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Abstract

The objective of this thesis is the study and development of inverse finite ele-

ment methods (IFEM) for the design of compliant mechanisms. The problem

consists in determining the initial shape of a mechanism such that it attains the

desired design shape under the effect of service loads. This is formally known

as an inverse design problem in the literature. Compliant mechanisms are a

special class of mechanisms that gain some of its motion by elastic deforma-

tion in one or more members, rather than from rigid-body translations and/or

rotations of classical rigid-body mechanisms. Mechanisms synthesis deals with

the design of a suitable mechanism for a specified task or performance, and it

begins with a prescribed task that must be achieved by using a yet unknown

sized or shaped mechanism.

The first approach to determine the mechanism design for a given task was

based on optimization methods. Structural optimization methods were tested

in several applications. Optimization allows the user to create designs starting

from scratch, in which a multitude of possible designs are obtained without

the need of any initial commitment or proposal. This is perhaps the major

advantage of this technique. However, the computational cost and the lack of

physical insight to how and why the topology of a mechanism is created are

still the main drawbacks.

It became evident that IFEM could make important contributions in the

field of complaint mechanism design, in particular as a re-design tool, since

IFEM solutions have shown better convergence than the direct methods from

which they derive. It also avoids the trial and error approach used many times

in the design process.

Early work focused in the development of a general 3D inverse FEM for

xi



xii ABSTRACT

solids with large displacements in the elastic range, since a central aspect

when designing a body to have an imposed shape after severe deformation is

to compute its undeformed shape. However, the vast majority of flexible links

in compliant mechanisms are prismatic shaped and can be modeled as large-

deflection beam-type elements. Subsequently, it became evident that modeling

a beam using the 3D or plane stress inverse finite element method was con-

siderable waste of computational resources. This motivated the formulation of

an inverse finite element method for large-displacement beams in the elastic

range, as an extension of the previous work in inverse finite element methods.

It is specially suited for problems where an object has to be manipulated by

the mechanism with a prescribed contact force, allowing to maximize contact

points between the mechanism and the object geometry, and has a good com-

putational efficiency, requiring only a few iterations to converge to a feasible

solution. Several mechanisms were successfully tested and the results were

validated against the results of the literature.

This is novel methodology in the field of compliant mechanisms. There

is no background of inverse methods among the procedures used to design

compliant system since it departs from classical design methods used up-to-

date, being so far the only design method that does not rely on the use of

optimization techniques.



Resumen extendido

El objetivo de esta tesis es el estudio y desarrollo de métodos de elementos

finitos inversos (IFEM) para el diseño de mecanismos flexibles. Se pretende

determinar la forma inicial de un mecanismo tal que este adquiera la forma

de diseño especificada cuando esta sujeto a las cargas de servicio. La de-

nominación formal de estos problemas en la literatura es problemas de diseño

inverso. Los mecanismos flexibles son una clase especial de mecanismos que

adquieren parte de su movimiento por la deformación elástica de alguno de

sus miembros, a diferencia de los mecanismos ŕıgidos cuyos miembros no se

deforman durante el movimiento (y cuyo movimiento viene dado por mera

traslación y rotación de cuerpos ŕıgidos). La śıntesis de mecanismos consiste

en diseñar un mecanismo adecuado para una tarea especificada por diseño, y

comienza con un requerimiento que debe ser satisfecho mediante un mecanismo

cuya forma y tamaño son incógnitas del problema.

En el análisis y diseño de mecanismos flexibles, la tarea de determinar la

forma original que ha de tener un mecanismo se encaró en principio usando

técnicas de optimización. Diversos ejemplos se llevaron a cabo, incluyendo

optimización topológica, de tamaño y de forma de mecanismos. La solución

obtenida a través de la optimización topológica es independiente de cualquier

opción de diseño previo, y esto permite crear diseños desde cero, siendo ésta

quizás la principal ventaja de esta técnica. Sin embargo, los algoritmos utiliza-

dos en la optimización de la topoloǵıa asumen un comportamiento mecánico

geométrico lineal, y es posible obtener soluciones inexactas al diseñar un

mecanismo que estará sujeto a grandes deformaciones no lineales. El costo

computacional sigue siendo la principal desventaja de este método.

