraciones en la cantidad y características tecnológicas e industriales de almidones de raíces reservantes provenientes de plantas infectadas con EA.
5.3. Estructura del Trabajo

Esta tesis se encuentra constituida por dos capítulos: (1) en él se comparan los efectos de EA en los componentes del rendimiento de dos variedades de importancia en el país (Capítulo 1); (2) en este capítulo se estudia la influencia de la enfermedad en la calidad industrial del almidón de batata (Capítulo 2). En el Anexo se presentan los resultados de la caracterización, observados a lo largo de la ejecución de este trabajo.
CAPÍTULO 1

Influencia del “encrespamiento amarillo” en componentes del rendimiento y contenido de clorofila de dos genotipos comerciales de batata, bajo condiciones experimentales
RESUMEN

La batata es el quinto cultivo alimenticio a nivel global y las virosis son la principal limitante de su producción. En Argentina, el complejo viral “encrespamiento amarillo” (EA), en el que están involucrados siete agentes, causa notables pérdidas de rendimiento en los diferentes genotipos plantados en todas las áreas donde se realiza el cultivo. El objetivo de este capítulo fue analizar la influencia del EA en los componentes del rendimiento de dos variedades de batata: Arapey INIA y Beauregard. Se comprobó la condición de saneadas de virus de plantas de ambos clones de batata, para lo cual una planta de cada genotipo se clonó en dos y una de ellas se infectó con EA. Se registraron diferencias significativas entre plantas sanas y enfermas, en el contenido relativo de clorofilas (lecturas obtenidas con SPAD). También hubo mermas en caracteres de rendimiento, donde peso y número de raíces comerciales, en ambos genotipos, fueron los más afectados cuando las plantas estuvieron infectadas con EA (daños de alrededor del 90%). Este trabajo permite corroborar la relevancia de la virosis como limitante del cultivo. El empleo de materiales saneados de virus y buenas prácticas de manejo, posibilita aproximarnos al rendimiento potencial de cada material.

Palabras clave: batata, encrespamiento amarillo, rendimiento.
I. INTRODUCCIÓN

A nivel global las virosis constituyen potencialmente una limitante de la producción de mayor relevancia, ocasionando consecuentemente la disminución de la superficie cultivada (Karyeija et al., 1998; Onwueme y Charles, 1994). En el mundo, se citan cerca de 30 virus de batata (Clark et al., 2012) y en nuestro país hasta el presente, han sido detectados nueve: Sweet potato vein mosaic virus (SPVMV), Sweet potato feathery mottle virus (SPFMV), Sweet potato mild speckling virus (SPMSV) (Di Feo et al., 2000; Nome et al., 2005), Sweet potato chlorotic stunt virus raza WA (SPCSV-WA), Sweet potato leaf curl virus (SPLCV) (Rodríguez Pardina et al., 2012a), Sweet potato virus G (SPVG) (Rodríguez Pardina et al., 2012b), Sweet potato virus C (SPVC) (Bejerman et al., 2016), Sweet potato leaf curl Georgia virus (SPLCGV) (Martino et al., 2017a) y Sweet potato symptomless virus 1 (SPSMV-1) (Martino et al., 2017b).

La propagación comercial vegetativa de la especie conduce a un incremento en la concentración de partículas virales y a su perpetuación en los tejidos vegetales, en perjuicio de los rendimientos (Loebenstein et al., 2009). Argentina no escapa a este fenómeno global, del cual las virosis son una de las principales causas. Estas patologías tuvieron aparición cíclica desde los ‘70, en que Sweet potato vein mosaic virus (SPVMV), causal de “batata crespa”, generó severos daños en los rendimientos del cultivar cv Criolla Amarilla (Nome, 1973; Nome y Docampo, 1974). Un programa de producción y distribución de plantines libres de virus permitió la recuperación de los cultivos. Sin embargo, en la década del 80, el “enanismo clorótico” (Di Feo et al., 2000), provocado por un complejo de tres virus Sweet potato chlorotic stunt virus (SPCSV), sinérgico con Sweet potato feathery mottle virus (SPFMV) y con otro potyvirus Sweet potato mild speckling virus (SPMSV) afectó gravemente al cv Morada INTA (Biderbost et al., 1990). Esto se debió a la discontinuidad en el empleo de plantines de sanidad controlada, única medida eficiente de control disponible hasta la fecha.

Desde 2009, las virosis son responsables de severos daños en la producción, causando mermas superiores al 90%, lo que implica un grave problema social (Tolocka et al., 2012a), pues productores tradicionales abandonan el cultivo con consecuencias perjudiciales para las diferentes regiones. Por otra parte, la creciente demanda mundial de batata y la necesidad de mejoramiento genético de la especie, derivó en el intercambio del material vegetal entre países productores, con el consiguiente peligro de diseminación
de patógenos a nivel internacional, agravado por el hecho de que un aislamiento suave o latente de un virus para un grupo de cultivares de un país, puede ser mucho más severo en áreas donde la base genética es diferente. Por ello, es preciso prevenir la dispersión inadvertida de estos patógenos con el germoplasma, lo que es válido también en producción comercial e investigación.

La plantación de estacas de tallo (guías) o de plantines infectados es la vía más importante de diseminación de los patógenos virales de un ciclo a otro de cultivo (infección primaria), porque conlleva un incremento de la concentración de viriones en los tejidos y su dispersión inadvertida en el material de propagación. El contagio entre plantas ocurre mediante vectores, en su mayoría insectos hemípteros, con aparato bucal picador-suctor, como áfidos o pulgones y aleuródidos o moscas blancas (infecciones secundarias). A los fines de su control, es importante destacar que los pulgones transmiten los virus de manera “no persistente”. Esto significa que la adquisición del patógeno desde la planta enferma y su transmisión a la planta sana puede completarse en pocos minutos o segundos, sin período de latencia. Algunos virus de batata, cuyos insectos vectores son las moscas blancas, son transmitidos de manera “persistente”, es decir que el patógeno es adquirido y transmitido luego de varias horas y es factible que el insecto permanezca infectivo toda su vida; y otros, de modo “semi-persistente”, ya que los períodos de adquisición e inoculación son de 30 minutos y la infectividad del vector no dura más de 12 h (Salazar, 1996; Di Feo, 2015).

El calentamiento global ha desencadenado cambios en los patosistemas y el consiguiente desplazamiento de insectos como *B. tabaci*, vector de geminivirus y de SPCSV, desde regiones tropicales y subtropicales hacia otras, antes consideradas templadas (Galvez *et al.*, 2013). Observaciones efectuadas en diferentes lotes de regiones productoras de Argentina, como el NEA (Entre Ríos, Corrientes, Formosa y en la Pcia. de Chaco), NOA (Tucumán, Santiago del Estero), en la Región Pampeana (Pcia. de Buenos Aires, Córdoba y Santa Fe), y en Cuyo (Mendoza), permitieron establecer la presencia de una patología viral, que fue denominada “encrespamiento amarillo” (EA) y que posee una altísima incidencia en diversas variedades. Produce mermas potenciales y significativas en los componentes de rendimiento, tanto en lotes de producción como en ensayos experimentales y, además, afecta a la calidad de los órganos comerciales. El contenido de β-carotenos, precursores de vitamina A, se ve reducido notablemente en las raíces reservantes procedentes de plantas infectadas (López Colomba *et al.*., 2011;
Tolocka et al., 2012b), lo cual constituye un grave problema ya que, en la actualidad, se mejora al cultivo para lograr niveles mayores de dicha vitamina en raíz o bien, se emplean de manera creciente variedades cuyas raíces poseen pulpa amarilla o anaranjada.

Los agentes causales del EA forman parte de un complejo viral de siete patógenos, seis de ellos no citados anteriormente en Argentina y que se resaltan en negrita: tres potyvirus transmitidos de manera no persistente por Myzus persicae: Sweet potato feathery mottle virus (SPFMV) (razas russet crack: RC y ordinary: O), Sweet potato virus G (SPVG), Sweet potato virus C (SPVC); el crinivirus Sweet potato chlorotic stunt virus (raza Western África) (SPCSV-WA) y los geminivirus Sweet potato leaf curl virus (SPLCV), Sweet potato leaf curl Georgia virus (SPLCGV-Ar) y Sweet potato symptomless virus 1 (SPSMV-1), transmitidos por B. tabaci (transmisión semi-persistente en el caso del crinivirus y persistente en el de los geminivirus). SPCSV se destaca por su efecto sinérgico en infecciones mixtas principalmente con los potyvirus. El complejo EA genera una variada y severa sintomatología (clorosis, achaparramiento, mosaico, diseños cloróticos, reducción y ampollado del área foliar, entre otros) e importantes daños en la producción y calidad comercial (López Colomba et at., 2011; Tolocka et al., 2012a; Tolocka et al., 2012b).

A causa de su gran diversidad genética y la consiguiente variabilidad en sus características fenotípicas y morfológicas, la batata presenta amplia adaptabilidad y versatilidad de usos y demanda creciente, por lo que las infecciones virales adquieren gran relevancia por ser la principal limitante de su producción. En los últimos años, viene adquiriendo progresiva importancia como alimento saludable y por sus potenciales usos industriales. En el último caso, es fundamental el empleo de genotipos que tengan adecuados contenido y características funcionales de almidón.

El objetivo de este capítulo fue determinar, bajo condiciones experimentales, la influencia de la virosis actual (EA) en el rendimiento y en el contenido de clorofila de dos cultivares de batata de gran relevancia en Argentina: Arapey INIA, por su plantación generalizada en casi todas las regiones de cultivo y Beauregard, con características promisorias debido a su alto contenido de carotenos, sus posibles aplicaciones en la industria alimenticia y su potencialidad para exportación.
II. MATERIALES Y MÉTODOS

2.1. Regeneración de dos cultivares de batata de sanidad controlada

Anualmente se deben regenerar las plantas madres de sanidad controlada para la propagación clonal y conservación del tipo varietal. Los cuatro pasos del proceso de regeneración para los dos cultivares de batata (Arapey INIA y Beauregard) fueron los siguientes (CIAT, 1980; CIAT, 1982; Love et al., 1987):

i. Elección y control sanitario de una planta dadora de meristemas (determinación de la presencia/ausencia e identificación de virus)

Para la extracción de meristemas, se eligieron plantas madre de los dos cultivares de importancia comercial antes descriptos: Arapey INIA y Beauregard, las cuales respondían a los descriptores varietales correspondientes. Mediante indexing adecuado, se determinó si las mismas se encontraban saneadas de virus o infectadas con al menos uno de ellos. Las pruebas que se efectuaron a tal fin fueron diversas, pues es aconsejable emplearlas de manera complementaria para mayor seguridad en el diagnóstico. Ellas fueron: biológicas (inoculación de plantas indicadoras), serológicas (distintas variantes de ELISA), observaciones al microscopio electrónico, moleculares como PCR, que se especificarán más adelante.

ii. Aplicación de las técnicas de regeneración de plantas madres de sanidad controlada (termoterapia y cultivo in vitro de meristemas)

La termoterapia de las plantas madres infectadas permite que la región libre de virus del meristema apical sea mayor, con lo cual pueden extraerse meristemas más grandes sin riesgo de infección (Di Feo, 2015). Se recurrió a la termoterapia a través de un fitotrón, (las plantas madre seleccionadas como dadora de meristemas fueron expuestas a 37-38°C, 16 h de luz y 3000 lux de intensidad lumínica por tres semanas, antes de la extracción de los mismos, lo que inhibiría la presunta multiplicación viral en sus ápices caulinares). Para asegurar la obtención de plantas saneadas, a la termoterapia
le siguió el cultivo in vitro de meristemas. Se emplearon yemas apicales por su mayor crecimiento potencial. El proceso se llevó a cabo de manera aséptica en cámaras de flujo laminar. Las puntas de los tallos fueron desinfectadas sumergiéndolas en hipoclorito de sodio (1-10%) + 0,1m/l de tween 20 (detergente) durante 5min. Luego, se enjugó sucesivamente en agua estéril. La extracción de meristemas se hizo removiendo los primordios foliares bajo la lupa (aumentos de 10 a 15X), empleando pinza y agujas histológicas estériles.

