Different experiment were done to study the bioccumulation capacity of Salvinia herzogii y Pistia stratiotes at different concentrations of Cr(III), Cr(VI) and Cd, the metal distribution in the organs of the studied, the translocation process and to develop a sorption kinetic model. S. herzogii y P. stratiotes can reduce Cr and Cd concentration in water to significantly low levels, accumulating them in their roots. When Cr was dosed as Cr(VI), plants showed fitotoxicity symptoms. Cr(III) and Cd removal efficiencies did not show significant differences, but in no case 100 % removal was reached. In consequence, it was proposed that metal sorption involves two stages: a fast one and a slow one. The fast stage occurs during the first minutes of contact because of adsorption, chelation and ionic exchange. Root–mediated precipitation and biological processes as intracellular uptake were probably responsible for the slower stage. The roots of dead plants of P. stratiotes and S. herzogii can be used as biosorbents, acting as weak cationic exchange material. The main mechanism was the exhange between monovalent ions of the biomass by metal ions and protons of the solution. The studied macrophytes was utilized in an experimental wetland and they showed high efficiency in the removal of Cr, Ni y Zn from an metallurgic industry efluent.
Se plantearon distintas experiencias para determinar la capacidad de bioacumulación de Salvinia herzogii y Pistia stratiotes a diferentes concentraciones de Cr(III), Cr(VI), y Cd, la distribución de estos metales en las distintas partes de la planta, el proceso de translocación y plantear un modelo cinético de sorción. S. herzogii y P. stratiotes pueden reducir la concentración de Cr y Cd en agua a bajos niveles, acumulándolos principalmente en raíces. Cuando el Cr se suministró como Cr(VI) las plantas mostraron síntomas de toxicidad. Los porcentajes de remoción de Cr(III) o Cd en agua fueron similares y nunca se alcanzó el 100%. Por lo que se propuso que la sorción involucra dos procesos: rápido y lento. El rápido, que ocurre en los primeros minutos de contacto, sugiere que la adsorción es un importante mecanismo de remoción, incluyendo además procesos de sorción química como quelación. La precipitación inducida por raíces y procesos biológicos como la toma intracelular son probablemente responsables del componente lento. Las raíces de plantas no vivas de P. stratiotes y S. herzogii pueden ser usados como biosorbentes, comportándose como material de intercambio catiónico débil. El principal mecanismo fue el intercambio entre iones monovalentes de la biomasa y iones metálicos pesados y protones de la solución. Estas macrófitas se utilizaron en un wetland construido a escala experimental, y demostraron ser eficientes en la sorción de Cr, Ni y Zn de un efluente de una industria metalúrgica.