Se hizo evidente entonces que IFEM podŕıa aportar contribuciones impor-

xiii



xiv RESUMEN EXTENDIDO

tantes al diseño de mecanismos flexibles, en particular como herramienta de re-

diseño. Los modelos inversos siempre demostraron mejor convergencia que los

modelos directos de los cuales fueron derivados. Es además, una metodoloǵıa

original y novedosa en la disciplina de los mecanismos flexibles ya que no hay

antecedentes en la bibliograf́ıa sobre el uso de IFEM para diseñarlos. Se aparta

de los métodos clásicos utilizados hasta la fecha, siendo además el único que

no depende de las técnicas de optimización estructural para obtener un diseño

final. Además, permite evitar el uso de la prueba y error empleado muchas

veces en todo proceso de diseño.

Las primeras aplicaciones de IFEM para el diseño de piezas sujetas a

grandes deformaciones elásticas aparecen hacia fines de 1990. Se trataba de

determinar la forma con que se deb́ıa fabricar una pieza (sólido bi- o tridimen-

sional, o axisimétrico) a fin de que adoptara la forma dictada por el diseñador

tras grandes deformaciones provocadas por solicitaciones conocidas (presión,

cambio de temperatura, fuerza centŕıfuga, etc.). Estos primeros trabajos se

concentraron en materiales hiperelásticos e isótropos.

Los trabajos iniciales desarrollados aqúı se centraron en el desarrollo de

un método IFEM general para sólidos 3D sometidos a grandes deformaciones

en el rango elástico, donde la incognita en el diseño de una pieza sujeta a

grandes deformaciones es conocer su geometŕıa no-deformada. Sin embargo,

los miembros que componen la gran mayoŕıa de los mecanismos flexibles tienen

sección transversal prismática, y esto permite modelarlos como elementos de

viga de grandes deformaciones. Resultévidente entonces que modelar vigas con

un elemento finito 3D, o su particularización a tensión plana, era un desperdicio

de recursos computacionales. Esto motivó la formulación de un método de

elementos finitos inversos para vigas de grandes deformaciones en el rango

elástico, como una extensión del trabajo previo en elementos finitos inversos.

En vigas, a diferencia de sólidos como los que se estudiaron anteriormente,

no es posible definir con precisión los ejes principales Lagrangianos transver-

sales (que interesan como dato para la ley constitutiva) a la sección cuando

existe torsión. Dicho problema se resolvió planteando la ley constitutiva en

formulación Euleriana, dado que es justamente la configuración deformada la

que se supone conocida y en consecuencia se pueden definir ajustadamente los
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ejes principales que el modelo requiere como dato. Aśı se logró resolver con

gran precisión tanto problemas bi- como tridimensionales.

La formulación IFEM para vigas de grandes deformaciones en el rango

elástico tiene buena eficiencia computacional, y requiere una pocas iteraciones

para converger a una solución. Varios mecanismos flexibles 2D y 3D, en macro

y micro escala, han sido analizados y validados con gran precisión. Pode-

mos mencionar por ejemplo los mecanismos para transmisiones flexibles, (em-

bragues y juntas), herramientas para ciruǵıa no-invasiva (pinzas y micropin-

zas), y elementos pasivos para sistemas microflúıdicos (microválvulas).

Las fallas detectadas en el método son la intersección y la interpenetración

de elementos de viga, y la violación del espacio de diseño. En el primer caso,

las intersecciones de elementos de viga da como resultado diseños no-viables,

en el cual el diseño obtenido será incapaz de ejecutar el movimiento deseado.

En cuanto a la violación del espacio de diseño, a medida que el cuerpo se

deforma, algunos elementos pueden estar ubicadas fuera del dominio de diseño

especificado.