El domo del meristema, semicubierto por dos primordios foliares, fue cortado en su base y colocado en un tubo con 10 ml de medio semisólido (agar-agar) conteniendo sales minerales (Murashige y Skoog, 1962), vitaminas, sacarosa y auxinas. Para generar condiciones artificiales adecuadas, se utilizó una cámara de cultivo (25°C, 18h de luz y 5000 lux de intensidad lumínica). Se regeneró una planta completa a los 45 días (Nome y Salvadores, 1980).

![Imagen](image_url)

Figura 2.1.- Regeneración de los cultivares de sanidad controlada a partir de cultivo in vitro de meristemas: Extracción de meristemas en medio aséptico (cámara de flujo laminar) (A); meristema apical regenerando en medio de cultivo in vitro (B); nueva planta regenerada in vitro a partir de meristema (C).

iii. Control sanitario de las plantas regeneradas (indexing de los virus presuntamente eliminados)

Las plantas regeneradas se sometieron a un control sanitario antes de iniciar su
micropropagación. En el caso de batata, las mismas se cortaron en 8-10 microestacas, bajo condiciones de asepsia, en cámara de flujo laminar. Cada una de éstas se puso a crecer en un tubo con medio de cultivo sin hormonas, respetando su polaridad. La misma, posteriormente, dio origen a una nueva planta de batata. La mitad de las plantas hermanas regeneradas (4-5) se transfirieron a macetas para su posterior rusticación bajo frascos de vidrios que fueron retirados gradualmente, hasta dejar a las plantas descubiertas en su totalidad, a los fines de proceder a su indexing para virus.

Las plantas rusticadas fueron probadas para presencia de SPFMV, SPVG, SPVC, SPCSV y para gominivirus, en general. Las que no acusaron infección viral fueron macropropagadas bajo jaula anti-áfidos, ubicadas en el campo experimental del Instituto de Patología Vegetal (IPAVE-CIAP-IN1TA Córdoba Capital, (31° 24' S; 61° 11' O), alejado a más de 1 km de cultivos comerciales de batata. El control sanitario o indexing para los distintos virus se efectuó mediante las siguientes pruebas:

- **Pruebas biológicas:** se empleó especialmente el injerto sobre la indicadora Ipomoea setosa que, generalmente, acusa la presencia de cualquier virus de batata a través de la manifestación de síntomas notables (Martinelli, 2014).

- **Pruebas serológicas:** en el caso de SPFMV, SPVG y SPVC se realizó mediante NCM-ELISA con el empleo de antisueros policlonales específicos, (Parent et al., 1985). Para SPCSV, la detección se realizó a través de TAS-ELISA (Gibson et al., 1998). En este último caso, el uso de antisueros monoclonales permitió diferenciar entre razas del patógeno (WA o EA: oeste africano o este africano).

- **Pruebas moleculares:** se detectó principalmente a través de PCR (Li et al., 2004; Rodríguez Pardina et al., 2012b; Martino et al., 2017a). La amplificación se realizó usando los oligonucleótidos degenerados universales (SPG1 y SPG2) para gominivirus de batata, diseñados para hibridar en regiones conservadas de los marcos de lectura abiertos C2 y C1, y que amplifican fragmentos de aproximadamente 900pb. Para ello, previamente se extrajo el ADN viral mediante un método simple y rápido en el que se empleó NaOH y tampón Tris-ClH (Rodríguez Pardina et al., 2012b; Wang et al., 1993).

- **Observaciones al microscopio electrónico:** la observación de los viriones en savia infectada fue realizada a través de un microscopio electrónico de
transmisión (MET) JEOL JEM EX II 1220®, perteneciente al Sistema Nacional de Microscopía (SNM) del Ministerio de Ciencia, Tecnología e Innovación Productiva que se encuentra dentro del Centro de Investigaciones Agropecuarias (CIAP). Se realizaron preparados *dips* y de “decoración” en lo que las partículas fueron cubiertas con antisueros específicos contra SPFMV (Milne y Lesemann, 1978). Este método se utilizó especialmente para la detección de SPFMV y SPVG.

iv. **Propagación de las plantas saneadas**

Dada la posibilidad de variaciones dentro de un mismo cultivar de batata, todo el experimento se realizó partiendo de una sola planta de Arapey INIA y de Beauregard, respectivamente, saneados de virus y obtenida por cultivo *in vitro* de meristemas. La misma se clonó en dos plantas y a las dos semanas, una de las cuales se auto-injertó usando como púa una porción de su tallo (control sano) y la otra se infectó, injertando con una púa afectada por el complejo viral EA. Se realizaron injertos de púa lateral, para lo cual, con hoja de afeitar, se practicó una incisión oblicua (0,5-1 cm) en el tallo de las plantas sanas de cada variedad, con al menos dos a tres hojas verdaderas completamente expandidas. Se realizó una cuña de 0,5-1 cm de longitud en el extremo proximal de púas de la misma planta a injertar (control sano) o de plantas de la variedad Arapey INIA, infectada fehacientemente con EA. Dicha cuña fue insertada en la incisión oblicua efectuada en la planta sana, donde se la sostuvo, envolviendo el tallo con film de resinite. Se colocó un tutor en cada planta injertada, que fue cubierta con una bolsa plástica, para crear un ambiente saturado de humedad por siete días, y mantenida en invernaderos acondicionados a 28°C, humedad e intensidad lumínica (lámpara Led) adecuadas para el crecimiento vegetativo (Martinelli, 2014). Ambas plantas (sana e infectada con EA) fueron multiplicadas vegetativamente, mediante trozos de guías que se pusieron a enraizar en macetas con sustrato adecuado estéril, en jaulas con malla antiáfidos, dentro de invernadero, hasta obtener suficiente material para establecer el ensayo experimental de campo. Tanto las plantas sanas como infectadas de todos los cultivares fueron controladas sanitariamente para los virus involucrados en el complejo EA, tal como se expresó anteriormente.
v. **Ensayo experimental de campo**

Se delineó un ensayo comparativo de rendimientos (ECR) a los fines de cuantificar el efecto del EA sobre componentes de rendimiento, parámetros de calidad y contenido de clorofila de dos variedades de batata.

El experimento se llevó a cabo bajo un diseño en parcelas divididas, distribuidas en tres repeticiones de 10 plantas cada una. En el mismo fueron asignados dos factores aleatoriamente, a parcela principal: “condición sanitaria”, con dos niveles: plantas sanas e infectadas con EA y a parcela secundaria: “genotipos”, también con dos niveles: Arapey INIA y Beauregard. De este modo, se conformaron cuatro tratamientos en total, resultantes de la combinación de los niveles de los dos factores.

El suelo, de tipo franco-arcilloso, fue acondicionado dos meses previos al trasplante a través de prácticas culturales: dos pasadas de rastra de doble acción y dos de motocultivador.

Para el control de malezas en pre-emergencia, se aplicó Linurex (Linuron) al suelo previamente regado y oreado, a razón de 85cm³ en 85m² de superficie. Además, se desinfectó el suelo con Actara (Tiametoxam), como método preventivo del ataque de insectos, especialmente de “moscas blancas” en dosis de 0,5-0,7 g/10m lineales (500-700g/ha.) con un volumen de agua de 200-300 L/ha. El insecticida fue aplicado antes de hacer los bordos, de modo que el producto se incorporó en los mismos al aportar. Finalizada la preparación del suelo, se armaron bordos de 0,30 m de altura, a 0,90 entre sí, en los que se incorporó 1,10 kg urea en 85m² seguido de un riego ligero (Mwanga y Fuentes, 2010).

Se intentó preservar la condición sanitaria de las plantas sanas, a través de la siembra de una barrera verde (sorgo granífero) de 1,5 m de ancho en la periferia del ensayo y de 3 m, entre las parcelas sanas y las afectadas por EA. De esta manera, se pudo proteger el ensayo y minimizar el movimiento de insectos vectores (áfidos y moscas blancas) y, por ende, evitar la transmisión de virus desde las parcelas infectadas a las sanas. La barrera y el cultivo a evaluar, fueron pulverizados regularmente de manera preventiva, con Confidor, (Imidacloprid), insecticida de contacto y sistémico, a razón de 30 g/10 L agua. Esto permitió eliminar a los insectos que quedaban interceptados en la barrera de sorgo y los que permanecían en las plantas de batata (Gutiérrez et al., 2003;
Muturi et al., 2007; Gibson et al., 2004; Ngailo et al., 2013).

Posterior a los 143 días, en noviembre, se efectuó el trasplante de plantines de tres nudos a 0,30 m entre sí. Posteriormente, se regó por surco y por aspersión con dos picos de 684 L/h de caudal cada uno, durante los primeros 30 días. Cada parcela estuvo constituida por 60 plantas. Se realizó el primer aporque, para elevar el bordo hasta unos 0,25 m, el 14 de diciembre. A los 60 días de la plantación, se desmalezó de manera manual y se aporcó por segunda vez. El riego por surco fue repetido, acorde a las demandas ambientales, alcanzando su requerimiento de aproximadamente 550 a 660 mm de agua de lluvia o riego (Boswell, 1950) en todo el ciclo del cultivo. En la Tabla 2.1 se muestran los promedios de precipitaciones y temperatura durante los meses comprendidos en el período noviembre-abril de 2017/18.

<table>
<thead>
<tr>
<th>Datos meteorológicos</th>
<th>N</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>Promedio en el período vegetativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitaciones acumuladas (mm)</td>
<td>15</td>
<td>114</td>
<td>73</td>
<td>82</td>
<td>4</td>
<td>20</td>
<td>411</td>
</tr>
<tr>
<td>Temperatura Media (°C)</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>22,5</td>
<td>20</td>
<td>21</td>
<td>21,07</td>
</tr>
</tbody>
</table>

Datos procesados por la Bolsa de Cereales de Córdoba, a partir de la Red de Estaciones Meteorológicas automáticas. Valores comparativos de Precipitaciones (mm) y Temperatura Media del Aire (°C) para los meses de noviembre, diciembre, enero, febrero, marzo y abril, año 2017/2018.

2.2. Contenido de clorofila

Se evaluó el contenido relativo de clorofila en hojas de batata mediante lecturas de SPAD (Hansatech CL-01), registradas por un dispositivo portátil. Dicho contenido es determinado a partir de muestras de hojas, a través de valores de absorbancia óptica a longitud de onda dual (longitud de onda de 620 y 940 nm) y se muestra en el rango de 0 a 2000 unidades. El valor SPAD refleja la concentración de clorofila en las hojas de las
planta. Constituye un método de determinación simple y rápida, no daña el crecimiento de las hojas y no está limitado por el clima.

En este experimento, se realizaron mediciones en nueve momentos desde el trasplante, y los registros fueron: F1, F2, F3, F4, F5, F6, F7, F8 y F9, a las cinco (27/12), seis (5/1), siete (12/1), ocho (19/1), nueve (25/1), diez (2/2), doce (16/2), catorce (2/3) y dieciséis (16/3) semanas, respectivamente. Para su evaluación, se seleccionaron e identificaron, de manera aleatoria, 10 plantas por tratamiento. Durante las determinaciones, se aplicó un mismo criterio, que consistió en colocar el dispositivo en la nervadura central de la 3ª y 4ª hoja expandida de la guía más larga.