Chapter 1

Introduction

A mechanism may be defined as a device formed by rigid or elastic elements

joined together in order to allow the conversion and/or transmission of force,

motion or energy. These elements are frequently referred to as links in the

classical literature. Traditional rigid-body mechanisms consists of rigid links

connected at movable joints, and their motion is composed of rigid-body trans-

lations and/or rotations. Presently, many mechanisms are designed to derive

some mobility by elastic deformation in one or more links, so they gain at least

some of their mobility from the deflection of flexible members rather than from

movable joints only. This latter group is widely known as compliant mecha-

nisms, and they rely on elastic strain in order to reach the desired degree of

deformability. Every elastic structure is subjected to deformations under load

and is therefore provided with some compliance; but only a special category

of systems is designed to this purpose. Hence, a compliant mechanism can

be defined as a continuum made of elastic material which explicitly fulfills a

deformability restriction [WBWF07].

While not being properly a structure, a compliant system is neither a mech-

anisms buy something in between, or both at the same time, since it joins

properties and challenges of both sorts of mechanical systems. However, each

of them has its own nomenclature, principles, and definition of degrees of free-

dom, with the subsequent properties of the stiffness matrix. Another intrinsic

characteristic frequently used in the literature to establish the difference be-

1



2 CHAPTER 1. INTRODUCTION

tween a compliant mechanism and a compliant structure is whether or not

the mechanical system performs its function transferring or transforming mo-

tion or energy: if it does, it’s classified as a mechanism and if it doesn’t, it’s

classified as a structure [How01]. Many of the available analysis and design

methods apply to both structures and mechanisms, with diverging principles

and criteria. To avoid a common source of confusion, it is important to point

out that stiffness and strength are not the same thing. The former, as the

reciprocal of flexibility, defines how much a body deflects under a given load.

The latter defines the limit of deformation which the mechanical system un-

dergoes without being permanently damaged. The fact that deformabilty and

stiffness do not exclude each other plays an important role in the design of

compliant systems as it grants the construction of objects that are flexible and

strong at the same time [Ana94, KHLS99].

In the framework of the synthesis of compliant mechanisms and structures,

the mechanical design needs to fulfill [How01, KHLS99, WBWF07]:

• deformability requirements, specifying the geometric changes that the

system under consideration must perform.

• stiffness requirements, which define the allowed deviations from the de-

sired geometry under given loads.

• strength requirements, which specify the loads to be carried without dam-

age.

• activability requirements, which state that the desired deformation is

achieved by loading trough the actuator system.

• a set of further requirements related to the weight and energy consump-

tion of the system.

In comparison with conventional rigid-body mechanisms, compliant mecha-

nisms are simpler and replace multiple rigid parts, pin joints and added springs.

In addition, they have several advantages over their rigid counterparts: there

is no wear, no backslash, less noise, they do not release particles, no lubrication
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is required and are suited for monolithic manufacturing methods with no need

for assembly. The benefits of the use of compliant systems can be summarized

as follows [How01, KHLS99, WBWF07]:

• assembly : they are conceived to be monolithic and there is a reduced need

for mechanism assembly. Some assembly may be needed, but the number

of parts is far less in comparison to traditional rigid-body mechanisms.

• no wear : compliant mechanisms attain mobility trough deformation and

therefore they experience no wear. As such, they do not release particles

and there is no need for maintenance and lubrication.

• no backslash: due to the absence of discrete joints, compliant mechanisms

do not suffer from backslash, stack up errors and clearances. As a result

high precision may be obtained.

• energy storage: compliant mechanisms store energy as they deform. This

energy may be used to assist in applications requiring a return stage.

There is a reduced need for springs and possible actuation.