Para el análisis de los valores de SPAD se utilizaron modelos lineales generales mixtos. Las comparaciones de medias se realizaron mediante Test de Fisher, con un nivel de significancia del 5%. Los análisis se realizaron con el paquete estadístico Infostat (Di Rienzo et al., 2016).

2.3. Estimación de componentes de rendimiento en plantas saneadas y en plantas infectadas con EA

Al momento de la cosecha, se midieron diferentes caracteres componentes de rendimiento in situ tales como: número de guías principales (NG), peso fresco de parte aérea (PFA), área foliar de la cuarta y quinta hoja de la guía más larga (AF) mediante software Hoja, INTA (Verga, 2012), número de raíces totales (NTR), peso fresco de raíces totales (PTR), número de raíces comerciales (NRC) y peso fresco de raíces comerciales (PRC). Se consideraron comerciales a las raíces que superaron los 100g de peso (Biderbost et al., 1990; Tolocka et al., 2013).

Los datos obtenidos fueron analizados estadísticamente mediante modelos lineales generales y mixtos (MLM) para establecer diferencias entre condiciones sanitarias (plantas sanas y enfermas) y genotipos (Arapey INIA y Beauregard). Las comparaciones de medias se realizaron a través del Test de Fisher, con nivel de significancia del 5%.
Además, para cada variable, se determinaron las disminuciones potenciales porcentuales (porcentaje de daño) mediante la siguiente fórmula: \[D = \sum \frac{(\bar{X}_s - X_i)}{\bar{X}_s} \times 100 \] (siendo \(\bar{X}_s \) media de la variable en plantas asintomáticas, \(X_i \) valor de la variable en planta infectada con EA).

Con el fin de dilucidar los efectos directos e indirectos de los caracteres medidos en el rendimiento de las raíces se realizó un Análisis de Sendero (Path Analysis) (Biderbost et al., 1993a).

Para los análisis se empleó el paquete estadístico Infostat (Di Rienzo et al., 2016).
III. RESULTADOS Y DISCUSIONES

3.1. Regeneración de dos cultivares de batatas a partir de meristemas

Aplicación de las técnicas para la regeneración de plantas saneadas
(termoterapia y cultivo in vitro de meristemas)

La Tabla 2.2. muestra los resultados del método de regeneración mediante cultivo in vitro. Se observó que el porcentaje de meristemas establecidos de Arapey INIA fueron superiores en relación a los de Beauregard (40% vs 30%), respectivamente. Beuregard exhibió elevados porcentajes de meristemas necrosados (67%) respecto a Arapey INIA (23%). Estos valores coinciden con los estudiados por Borges et al. (2009), en el cultivo de Dioscorea alata. Los mismos, podrían deberse principalmente a un efecto fitotóxico del hipoclorito de sodio durante la desinfección en de los diferentes genotipos. Borges et al. (2004), encontraron diferencias en el efecto fitotóxico a diferentes concentraciones de hipoclorito de sodio, en plantas leñosas. La contaminación en Arapey INIA (37%), se debió principalmente a la presencia de bacterias y hongos.

Tabla 2.2.- Porcentajes de regeneración y contaminación de meristemas de Arapey INIA y Beauregard, a los 45 días desde la siembra

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Establecidos</th>
<th>Muertos o necrosados</th>
<th>Contaminados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arapey INIA</td>
<td>40%</td>
<td>23%</td>
<td>37%</td>
</tr>
<tr>
<td>Beauregard</td>
<td>30%</td>
<td>67%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Control sanitario de las plantas regeneradas (indexing de los virus presuntamente eliminados)

Para comprobar la presencia/ausencia de sweepovirus en las plantas regeneradas, se llevó a cabo una prueba de PCR, a la sexta semana de la siembra de meristemas, incluyendo cinco muestras en la misma, (1 a 3: Arapey INIA y 4-5: Beauregard). Tal como se muestra
en la Figura 2.2, no se detectaron sweepovirus. Sólo se observó banda en el gel de agarosa en la calle correspondiente al control positivo (planta de batata fehacientemente infectada con sweepovirus).

Figura 2.2.- Detección molecular de sweepovirus de batata. Electroforesis en gel de agarosa de los fragmentos de ácido nucleico (900kb) de sweepovirus, amplificados por PCR. M: marcador de peso molecular, donde la banda señalada corresponde a 1000 pares de bases (KB), 1-3: Arapay INIA, 4-5: Beauregard, -: control negativo de virus (agua) y +: control positivo de virus.

Observaciones al microscopio electrónico

En las observaciones al microscopio electrónico de trasmisión de los preparados dips, se observaron viriones filamentosos flexuosos (Figura 2.3), algunos de los cuales se decoraron con suero anti-SPFMV revelando la infección mixta con potyvirus, que sucede en el EA.
Figura 2.3.- Partículas filamentosas (*potyvirus*) decoradas con SPFMVas (provenientes de savia de *I. Setosa* sanas injertadas con Arpey INIA.

La mayoría de los cultivares de batatas infectados solo por SPFMV no exhiben síntomas o manifiestan manchas cloróticas suaves en hojas basales, sólo esporádicamente. Sin embargo, en co-infecciones con SPCSV, puede observarse achaparramiento y clorosis generalizada de las plantas y aclaramiento de venas con prolongaciones en forma de plumas, mosaico, moteado y distorsión foliar.

Propagación de las plantas saneadas

En Córdoba y en la mayor parte del país, los transplantes de batata, se realizan de manera estacional (octubre, noviembre y diciembre). A los fines de generar el factor “condición sanitaria” con dos niveles (plantas sana y plantas infectada con EA). Ambas fueron mantenidas en jaulas separadas para preservar su estado sanitario.
Figura 2.4.- Injertos de púa lateral de una planta correspondiente al cv. Arapey. INIA

A partir de la 4ª semana de practicado el injerto, las plantas correspondientes a la condición “infectada con EA” mostraron síntomas foliares notables (aclaramiento de nervadura generalizado, punteado clorótico, mosaico intenso) (Figura2.5) y comenzaron a clonarse, de manera separada, hasta lograr el número necesario para realizar el ensayo comparativo de rendimiento (120 plantas en total, 60 de cada genotipo). Esto se logró a los 45 días desde el injerto.
Figura 2.5.- Multiplicación de plantas saneadas (A) y enfermas de EA (B) cv Beauregard, en jaulas con malla antiávidos, mantenidas en invernadero. Presencia de síntomas foliares, bandeado nerval y aclaramiento de nervadura (flecha roja), punteado clorótico (flecha azul), mosaico con diseños cloróticos (flecha amarilla).

3.2. Contenido de clorofila

En la Tabla 2.3 se observan los valores promedio, desvío estándar y valores máximo y mínimo para la variable SPAD (contenido de clorofila). En el caso del cv Beauregard, el rango de variación de los mismos se ubicó entre 10,7 y 27,6 y entre 4,6 y 18,7, para las condiciones sana y enferma, respectivamente. Para Arapey INIA, el rango de variación fue mucho menor, para ambas condiciones sanitarias (valores mínimos y máximos de 11,7 y 28,8 para sanas y de 6,12 y 18 para enfermas) aunque también se pudieron observar reducciones notables de lecturas de SPAD, en presencia de EA.
<table>
<thead>
<tr>
<th>Genotipo</th>
<th>Condición</th>
<th>Media</th>
<th>Mín</th>
<th>Máx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arapey INIA</td>
<td>Enferma</td>
<td>11,68</td>
<td>6,12</td>
<td>18</td>
</tr>
<tr>
<td>Arapey INIA</td>
<td>Sana</td>
<td>20,16</td>
<td>11,7</td>
<td>28,8</td>
</tr>
<tr>
<td>Beauregard</td>
<td>Enferma</td>
<td>11,22</td>
<td>4,6</td>
<td>18,7</td>
</tr>
<tr>
<td>Beauregard</td>
<td>Sana</td>
<td>18,97</td>
<td>10,7</td>
<td>27,6</td>
</tr>
</tbody>
</table>

El análisis estadístico permitió establecer diferencias altamente significativas (p<0,0001) para contenido de clorofila entre condiciones sanas y enfermas y entre momentos de medición: F1 a F4 y F5 a F9, con valores promedios de 19,55 en sanas y 11,45 para las enfermas, mientras que, para los momentos, éstos fueron de 14,15 (F2 – F4) y 16,44 (F5 – F9). Por otra parte, no se observó interacción significativa entre condición sanitaria y genotipo para el valor de SPAD (p=0,28).

Su et al., (2009) establecieron la asociación existente entre las lecturas de SPAD y la concentración de clorofila en hojas de batata sana. Se demostró la existencia de una correlación positiva altamente significativa entre los valores del SPAD y la concentración de clorofila. Hasta el momento, no se evaluó la relación entre el valor de SPAD y los efectos ocasionados por EA en hojas de batata. Pepó (2018) demostró la relación que hay entre el contenido de clorofila de las hojas de batata y el rendimiento del cultivo en diferentes métodos de plantación.

Los posibles efectos generados en las plantas enfermas evaluadas durante el período de fase 2 y principio de la fase final de crecimiento, se deberían a un retraso en los procesos de tuberización, además de una reducción de la actividad fotosintética. Según Spence et al. (1972), estos dos procesos se estimulan mutuamente y limitan la máxima eficiencia de la planta, afectando de manera indirecta al rendimiento. Los resultados de medición obtenidos mostraron que las lecturas de SPAD en hojas de plantas sanas,
aumentaron de manera gradual durante el período de crecimiento desde principios de enero hasta mediados de febrero, seguido de una reducción a mediados de marzo, al final del período vegetativo. En plantas enfermas, se observó que los valores de contenido de clorofila se mantuvieron en un rango más reducido con respecto a plantas sanas durante el período evaluado, y también, que el EA ocasionó una significativa reducción de los mismos. Experimentos realizados por Njeru et al. (2004), han demostrado que en plantas infectadas con virus se produce una reducción significativa del contenido de clorofila. En plantas enfermas con EA, es notable el amarillamiento foliar (disminución del contenido de clorofilas) que da lugar a valores de SPAD reducidos en relación a los de plantas sanas. Esto se ve reflejado en el análisis estadístico, donde se registraron diferencias significativas entre condiciones sanitarias, pero no entre genotipos con igual estado de sanidad.

3.3. Estimación de componentes de rendimiento en plantas saneadas y en plantas infectadas con EA

Figura 2.6.- Raíces reservantes provenientes de plantas sanas e infectadas con EA, respectivamente, correspondientes a los cv Beauregard (A y C) y, Arapey INIA (B y D).
Se analizaron las variables componentes del rendimiento en Arapey INIA y Beauregard para la condición sanitaria sana y enferma (Tabla 2.4).

Al considerar la misma condición sanitaria (sana y enferma con EA), en el caso de las variables relacionadas con el crecimiento vegetativo (PFA, NG y AF), ambos genotipos (Arapey INIA y Beauregard) discreparon significativamente (p<0,0001). En cambio, para los caracteres vinculados directamente con el rendimiento (PRT, PRC, NTR y NRC) no hubo diferencias entre ambos cultivares (p>0,25).

Las plantas sanas y enfermas exhibieron diferencias estadísticas altamente significativas (p<0,0001) para todas las variables analizadas, tanto en Arapey INIA como en Beauregard, salvo en el caso de NG que en el cv Beauregard fue similar para ambas condiciones sanitarias.
<table>
<thead>
<tr>
<th>Variable</th>
<th>PRC</th>
<th>NRC</th>
<th>PTR</th>
<th>PFA</th>
<th>NTR</th>
<th>NG</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arapey INIA sana</td>
<td>1471,7 ± 105,6Ac</td>
<td>5,4 ± 0,4Ac</td>
<td>1745,6 ± 112,6Ac</td>
<td>2327,1 ± 138,1Ac</td>
<td>12,2 ± 0,8Ac</td>
<td>10,5 ± 0,78Ac</td>
<td>10,5 ± 0,8Ac</td>
</tr>
<tr>
<td>Arapey INIA enferma</td>
<td>248,8 ± 109,5Md</td>
<td>1,2 ± 0,4Md</td>
<td>446,8 ± 116,7Md</td>
<td>1226,5 ± 143,2Md</td>
<td>6,5 ± 0,8Md</td>
<td>10,9 ± 0,8Mc</td>
<td>10,9 ± 0,8Md</td>
</tr>
<tr>
<td>Beauregard sana</td>
<td>1469,5 ± 109,7Ac</td>
<td>4,8 ± 0,4Ac</td>
<td>1737,0 ± 117,0Ac</td>
<td>1172,4 ± 143,5Bc</td>
<td>10,3 ± 0,8Ac</td>
<td>7,3 ± 0,8Bc</td>
<td>7,3 ± 0,8Bc</td>
</tr>
<tr>
<td>Beauregard enferma</td>
<td>175,2 ± 103,7Md</td>
<td>1,6 ± 0,4Md</td>
<td>339,1 ± 110,5Md</td>
<td>367,3 ± 135,6Nd</td>
<td>6,7 ± 0,8Md</td>
<td>5,9 ± 0,8Nc</td>
<td>5,9 ± 0,8Nd</td>
</tr>
</tbody>
</table>

Los datos corresponden a medias ± errores estándar. Los valores en la misma columna con letras mayúsculas comparan diferentes cultivares de la misma condición sanitaria. Letras minúsculas comparan diferentes condiciones sanitarias del mismo cultivar.
Los efectos de la interacción entre condición sanitaria y genotipo fueron no significativos para todos los caracteres considerados, lo que indica que ambos genotipos se comportaron de igual modo en presencia de la virosis (los valores de significancia (p) para los diferentes caracteres fueron: 0,30; 0,50; 0,59; 0,71; 0,18; 0,64 y 0,30 para PFA, NG, NRC, PRC, NTR, PTR y AF, respectivamente).

Los daños estimados en caracteres componentes del rendimiento para ambos genotipos concuerdan con los determinados por López Colomba et al. (2010), en el cv Arapey INIA. Estos autores también hallaron diferencias significativas para los mismos como consecuencia de la virosis (Figura 2.7 y 2.8).

Arapey INIA

![Bar Chart](image)

Figura 2.7.- Porcentajes de daño (valores medios porcentuales de la variable en plantas infectadas con EA en relación a la media de las sanas) en la variedad Arapey INIA. Referencias: los valores que se muestran son los de media y el segmento sobre la barra es el error estándar.
Figura 2.8.- Porcentajes de daño (valores medios porcentuales de la variable en plantas infectadas con EA en relación a la media de las sanas) en la variedad Beauregard. Referencias: los valores que se muestran son los de media y el segmento sobre la barra es el error estándar.

Durante la década del 90, Biderbost et al. (1990) estimaron el porcentaje de daño, causado por “enanismo clorótico” (EC) en el cv Morada INTA (Biderbost et al., 1993b), para los diferentes componentes de rendimiento. Si bien las mermas en plantas afectadas por esta enfermedad fueron significativas para todos ellos, cabe destacar que el rendimiento exhibió una disminución del 60%, mientras que en esta tesis pudo establecerse que la misma resultó cercana al 90%. Una de las razones de esta diferencia podría deberse a que, mientras en el EC estaban involucradas tres especies virales, en la actualidad, al menos son siete las entidades que desencadenan la nueva virosis.

Análisis de sendero (Path Analysis)

Considerando al PRC como la variable más relevante de rendimiento, el análisis de sendero demostró que, tal como se esperaba, la misma estuvo directamente correlacionada con PTR, tanto para la condición sana como enferma, al tener en cuenta los efectos directos e indirectos (a través de las otras variables). (Para Arapey, los coeficientes (r total) fueron: r=0,98; p<0,0001 y r=0,96; p<0,0001, en plantas sanas y enfermas, respectivamente y de
r=0,98; p<0,0001, en sanas y r=0,90; p<0,0001, en enfermas, para Beauregard). Al tener en cuenta sólo el efecto directo de PTR sobre PRC, en Arapey INIA, la correlación directa entre PRC y PTR fue altamente significativa, aunque mayor en plantas sanas que en enfermas (r=1; p<0,0001 vs, r=0,78; p<0,0001). Igual situación se presentó para el cv Beauregard, (r=1,04; p<0,0001, en sanas vs, r=0,80; p<0,0001, en enfermas). La asociación entre PFA, NG, AF, NRC y NTR con PRC ocurrió de manera indirecta y altamente significativa, a través de PTR, y la magnitud de esta asociación dependió de la condición sanitaria y el genotipo (Figura 2.9). De los efectos indirectos sobre rendimiento (PRC), el de mayor relevancia fue NRC a través de PTR, y los coeficientes de correlación resultaron superiores en plantas enfermas respecto a sanas de ambos genotipos.

Cabe destacar que en el caso de la enfermedad denominada “enanismo clorótico”, el carácter de mayor incidencia sobre rendimiento de raíces reservantes del cv Morada INTA era NRT (Biderbost et al., 1993a). En cambio, para “encrespamiento amarillo”, en Arapey INIA y en Beauregard, el efecto directo más significativo sobre PRC es el de PTR. Fueron detectados cambios en los efectos directos e indirectos de los caracteres correlacionados con el rendimiento en plantas infectadas con EC o con EA en relación a plantas sanas.
Figura 2.9.- Análisis de sendero (Path analysis) entre PRC y su relación con los caracteres componentes NG, AF, NRC, PTR, NTR y PFA para la condición sanitaria sana (A) y enferma (B) del cv. Arapey INIA. (C) y (D) y del cv Beauregard, respectivamente. Líneas continuas indican efectos directos; líneas punteadas indican efectos indirectos sobre PRC.
IV. CONCLUSIONES

⇒ El EA causa una significativa disminución del contenido de clorofílas respecto a plantas sanas.

⇒ Los cultivares Arapey INIA y Beauregard son similares entre sí en cuanto a contenido de clorofílas, independientemente de su condición sanitaria.

⇒ El EA ocasiona mermas significativas en los caracteres componentes del rendimiento de ambos genotipos, con porcentajes de daños en el peso de raíces comerciales de aproximadamente 90%. Sólo en el caso de Beauregard, no hay diferencias entre plantas sanas e infectadas con EA para NG.

⇒ El carácter de mayor incidencia directa sobre el peso de raíces comerciales, es el peso total de raíces, tanto en plantas sanas como enfermas (con EA).

⇒ Existe asociación indirecta altamente significativa entre PFA, NG, AF, NRC y NTR con PRC, a través de PTR, y la magnitud de la misma depende de la condición sanitaria y el genotipo.
CAPÍTULO 2

Efecto del “encrespamiento amarillo” en las características del almidón de raíces de batata

RESUMEN

El almidón es el principal componente de la batata y representa entre el 30% y el 85% de su peso seco. Debido a que es el polisacárido más utilizado como ingrediente funcional (espesante, estabilizante y gelificante) en la industria alimentaria, es necesario buscar nuevas fuentes de obtención. El objetivo de esta investigación fue evaluar, en dos cultivares de batata, los efectos de la virosis en el rendimiento del almidón, en el tamaño, distribución y forma de sus partículas, y en sus propiedades funcionales (capacidad de retención de agua, fracción soluble, propiedades de pasting (RVA), gelatinización (DSC), y textura del gel: TPA). Se obtuvo un mayor rendimiento de almidón en el cv Arapey INIA (9 a 10,05 % en plantas enfermas y sanas, respectivamente), mientras que en Beauregard, los valores correspondientes fueron de 6,23 y 8,06%, respectivamente. En cuanto a las propiedades de los almidones, no se observaron diferencias estadísticas en la capacidad de retención de agua y en la fracción de sólidos solubles entre variedades ni entre condiciones sanitarias. El tamaño promedio de los gránulos entre ambos genotipos y entre plantas sanas y enfermas fue significativamente diferente (p<0,05), con valores promedio que oscilaron entre 11,24 y 15,25 μm. En las imágenes de microscopía electrónica (SEM), los almidones mostraron forma esférica y poligonal. Por otra parte, a partir de los perfiles obtenidos por RVA, se observaron diferencias significativas (p<0,05) entre ambas variedades en su condición sana para las variables breakdown, tiempo y temperatura de pico. A partir de los termogramas de DSC, se detectaron diferencias significativas (p<0,05) en la temperatura de gelatinización y entalpía, entre variedades de la misma condición sanitaria.

Palabras clave: batata, encrespamiento amarillo, almidón, caracterización tecnológica.
I. INTRODUCCIÓN

A nivel mundial, se prevé un incremento en el procesamiento de batata en la industria alimentaria, especialmente para la extracción de almidón, componente mayoritario de sus raíces reservantes (Tabla 3.1) y materia prima de varios subproductos con valor agregado. Entre ellos se pueden mencionar fideos, galletas, chips y otros que contienen proteínas, fibra dietética, antocianina, ácido clorogénico, pectina y otros componentes funcionales que hacen de la batata un alimento saludable.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Valor Promedio (% de Materia Seca)</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almidón</td>
<td>70</td>
<td>30-85</td>
</tr>
<tr>
<td>Azúcares</td>
<td>10</td>
<td>5-38</td>
</tr>
<tr>
<td>Proteína</td>
<td>5</td>
<td>1,2-10</td>
</tr>
<tr>
<td>Grasas</td>
<td>1</td>
<td>1-2,5</td>
</tr>
<tr>
<td>Minerales</td>
<td>3</td>
<td>0,6-4,5</td>
</tr>
<tr>
<td>Fibra digestible</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Vitaminas, ácido</td>
<td>menos de 1</td>
<td>-</td>
</tr>
<tr>
<td>orgánico y otros componentes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El almidón es el principal componente de la batata, que representa entre el 30% al 85% de su peso seco (Aina *et al.*, 2009; Zhu *et al.*, 2014). La industria tiene un interés considerable en los almidones con diversas propiedades funcionales (Jobling, 2004). Las más importantes para la elaboración de alimentos y otras aplicaciones industriales, incluyen las fisicoquímicas: gelatinización y retrogradación y las funcionales: solubilidad, hinchamiento, absorción de agua, perfil de viscosidad, sinéresis y comportamiento reológico de sus pastas y geles (Wang y White, 1994).
La reología es la ciencia que estudia la relación existente entre las fuerzas externas que actúan sobre un cuerpo y la deformación que éstas producen (Schierbauni et al., 1964). Es sabido que las variaciones de temperatura durante la elaboración de puré de batata, generan cambios tanto en el comportamiento de flujo como en las propiedades sensoriales del producto (Truong y Walter, 1994). Estos cambios en la consistencia se deben principalmente a la gelatinización del almidón. En este proceso, el orden molecular dentro de los gránulos es destruido gradual e irreversiblemente. Por tal motivo, la temperatura de gelatinización es característica de cada tipo de almidón y depende de varios factores, como, por ejemplo, la transición vítrea de la fracción amorfa del gránulo (Erlingen y Delcour, 1995). Por otra parte, la temperatura de transición y la entalpía de gelatinización determinada por DSC pueden relacionarse con características de los gránulos de almidón, como por ejemplo el grado de cristalinidad (Krueger et al., 1987). Altas temperaturas de transición se han relacionado con un alto grado de cristalinidad, indicando estabilidad estructural y resistencia de los gránulos a la gelatinización (Barichelo et al., 1990).

Durante el procesamiento, las dispersions de almidón son sometidas a calentamiento y a altas velocidades de cizallamiento que afectan su comportamiento reológico, así como las características finales del producto. Se sabe que el almidón de batata presenta gran variedad en los patrones de gelificación, contenido de amilosa, temperaturas de gelificación, capacidad de retención de agua, etc. Parte de esta variabilidad está dada por la diversidad genética, pero también tienen gran influencia las condiciones de cultivo (Osundahunsi et al., 2003). El almidón afecta a la textura, viscosidad, formación de gel, adhesión, unión, retención de la humedad, formación de película y a la homogeneidad del producto (Pérez y Bertoft, 2010). Aún no existen estudios del efecto de las virosis en el contenido y calidad de almidón presente en batata, pero se presume que las mismas son causa de variaciones importantes en dichos parámetros. Además, hay pocos informes sobre las propiedades fisicoquímicas de los almidones de los diferentes cultivares que se producen en la Argentina.

Teniendo en cuenta las actuales tendencias en los hábitos alimentarios “saludables”, la batata podría convertirse en un producto de mayor participación en la dieta de los argentinos. Al ser la cosecha de batata altamente perecedera y considerando la demanda creciente de nuevos subproductos con valor agregado, elaborados a partir de almidón de
batata, es importante investigar las propiedades fisicoquímicas y funcionales de almidones aislados de diferentes variedades. Los avances tecnológicos permitieron usar batatas en diversas industrias como la de biocombustibles. Al respecto, científicos de Taiwán han ideado procesos nuevos y más eficientes para extraer bioetanol de las raíces. Por otra parte, el 10% de los subproductos de batata en China se procesan a partir de almidón y esto, a menudo, es llevado a cabo por empresas de pequeña escala que utilizan equipos mecánicos manuales o simples. Los agricultores chinos, a través de pequeñas inversiones en equipos y procesos, han podido convertir millones de toneladas de batata en almidón, el cual se usa principalmente para fideos. Se ha demostrado que la harina de batata posee propiedades fisicoquímicas, funcionales y sensoriales deseables y adecuadas para sustituir parcialmente a la harina de trigo en la industria de la pastelería, dadas sus características nutricionales, ya que es baja en grasas y alta en vitaminas, fibra dietética y minerales, y los productos derivados de la misma poseen calidad aceptable. La utilización de harina de batata en los subproductos de panificación es una opción para las personas que padecen celiaquía, asociada con el consumo de gluten de los cereales (Tortoe et al., 2017).

El objetivo de este capítulo fue determinar la influencia de la virosis actual “encrespamiento amarillo” (EA) en el rendimiento y en las características fisicoquímicas y funcionales de almidones en dos cultivares de batata.

II. MATERIALES Y MÉTODOS

2.1. Determinación del rendimiento de almidón en raíces reservantes

El almidón fue extraído de las raíces de batata obtenidas a partir del ensayo experimental de campo, desarrollado en el capítulo 1, siguiendo lo especificado por Novelo y Betancur (2005). Éstas fueron lavadas, peladas, pesadas y cortadas en trozos de 3 x 3 cm. Posteriormente, se remojaron en una solución de bisulfito de sodio (1.500 ppm) durante 30 minutos. Luego, los trozos fueron procesados dos veces en un extractor de jugos comercial (Philips Juicer HRI 854). La suspensión resultante se tamizó a través de una malla de 70
mesh para eliminar la fibra. El filtrado se dejó sedimentar durante 4 horas a 4 °C. Transcurrido este tiempo, la mayor parte del líquido sobrenadante se eliminó por sifoneo y el lixiviado de almidón se lavó dos veces con agua destilada, centrifugando durante 12 minutos a 3.500 rpm en una centrífuga refrigerada (ThermoScientific Sorvall ST 40R), con la finalidad de recuperar el almidón. Este proceso se repitió dos veces y el precipitado se secó en una estufa de convección a 45 °C, durante 24 horas y se molió en un Molino de Butt (Decalab Argentina, 1,4 HP) hasta obtener un polvo que fue tamizado con una malla de 70 mesh. Se almacenó en bolsas de polietileno selladas de manera hermética para su posterior uso (Figura 3.1).

El rendimiento de almidón de cada muestra se determinó como porcentaje en peso del almidón obtenido con respecto al peso de las raíces procesadas.

Figura 3.1.- Proceso de extracción de almidón de batata de los cv Arapey INIA y Beauregard de plantas sanas y enfermas.
2.2. Propiedades de hidratación

El contenido de humedad se determinó por diferencia de pesada antes y después de calentar 2,00±0,01 g de almidón a 135±2 °C durante dos horas en estufa isotérmica de calentamiento eléctrico con circulación de aire forzado (American Association of Cereal Chemistry AACC, 2000).

Con el objetivo de conocer la fracción soluble (FS) y la capacidad de retención de agua (CRA) del almidón nativo, se colocaron 1,000 ± 0,001 g de cada muestra en un tubo cónico con 30 mL de agua destilada, se homogeneizó utilizando un vórtex y se dejó reposar durante 18 h a temperatura ambiente (25 °C). Luego, las muestras fueron centrifugadas a 2.000 g por 30 min. El sólido hidratado y el sobrenadante fueron cuantitativamente separados y pesados. Se secaron a 105 °C (hasta peso constante) y se pesó el residuo seco para obtener los valores de capacidad de retención de agua (g de agua/g residuo seco del sólido hidratado) y la fracción soluble (g de sólidos solubles del sobrenadante/100 g de muestra). El ensayo se realizó por triplicado.

2.3. Distribución del tamaño de partícula

La distribución de tamaño de las partículas de los almidones se determinó por difracción láser LA 960Horiba. Esta técnica consiste en medir el tamaño de las partículas por difracción de un haz de luz láser. Las partículas expuestas a un rayo láser paralelo desvían la luz con un ángulo fijo que depende de su tamaño, que es inversamente proporcional a dicho ángulo de difracción. A partir de esto, la distribución de la intensidad de la luz dispersada se utiliza para calcular la distribución del tamaño de partículas.

Para realizar esta determinación, las muestras fueron transferidas a la celda de dispersión del analizador de tamaño de partículas, conteniendo agua micropore filtrada e inmediatamente se procedió a efectuar la medición.

Los parámetros de distribución de tamaño evaluados fueron: distribución porcentual de volumen de las partículas y diámetro medio de partícula. Las mediciones se realizaron por triplicado.
2.4. Microscopía electrónica de barrido

La ultraestructura de las partículas de los almidones fue estudiada mediante microscopía electrónica de barrido (SEM). Las muestras se montaron sobre un porta-muestra y se recubrieron con una fina capa de oro (30 nm espesor) mediante un sistema de recubrimiento por pulverización catódica. Para realizar las observaciones, se utilizó un microscopio de barrido electrónico FE-SEM Sigma bajo condiciones de alto vacío (10⁻⁴ Pa) a un voltaje de aceleración de 5 kV. Las fotografías se tomaron utilizando un software de captura automática de imágenes, con magnificaciones entre 229 y 4570x.

2.5. Análisis de las propiedades de viscosidad de los almidones

Las propiedades de viscosidad se determinaron a través de un visco-analizador rápido (RVA) (RVA series 4500, Perten Instruments). Para la determinación, una dispersión de almidón en agua fue calentada, enfriada y sometida a agitación constante (fuerza de corte) bajo condiciones controladas. Durante este ensayo, se evaluaron los cambios de viscosidad del sistema en función del tiempo y la temperatura, lo que permitió estudiar el perfil de viscosidad de los almidones. Las suspensiones de 3,5 g de almidón (humedad conocida) y 25±0,1 mL de agua destilada (0,88 % fracción de volumen de agua) se calentaron a 50 °C, bajo agitación a 960 rpm durante 10 s para la dispersión completa de la mezcla. Las mismas se mantuvieron a 50 °C durante 1 min, y luego fueron llevadas a 95 °C (velocidad de calentamiento de 9,4 °C/min y velocidad de agitación de 160 rpm). El sistema se mantuvo a esa temperatura durante 2,5 min, y finalmente se enfrió a 50 °C (velocidad de enfriamiento de 11,8 °C/min).

Se registró viscosidad y temperatura en función del tiempo. A partir de estas curvas (Figura 3.2), se obtuvieron cinco parámetros: pico de viscosidad (PV), viscosidad media (VM), viscosidad final (VF), breakdown (PV – VM) y setback (VF – VM).
El **pico de viscosidad (PV)** es la máxima viscosidad que el sistema puede adquirir; se origina cuando un número suficiente de gránulos de almidón se hinchan como consecuencia de la absorción de agua y de la temperatura. Luego de alcanzar este valor, la viscosidad del sistema cae levemente, debido a la ruptura de algunos gránulos y a que las moléculas, principalmente de amilosa, liberadas al medio durante la gelatinización, se orientan en sentido del flujo. La viscosidad en este punto es denominada **viscosidad media (VM)**. Durante el enfriamiento de la pasta, la viscosidad comienza a aumentar nuevamente hasta lo que se denomina **viscosidad final (VF)**, incremento que se encuentra relacionado con la re-asociación de las moléculas de amilosa.

El **breakdown** mide la facilidad con la que los gránulos hinchados pueden ser desintegrados por acción de las fuerzas de corte.

El **setback** es una medida de la tendencia que poseen las moléculas de amilosa a retrogradarse durante el enfriamiento de la pasta, es decir estima su capacidad para formar un gel (capacidad de gelación de la amilosa) (Copeland et al., 2009).

Figura 3.2.- Modelo general del perfil de viscosidad de almidón y parámetros de viscosidad.
2.6. Análisis de perfil de textura de geles de almidón

A partir de los ensayos del RVA se obtuvieron geles de cada muestra, los que se dejaron reposar durante 24 h a 4 °C y luego se desmoldaron y cortaron en rodajas de 7 mm de espesor. Se evaluó el perfil de textura (Figura 3.3) de cada rodaja mediante dos ciclos de compresión – descompresión, al 30% en un texturómetro INSTRON (Universal Testing Machine, modelo 3342, EUA). De este ensayo se determinó la firmeza, fuerza máxima que tiene lugar, en cualquier tiempo, durante el primer ciclo de compresión (Bourne, 1978).

Figura 3.3.- Modelo general de perfil de textura. Análisis de Perfil de Textura (TPA).

2.7. Calorimetría diferencial de barrido (DSC)

Las transiciones de estado de los almidones se registraron mediante un Calorímetro Diferencial de Barrido, DSC823e Calorimeter Mettler Toledo (Schwerzenbach, Suiza), con software STARe Default DB V9.00 (Mettler Toledo, Schwerzenbach, Suiza).
En cada cápsula se pesaron aproximadamente 15 µg de almidón y 30 µg de agua destilada. Se sellaron herméticamente y se dejaron reposar 24 h.

Durante el ensayo, las cápsulas se calentaron de 25 a 120 ºC a una velocidad de 10ºC/min. A partir de los termogramas obtenidos, se calcularon los siguientes parámetros: temperatura de inicio de la transición \(T_0 \), temperatura de finalización de la transición \(T_f \), temperatura a la que se produce el pico \(T_p \), altura del pico y cambio de entalpía \(\Delta H \) (Figura 3.4).

Todos los ensayos se realizaron por triplicado.

Figura 3.4.- Modelo de termograma de una corrida de DSC (calorimetría diferencial de barrido) y sus principales indicadores: \(T_0 \) (temperatura de inicio de la gelatinización), \(T_p \) (temperatura de pico), \(T_f \) (temperatura de finalización) y \(\Delta H \) (cambio en la entalpía).
2.8. Análisis estadístico

En todos los casos, los ensayos experimentales se realizaron al menos por duplicado y los resultados se informaron como el valor promedio ± desviación estándar. El análisis estadístico de los datos se llevó a cabo mediante el software estadístico Infostat (Facultad de Ciencias Agropecuarias, UNC, Argentina) (Di Rienzo et al., 2016). Los resultados obtenidos se trataron estadísticamente mediante análisis de varianza (ANOVA), que permite realizar las estimaciones de las respuestas promedio de tratamientos y las comparaciones entre ellas. Luego, fueron contrastados por el método de la mínima diferencia significativa de Fisher (LSD), con un nivel de significancia p<0,05 (Di Rienzo et al., 2002). La relación entre las distintas variables se determinó mediante el coeficiente de correlación de Pearson con p<0,05.

III. RESULTADOS

3.1. Determinación del rendimiento del almidón en raíces reservantes

El almidón es cuantitativamente el componente más importante de las raíces reservantes de batata. Su utilización en diversos productos alimenticios, es ampliamente llevada a cabo en numerosos países. Con el objetivo de caracterizar almidones de dos cultivares empleados en este trabajo y evaluar los posibles efectos del EA, se determinó su contenido.

Pese a que el contenido porcentual de almidón fue superior en plantas sanas respecto a las enfermas de ambos cultivares, las diferencias no fueron estadísticamente significativas (Figura 3.5). Sin embargo, dentro de la condición sanitaria “enfermas”, los registros de esta variable fueron significativamente mayores (p<0,05) en Arapey INIA en relación a Beauregard.

Arapey INIA tuvo mayor contenido de almidón que Beauregard, independientemente de su condición sanitaria, lo que obedece a las características varietales (Woolfe, 1992;
Solomon, 2015; Chen et al., 2003a; Badu et al., 2017; Arancibi et al., 2014; Pérez et al., 2005; Moorthy et al., 2010).

Figura 3.5.- Rendimiento porcentual del contenido de almidón de plantas sanas y enfermas de los cultivares Arapey INIA y Beauregard. Los segmentos sobre las barras indican desviación estándar.

Las pequeñas diferencias observadas para la variable condición sanitaria “enferma”, entre ambos genotipos, pueden deberse en parte a una alteración diferencial en la translocación de fotoasimilados a causa de las virosis. Quanjer, (1919; 1920) estudió el contenido de almidón de hojas sanas e infectadas con virus de floema en papa, hallando una acumulación de almidón en hojas enfermas, mientras que en hojas sanas el mismo disminuyó su contenido. Esta acumulación de almidón, fue a expensas de los tubérculos, disminuyendo significativamente su crecimiento. Los virus pueden alterar la tasa de síntesis y translocación de los hidratos de carbono desde un órgano fuente a un destino (Seo et al., 2007). En este sentido, Di Feo et al. (2010) observaron que en tejidos foliares de trigo frente a un estrés
causado por el virus Mal de Río Cuarto (MRCV) se incrementó el contenido de almidón respecto a plantas sanas.

Thao y Noomhorm, (2011), evaluaron cuatro genotipos de batata con colores de pulpa amarillo, púrpura y anaranjado. No observaron diferencias significativas en el contenido de almidón entre los cultivares de pulpa anaranjada y amarilla. Además, informaron que la estrecha diferencia pudo deberse a la estructura de la pared celular de las variedades, lo que dificulta el aislamiento del almidón del cloroplasto y produce un bajo rendimiento del mismo.

3.2. Propiedades de hidratación

Se analizaron las propiedades de hidratación de los almidones. La capacidad de retención de agua es la capacidad del almidón para absorber el agua y aumentar su consistencia en los alimentos. Se cuantifica como los gramos de agua que son retenidos por cada gramo de muestra seca. La fracción soluble en agua, es el porcentaje de cada muestra que se solubilizó en agua. En la Tabla 3.2 se reportan los valores de ambas variables. No se observaron diferencias significativas para ambas variables entre cultivares y condiciones sanitarias.
Tabla 3.2.- Valores de las propiedades de hidratación de los almidones de batata.
Capacidad de retención de agua (g de agua/g muestra) y fracción soluble (%)

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Retención de agua (g de agua/g muestra)</th>
<th>Fracción soluble (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arapey sana</td>
<td>1,82 ± 0,24 Ea</td>
<td>0,99 ± 0,02 Ea</td>
</tr>
<tr>
<td>Arapey enferma</td>
<td>1,63 ± 0,18 Ma</td>
<td>1,00 ± 0,03 Ma</td>
</tr>
<tr>
<td>Beauregard sana</td>
<td>1,73 ± 0,16 Ep</td>
<td>0,97 ± 0,03 Ep</td>
</tr>
<tr>
<td>Beauregard enferma</td>
<td>1,76 ± 0,21 Mp</td>
<td>0,97 ± 0,01 Mp</td>
</tr>
</tbody>
</table>

Los datos son medias ± desvíos estándar, n=3. Los valores en la misma columna con letras mayúsculas comparan diferentes cultivares de la misma condición sanitaria. Letras minúsculas comparan diferentes condiciones sanitarias del mismo cultivar. Valores con la misma letra no son significativamente diferentes (p>0.05).

En general, los resultados indican que las variedades de pulpa anaranjada y amarilla, independientemente de su condición sanitaria, tienen una capacidad de retención de agua similar. Sin embargo, en Arapey INIA sana, ésta es ligeramente más alta en relación a Beauregard (1,82 y 1,72 g de agua / g de muestra, respectivamente). Hernández et al. (2008), obtuvieron valores similares en distintos almidones de raíces reservantes de plantas sanas de diferentes especies. Según Lii et al. (1995), el contenido de amilopectina está relacionado con el poder de hinchamiento de los almidones.

La fracción soluble en los almidones evaluados, osciló entre 0,97 y 1,00%, y se encuentran por debajo de los informados por Franco (2016). Cabe destacar que estos ensayos se realizaron a temperatura ambiente; a medida que los almidones se someten a mayores temperaturas, aumenta el poder de hinchamiento y la solubilidad (Peroni et al., 2006).

Por otro lado, las variedades analizadas presentaron baja capacidad de retención de agua, respondiendo a las características varietales (Tian et al., 1991).
3.3. Distribución del tamaño de partícula

El tamaño de los gránulos de almidón es una de las características más importantes para aplicaciones industriales, contribuye a la velocidad a la que el almidón gelatiniza. En gránulos más grandes hay menos enlaces moleculares y esto conduce a un hinchamiento más rápido (Tsakama et al., 2010). Además, el tamaño de las partículas y la distribución del tamaño son importantes porque pueden afectar las propiedades funcionales del almidón (Rasper, 1971).

Con el objetivo de evaluar estos efectos, se determinó la distribución del tamaño de los almidones de batata en suspensión (Figura 3.6). Al analizar el tamaño de partículas de almidón (diámetro), en todas las muestras se encontró una sola población, en un rango de 5,74 a 32,19 µm con pico cercano a 15 µm, confirmando lo observado por Peroni et al. (2006) y Rocha et al. (2010).

Cabe destacar que la distribución del tamaño de los gránulos promedio de almidón fue significativamente diferente (p<0,05) entre variedades y condiciones sanitarias. En el caso de Beauregard, en ambas condiciones sanitarias, exhibió gránulos más pequeños con diámetros de 10, 50 y 90, en comparación con los de Arapey INIA. Estas diferencias podrían deberse al genotipo.
Figura 3.6.- Distribución de frecuencia relativa (%) del tamaño de partícula (μm) de las muestras de almidón de batata en suspensión para dos condiciones sanitarias (sana y enferma) y dos variedades (Arapey INIA y Beauregard).

El diámetro más frecuente de las partículas de almidón de raíces sanas de Arapey INIA y de Beauregard fue 15,25 y 12,35 μm, respectivamente. Por otro lado, para la condición enferma, el pico de diámetro para esta variable fue de 14,47 μm en Arapey INIA y de 11,24 μm, en Beauregard (Tabla 3.3).

Los valores D10, D50, y D90 indican que el 10%, 50%, y 90% de las partículas tuvieron valores de diámetro menor o igual al valor designado (diámetro medio del volumen equivalente de las partículas, o también denominado diámetro medio De Brouckere: D4,3 o bien el diámetro medio Sauter: D3,2, que es el diámetro medio de la superficie equivalente de las partículas), respectivamente. Todas las variables se calcularon asumiendo que los gránulos de almidón son partículas esféricas (Malvern Instruments, 1999).
Los datos son medias ± desvíos estándar, n=3. Los valores en la misma columna con letras mayúsculas comparan diferentes cultivares de la misma condición sanitaria. Letras minúsculas comparan diferentes condiciones sanitarias del mismo cultivar. Valores con la misma letra no son significativamente diferentes (p>0.05).

El tamaño de los gránulos de D10, D50 y D90 varió de 8,53 a 10,81 µm, de 11,02 a 14,81 µm, y de 14,33 a 20,27 µm, respectivamente, para las cuatro muestras de almidones. El tamaño de los gránulos en este estudio fue comparable al de la literatura anterior (Woolfe, 1992; Walter et al., 2000; Osundahunsi et al., 2003; Zhang et al., 2018; Guo et al., 2019). Lee y Lee (2017), analizaron diferentes cultivares de batata con distintos colores de pulpa, observando diferencias significativas entre variedades de pulpa púrpura y anaranjada. Abegunde et al. (2013), afirmaron que el tamaño de los gránulos se ve afectado por la variedad, la fisiología de la planta y su estado de crecimiento.

Noda et al. (1996, 1997), observaron una influencia significativa de los cultivares sobre el tamaño de partícula del almidón. Además, demostraron que la fertilidad de los suelos y las fechas de siembra y cosecha no tienen efectos significativos en el tamaño de gránulo de almidón.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>D10 (µm)</th>
<th>D50 (µm)</th>
<th>D90 (µm)</th>
<th>Promedio (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arapey sana</td>
<td>10,81 ± 0,18Fb</td>
<td>14,81 ± 0,26Fb</td>
<td>20,27 ± 1,03Fa</td>
<td>15,25 ± 0,36Fb</td>
</tr>
<tr>
<td>Arapey enferma</td>
<td>9,75 ± 0,37Na</td>
<td>13,93 ± 0,24Na</td>
<td>19,85 ± 0,51Na</td>
<td>14,47 ± 0,24Na</td>
</tr>
<tr>
<td>Beauregard sana</td>
<td>9,07 ± 0,58Ep</td>
<td>12,05 ± 0,76Eq</td>
<td>15,98 ± 1,07Eq</td>
<td>12,35 ± 0,78Eb</td>
</tr>
<tr>
<td>Beauregard enferma</td>
<td>8,53 ± 0,31Mp</td>
<td>11,02 ± 0,19Mp</td>
<td>14,33 ± 0,34Mp</td>
<td>11,24 ± 0,19Ma</td>
</tr>
</tbody>
</table>

Tabla 3.3.- Valores de tamaño de partícula de almidones (µm) de diferentes diámetros (D) 10, 50 y 90, en el cv Arapey INIA y Beauregard para condición sanitaria sana y enferma
3.4. Microscopía electrónica de barrido (SEM)

En las imágenes obtenidas por microscopía electrónica de barrido se observa la disposición y forma de los gránulos de almidón de batata de las diferentes variedades y condiciones sanitarias (Figura 3.7). En general, los almidones muestran forma esférica y poligonal, con una distribución espacial homogénea, en concordancia con lo informado por otros autores (Rocha et al., 2010; Osundahunsi et al., 2003; Zhang et al., 2018). El tamaño de los gránulos de almidón en el cv Beauregard resultó ligeramente menor que en Arapey INIA, coincidiendo con los resultados informados del tamaño de partícula.

Figura 3.7.- Imágenes obtenidas a partir de microscopía electrónica de barrido (SEM). A: variedad Beauregard infectada con EA; B: variedad Beauregard sana; C: variedad Arapey INIA infectada con EA; D: variedad Arapey INIA sana.
3.5. Análisis de las propiedades de viscosidad de los almidones

Las propiedades de pasting de los almidones son muy importantes para su caracterización y para sus aplicaciones. Los datos correspondientes se presentan en la Tabla 3.4. Se observaron diferencias significativas (p<0,05) para las variables breakdown y tiempo y temperatura de pico, de Arapey INIA y Beauregard en su condición sana. Por otra parte, no se registraron diferencias para las variables pico de viscosidad, viscosidad media y final, y setback, entre cultivares y condición sanitaria.

En la Tabla 3.4 se muestran los valores de pico de viscosidad en los almidones de Arapey INIA y Beauregard. Los mismos fueron ligeramente superiores en plantas enfermas respecto a sanas para Arapey INIA (6910 y 6662 cP, respectivamente) y Beauregard (6757 y 5164 cP, respectivamente).

La viscosidad media es una medida de la estabilidad de la pasta. El rango de los valores obtenidos de los almidones analizados osciló entre 2990 cP, en Beauregard en plantas enfermas y 2190 cP, para la condición sanitaria sana de la misma variedad, no observándose diferencias significativas entre las muestras.

Un parámetro importante utilizado para medir la estabilidad de la pasta de almidón es el breakdown. Refleja la capacidad de resistir a la cizalla mecánica durante el calentamiento (Abegunde et al., 2013). Se observó un mayor valor en los valores de plantas sanas de Arapey INIA en relación a Beauregard.

La viscosidad final indica la capacidad de un almidón para formar una pasta o gel después del enfriamiento (Shimelis et al., 2006). El mayor valor observado fue en Beauregard en su condición enferma (3873 cP), mientras que el valor más bajo se registró en el mismo cultivar para su condición sana (3202 cP).
Tabla 3.4.- Valores de las propiedades de pasting de almidones de Beauregard y Arapey INIA en condición sanitaria sana y enferma.
PV, pico de viscosidad; VM, viscosidad media; BD, *breakdown* (PV - VM); VF, viscosidad final; SB, *setback* (VF - VM); PTime, tiempo de pico; PTemp, temperatura de pico

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>PV [cP]</th>
<th>VM [cP]</th>
<th>BD [cP]</th>
<th>VF [cP]</th>
<th>SB [cp]</th>
<th>PTime (min)</th>
<th>PTemp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauregard sana</td>
<td>5164 ± 1639Ep</td>
<td>2190 ± 781Ep</td>
<td>2974 ± 860Ep</td>
<td>3202 ± 1283Ep</td>
<td>1012 ± 503Ep</td>
<td>4,03 ± 0,04Ep</td>
<td>71,88 ± 1,90Ep</td>
</tr>
<tr>
<td>Beauregard enferma</td>
<td>6757 ± 761Mp</td>
<td>2990 ± 1041Mp</td>
<td>3767 ± 325Mp</td>
<td>3873 ± 1017Mp</td>
<td>883 ± 232Mp</td>
<td>4,16 ± 0,30Mp</td>
<td>71,18 ± 0,96Mp</td>
</tr>
<tr>
<td>Arapey sana</td>
<td>6910 ± 323Ea</td>
<td>2755 ± 223Ea</td>
<td>4155 ± 543Fa</td>
<td>3633 ± 295Ea</td>
<td>878 ± 73Ea</td>
<td>3,90 ± 0,12Fa</td>
<td>74,59 ± 0,38Fa</td>
</tr>
<tr>
<td>Arapey enferma</td>
<td>6662 ± 658Ma</td>
<td>2886 ± 773Ma</td>
<td>3776 ± 167Ma</td>
<td>3722 ± 596Ma</td>
<td>836 ± 206Ma</td>
<td>4,06 ± 0,08Mb</td>
<td>74,17 ± 0,83Na</td>
</tr>
</tbody>
</table>

Los datos son medias ± desvíos estándar, n = 3. Los valores en la misma columna con letras mayúsculas comparan diferentes cultivares de la misma condición sanitaria. Letras minúsculas comparan diferentes condiciones sanitarias del mismo cultivar. Valores con la misma letra no son significativamente diferentes (p>0.05).
La temperatura de gelatinización es importante, ya que afecta las propiedades de viscosidad de los almidones de batata (Franco, 2016). Zhang y Oates (1999) informaron que la temperatura de gelatinización de los almidones de batata se rige por la relación amilosa / amilopectina.

Las diferencias observadas en los tiempos de pico entre cultivares sanos, coinciden con los informados por Chen et al. (2003b), quienes han demostrado que los almidones con gránulos grandes se gelatinizan relativamente más rápido que las fracciones más pequeñas debido a la menor vinculación molecular. Un tiempo de pico largo puede asociarse con gránulos que se hinchan más gradualmente y, por lo tanto, no son tan susceptibles a daños mecánicos (Wiesenborn et al., 1994). El tiempo necesario para alcanzar la máxima viscosidad es un parámetro que podría utilizarse para predecir la resistencia de la pasta de almidón a la descomposición a través de la relación de estabilidad.

Los resultados obtenidos en el presente trabajo coinciden con los de otros autores que informaron que las propiedades de viscosidad del almidón de batata se ven influenciadas por la variedad, el contenido de almidón, sus interacciones entre los diferentes componentes, el tamaño y morfología de los gránulos (Gao, 2001; Nuwamanya et al., 2010; Abegunde et al., 2013; Singh et al., 2005; Zhang et al., 2018).

Las desviaciones estándar elevadas en las diferentes propiedades de pasting, se debieron a las diferencias registradas entre los bloques de cada tratamiento, lo que impidió observar el efecto de la virosis y de las variedades.

3.6. Textura de los geles

Las propiedades de textura son atributos de calidad importantes que deben estudiarse, ya que influyen en la aceptabilidad y en la calidad general del producto. Con el objetivo de poder determinar los efectos de la virosis en las características texturales de los geles, se determinó el Análisis de Perfil de Textura (TPA).
A partir de los perfiles obtenidos, se observaron valores ligeramente inferiores en la firmeza de los geles de los tratamientos enfermos en comparación con los sanos. Los valores registrados oscilaron en un rango de 4,51 a 5,07 N para Arapey INIA y Beauregard, respectivamente, en los tratamientos enfermos. Por otra parte, en los sanos fueron, 5,42 N para Arapey INIA y 5,93 N para Beauregard (Figura 3.8). Cabe destacar que la firmeza de los geles evaluados entre variedades y condición sanitaria, no fueron significativamente diferentes (p>0,05).

Thao y Noomhorm, (2011), analizaron la firmeza de geles en cultivares de batata de pulpa amarilla y anaranjada y los valores informados oscilaron en un rango de 1,29 a 2,61 N, respectivamente. Hernández et al., (2008) evaluaron la firmeza de amiloides de mandioca y batata, registrando valores inferiores a los observados en este trabajo, con lo que nuestros genotipos aventajan a los incluidos en el estudio de dichos autores.

![Figura 3.8.- Firmeza de los geles elaborados a partir de almidones de plantas sanas y enfermas de los cultivares Arapey INIA y Beauregard. Referencias; Los segmentos sobre las barras indican desviación estándar.](image)

En general, estos valores indican de manera preliminar, que la virosis no afectó significativamente la textura de los geles al considerar la variable firmeza. Sin embargo, hubo una merma de la misma en plantas enfermas respecto a las sanas de ambos genotipos.
(Figura 3.8). Por otra parte, el cultivar Beauregard en su condición sana, presentó la mayor firmeza, y podría ser el más apto para la elaboración de dulces.

Según informaron Hernández Medina et al. (2008), la firmeza y elasticidad, así como la alta estabilidad a la refrigeración y congelación de los almidones de batata, indican que éstos podrían utilizarse como agentes espesantes y estabilizantes en sistemas alimenticios que necesiten ser refrigerados y congelados.

3.7. Calorimetría diferencial de barrido (DSC)

Mediante calorimetría diferencial de barrido (DSC) se mide el flujo de energía calórica cuando una muestra pequeña es sometida a un cambio constante de temperatura, y es una técnica muy utilizada para el estudio de las propiedades térmicas del almidón. El análisis de los termogramas obtenidos, permite determinar la temperatura a la que ocurren las transiciones físicas y su energía asociada. Cuando los gránulos de almidón son calentados a una determinada temperatura en presencia de agua se produce un proceso fisicoquímico llamado gelatinización. Durante este proceso, los gránulos que presentan una estructura altamente organizada, absorben agua en las zonas inter-micelares amorfas que son menos organizadas y más accesibles (Parker y Ring, 2001; Cooke y Gidley, 1992).

Se observaron diferencias significativas (p<0,05) en la temperatura de inicio, pico y final de gelatinización entre ambas variedades con la misma condición sanitaria (Tabla 3.5). Con respecto a la entalpía de gelatinización, solo se hallaron diferencias estadísticas significativas entre variedades cuando las mismas estaban sanas.

La temperatura de pico exhibió diferencias significativas entre condiciones sanitarias sólo en el caso del cv Arapey INIA (Arapey sana: 71,30 °C y enferma: 72,88 °C).

La entalpía de gelatinización fue significativamente mayor en Beauregard enferma (9,00 J/g) que en sana (7,47 J/g), pero no se observaron diferencias para esta variable entre condiciones sanitarias para Arapey INIA.
Los valores de temperatura de inicio de gelatinización obtenidos en el presente trabajo fueron consistentes con los informados por Noda et al. (1996) en genotipos sanos de pulpa anaranjada.

La entalpía de gelatinización osciló en un rango de 9 a 7,47 J/g en Beauregard, y de 8,58 a 8,79 J/g, en Arapey INIA, para los tratamientos enfermos y sanos, respectivamente. Valores similares fueron informados por otros autores que trabajaron con cultivares que poseían distintos colores de pulpa (Osundahunsi et al., 2003; Lee y Lee, 2017; Guo et al., 2019). Sin embargo, las temperaturas de gelatinización (inicio, pico y final) y entalpía, fueron más bajas que los publicados por Walter et al. (2000) para la variedad Beauregard.

Los resultados observados, indican que, considerando plantas sanas, el almidón de pulpa anaranjada presentó temperaturas de gelatinización y entalpía más bajas en relación al de pulpa amarilla. Se sugiere que el almidón de Beauregard en su condición sana, podría presentar estructuras granulares más desordenadas y menos estables (Lund, 1984; Collado et al., 1999). Algunos estudios demostraron que las propiedades de gelatinización del almidón reflejan la arquitectura molecular de la amilopectina, pero no la relación amilosa / amilopectina (Noda et al., 1998; Noda et al., 2001).
Tabla 3.5.- Parámetros térmicos de almidón. To: temperatura de inicio de gelatinización; Tp: temperatura de pico gelatinización; Tf: temperatura final de gelatinización; ΔH: entalpía de gelatinización.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>To (°C)</th>
<th>Tp (°C)</th>
<th>Tf (°C)</th>
<th>ΔH (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauregard sana</td>
<td>62,22 ± 1,95Ea</td>
<td>67,66 ± 1,88Ea</td>
<td>75,20 ± 1,71Ea</td>
<td>7,47 ± 0,48Ea</td>
</tr>
<tr>
<td>Beauregard enferma</td>
<td>61,94 ± 1,16Ma</td>
<td>66,51 ± 1,42Ma</td>
<td>73,81 ± 2,51Ma</td>
<td>9,00 ± 0,58Mb</td>
</tr>
<tr>
<td>Arapey sana</td>
<td>66,51 ± 0,19Fa</td>
<td>71,30 ± 0,38Fa</td>
<td>78,36 ± 0,48Fa</td>
<td>8,79 ± 1,04Fa</td>
</tr>
<tr>
<td>Arapey enferma</td>
<td>65,90 ± 0,92Na</td>
<td>72,88 ± 1,24Nb</td>
<td>78,97 ± 0,55Na</td>
<td>8,58 ± 0,83Ma</td>
</tr>
</tbody>
</table>

Los datos son medias ± desvíos estándar. Los valores en la misma columna con letras mayúsculas comparan diferentes cultivares de la misma condición sanitaria. Letras minúsculas comparan diferentes condiciones sanitarias del mismo cultivar. Valores seguidos por la misma letra en la misma columna no son significativamente diferentes (p>0.05).

Las diferencias observadas en los parámetros térmicos de los almidones que se analizaron en este trabajo, podrían deberse a la variación genética del material empleado. Collado et al. (1999) en sus estudios sobre la variación genética en las propiedades fisicoquímicas del almidón de batata dulce de 44 genotipos, observaron una amplia variabilidad en los parámetros de gelatinización y sostuvieron que los almidones que difieren en la temperatura y la entalpía de gelatinización tienen diferentes características de cocción que afectan al proceso individual. Las propiedades térmicas del almidón se ven afectadas por muchos factores, como el tamaño de los gránulos, el contenido de amilosa, la estructura cristalina y el grado de ordenamiento (Noda et al., 2002; Osundahunsi et al., 2003; Lindeboom et al., 2004; Kim et al., 2013; Blanco Canalis et al., 2018; Guo et al., 2019).
IV. CONCLUSIONES

⇒ La cantidad total de almidón obtenido en batatas de plantas enfermas es mucho menor que en sanas, debido a la notable disminución de la producción de raíces reservantes.

⇒ Ambos genotipos (Arapey INIA y Beauregard) tienen comportamiento similar para rendimiento de almidón en raíces reservantes, cuando estaban sanos.

⇒ Existen pequeñas diferencias de rendimiento de almidón para la condición sanitaria “enferma”, entre ambos genotipos, siendo el mismo notablemente mayor en Beauregard que en Arapey INIA.

⇒ Las variedades analizadas presentan almidón con baja capacidad de retención de agua y baja fracción soluble, siendo similares entre sí y al considerar ambas condiciones sanitarias.

⇒ La distribución del tamaño promedio de los gránulos de almidón es diferente entre variedades y condiciones sanitarias. Los gránulos son más pequeños en el cv Beauregard que en Arapey INIA.

⇒ Los gránulos de almidón de batata de ambas variedades y condiciones sanitarias muestran, en general, forma esférica y poligonal, con una distribución espacial homogénea.

⇒ Las variables relacionadas con la calidad del almidón para fábrica (breakdown, tiempo y temperatura de pico) son diferentes para ambos genotipos, cuando éstos están sanos.

⇒ La firmeza del gel, variable útil en la elaboración de dulces, es mayor en el cultivar Beauregard en su condición sana.

⇒ Las características de pasting sugieren que la variedad de pulpa amarilla, Arapey INIA, tiene una menor tendencia a la retrogradación.

⇒ Los almidones de batata evaluados muestran diversas propiedades fisicoquímicas y funcionales que los hacen factibles para su utilización en diversos sistemas alimenticios y otras aplicaciones industriales, corroborando la versatilidad de esta especie.
REFERENCIAS BIBLIOGRÁFICAS

Galvez, M.; Cuellar, W.; Fuentes, S.; Kreuze, J. 2013. Caracterización molecular de aislamientos de sweepovirus que infectan *Ipomoea batatas* (L.) Lam. y estudio de sinergismo con el *sweet potato chlorotic stunt virus* (SPCSV). In: Asociación Peruana de Fitopatología (APF). Libro de

Pepó, P. 2018. The effect of different planting methods on the yield and spad readings of sweet potato (*Ipomoea batatas* (L.)). Columella: Journal of Agricultural and Environmental Sciences 5: 7-12. 10.18380/SZIE.COLUM.2018.5.1.7.

Quanjer, H. M. 1919. Sur la fonction du tissu criblé (No. dl. 16, [verh. 5]). Veenman.

ANEXO

PROTOCOLO N° 1: Dip

Transferir una pequeña gota (30-50 μl) del virus purificado o jugo de planta enferma al parafilm.

Colocar la rejilla sobre la gota con la superficie que contiene la película en contacto con el líquido, dejar 3-5 min. para que el material en suspensión se adsorba a la película.

Lavar con agua destilada (10 gotas de pipeta Pasteur) para eliminar el exceso de buffer.

Colocar una gota de contrastante al 2% acetato de uranilo sobre el parafilm y flotar la rejilla con la muestra con el lado de la película hacia la gota por 2-3 min.

Eliminar el exceso de líquido con papel de filtro.

Dejar secar la rejilla y observar al MET.

Medidas resumen. Contenido de Clorofila

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Trat</th>
<th>Variable</th>
<th>n</th>
<th>Media</th>
<th>D.E.</th>
<th>Min</th>
<th>Máx</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>9,19</td>
<td>1,59</td>
<td>5,3</td>
<td>11,2</td>
</tr>
<tr>
<td>F1</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>19,2</td>
<td>3,14</td>
<td>14,9</td>
<td>25</td>
</tr>
<tr>
<td>F2</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>11,8</td>
<td>3,71</td>
<td>6,49</td>
<td>18,7</td>
</tr>
<tr>
<td>F2</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>15,75</td>
<td>3,73</td>
<td>10,7</td>
<td>23,6</td>
</tr>
<tr>
<td>F3</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>12,74</td>
<td>3,59</td>
<td>4,72</td>
<td>18,5</td>
</tr>
<tr>
<td>F3</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>18,13</td>
<td>2,66</td>
<td>14,7</td>
<td>24,4</td>
</tr>
<tr>
<td>F4</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>10,27</td>
<td>1,7</td>
<td>7,95</td>
<td>14,2</td>
</tr>
<tr>
<td>F4</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>17,53</td>
<td>2,8</td>
<td>13,6</td>
<td>24,4</td>
</tr>
<tr>
<td>F5</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>11,39</td>
<td>2,59</td>
<td>7,17</td>
<td>16,5</td>
</tr>
<tr>
<td>F5</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>20,45</td>
<td>2,78</td>
<td>16,3</td>
<td>26,1</td>
</tr>
<tr>
<td>F6</td>
<td>EA</td>
<td>SPAD</td>
<td>20</td>
<td>11,62</td>
<td>2,82</td>
<td>4,77</td>
<td>15,4</td>
</tr>
<tr>
<td>F6</td>
<td>S</td>
<td>SPAD</td>
<td>20</td>
<td>22,65</td>
<td>3,69</td>
<td>13,9</td>
<td>27,2</td>
</tr>
<tr>
<td>Variable</td>
<td>Efecto</td>
<td>Coeficientes</td>
<td>p-valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>Directa</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NG</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NRC</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NTR</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>PTR</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>AF</td>
<td>3.8E-04</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.77</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>Directa</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PFA</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NRC</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NTR</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PTR</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>AF</td>
<td>6.5E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.51</td>
<td>0.0079</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>Directa</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PFA</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NTR</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PTR</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>AF</td>
<td>-1.8E-03</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.96</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>Directa</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PFA</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NRC</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PTR</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>AF</td>
<td>-2.8E-03</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.72</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>Directa</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>PFA</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NRC</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NTR</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>AF</td>
<td>-2.1E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efecto</td>
<td>Vía</td>
<td>Coeficientes</td>
<td>p-valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>Directa</td>
<td>-4.6E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NG</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NRC</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NTR</td>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>PTR</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>AF</td>
<td>-4.9E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.67</td>
<td>0.0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>Directa</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PFA</td>
<td>-3.9E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NRC</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NTR</td>
<td>-0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PTR</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.66</td>
<td>0.0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>Directa</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PFA</td>
<td>-2.8E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NTR</td>
<td>-0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PTR</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.89</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>Directa</td>
<td>-0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PFA</td>
<td>-2.9E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NRC</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PTR</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.80</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>Directa</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>PFA</td>
<td>-3.2E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NRC</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NTR</td>
<td>-0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.98</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Directa</td>
<td>-0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PFA</td>
<td>-9.3E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NG</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NRC</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NTR</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PTR</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.30</td>
<td>0.1302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genotipo: Tratamiento: Beauregard:Enferma

Variable dependiente: PRC; n=25

<table>
<thead>
<tr>
<th>Efecto</th>
<th>Vía</th>
<th>Coeficientes</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA</td>
<td>Directa</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NG</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NRC</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NTR</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>PTR</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.79</td>
<td><0.0001</td>
</tr>
<tr>
<td>NG</td>
<td>Directa</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PFA</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NRC</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NTR</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PTR</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.42</td>
<td>0.0377</td>
</tr>
<tr>
<td>NRC</td>
<td>Directa</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PFA</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NTR</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PTR</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.91</td>
<td><0.0001</td>
</tr>
<tr>
<td>NTR</td>
<td>Directa</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PFA</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NRC</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PTR</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>AF</td>
<td>-8.2E-04</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.50</td>
<td>0.0110</td>
</tr>
<tr>
<td>PTR</td>
<td>Directa</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>PFA</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NG</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NRC</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NTR</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.90</td>
<td><0.0001</td>
</tr>
<tr>
<td>AF</td>
<td>Directa</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PFA</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NRC</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NTR</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PTR</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td></td>
<td>0.20</td>
<td>0.3481</td>
</tr>
</tbody>
</table>

Genotipo: Tratamiento: Beauregard:Sana

Variable dependiente: PRC; n=26

<table>
<thead>
<tr>
<th>Efecto</th>
<th>Vía</th>
<th>Coeficientes</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA</td>
<td>Directa</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NRC</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>NTR</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>PTR</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PFA</td>
<td>AF</td>
<td>-4.7E-03</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>0.55</td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>Directa</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PFA</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NRC</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>NTR</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>PTR</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>0.53</td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>Directa</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PFA</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NG</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>NTR</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>PTR</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>NRC</td>
<td>AF</td>
<td>-2.2E-03</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>0.85 <0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>Directa</td>
<td>-0.20</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PFA</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NG</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>NRC</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>PTR</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>AF</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>0.38</td>
<td>0.0565</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>Directa</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>PFA</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NG</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NRC</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>NTR</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>PTR</td>
<td>AF</td>
<td>-3.7E-03</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>0.98 <0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Directa</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PFA</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NG</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NRC</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>NTR</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>PTR</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>r total</td>
<td>-0.06</td>
<td>0.7885</td>
<td></td>
</tr>
</tbody>
</table>