Most disadvantages of compliant systems are related to their fully coupled

mechanical properties, in which load-carrying capabilities and deformability

are shared by all degrees of freedom. While a typical rigid-body mechanism

moves on a prescribed path independently of the acting forces, this does not

hold for compliant mechanisms. Another disadvantage is the limited range

of motion; an elastic element may be deformed up to a defined level, beyond

which the allowable strain of the material is exceeded. Unlike movable joints

used in rigid-body mechanisms, monolithic hinges can not be designed for an

unlimited rotation angle due to the necessity of maintaining stress levels in all

elements of the mechanism within the linear elastic regime [Lob03].

The deformation of a compliant system requires a definite amount of me-

chanical work, which is stored in the compliant component in the form of strain

energy. This is generally seen as a disadvantage in the classical literature of

rigid-body mechanisms, as the main purpose of a mechanism consists in con-

verting motion and transferring force as efficiently as possible. However, this
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can be seen from another perspective as an advantage since compliant mech-

anisms can be used to store and/or transform energy that can be released at

a later time or in a different manner.

1.0.1 The basic nomenclature behind compliant mech-

anisms

In compliant systems, a distinction is usually made between systems with

concentrated compliance (also called lumped compliance), consisting of stiff

links and compliant pivots, and systems with distributed compliance in which

only flexible segments are employed. Mixed and intermediate designs are also

conceivable [WBWF07].

A kinematic pair is a mechanical constraint (joint) that prescribes the

motion of two or more bodies, removing degrees of freedom. Kinematic pairs

can be classified in two groups: higher and lower pairs. When two bodies have

surface contact between them, they are joined by a lower pair (i.e. revolute

joints, prismatic joints and planar joints, among others). A higher pair is

formed when two bodies have line or point contact between them (e.g. cams

and gears). A link is defined as the continuum connecting the mating surfaces

of one or more kinematic pairs [Nor91, MNH94, How01]. Links connected

together by joints constitute a kinematic chain. The chain is considered a

mechanism if one of the links is fixed (usually connected to ground). The

fixed link is in general taken as the reference link. A kinematic inversion is

obtained when a different link is fixed.

If a mechanism has no joints, then it has zero links and it is called a fully

compliant mechanism. Compliant mechanisms that contain one or more tra-

ditional kinematic pairs along with compliant members are called partially

compliant mechanisms. Links are described by their structural and/or func-

tional type, depending to whether the link is rigid or compliant. In rigid links

the distance between joints is fixed and the shape of the link in unchanged

regardless of the forces applied, so the structural type suffices to describe it.

However, the motion of a compliant link depends on link geometry and lo-

cation and magnitude of applied forces and therefore its description merely
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based in its structural type turns out to be insufficient [How01]. The func-

tional which considers the location and magnitude of applied loads and the

number of pseudo-joints1is needed in conjunction with the structural type to

fully describe a compliant link. Some authors characterize compliant links

dividing them into segments, according to cross-sectional properties, material

properties, and magnitude and placement of applied loads and displacements

[Nor91]. A compliant segment may be further classified as simple (one that is

initially straight and has constant material and cross-sectional properties) or

compound (all other segments that are not simple).

The DOF of the system and Grueber’s equation

Traditional mechanism analysis assumes that the deflection of its parts is neg-

ligible compared to the overall motion, which means that motion is not a func-

tion of the shape of the links or the loads applied. This grants the kinematic

analysis to be performed independently from kinetic analysis, thus simplifying

the design task.

The degrees of freedom (DOF) of a rigid body are defined as the number of

independent movements it has. In a two dimensional plane (a planar uncon-

strained rigid link) there are three DOF. The link has traslation in the x and y

axis, and rotated about its centroid. If a kinematic chain is made up of n links,

then the total DOF is 3n [RR01]. A kinematic chain is considered a mecha-

nism if one of the links is fixed, reducing the total DOF to 3(n−1). Kinematic

constraints such as lower or higher pairs result in the decrease of the degrees of

freedom. A lower kinematic pair in planar mechanisms (such as a revolute or

prismatic pair) removes two degrees of freedom from the system. Lower pairs

in spatial mechanisms (i.e spherical, plane, cylindrical, revolute, prismatic,

and screw pairs) remove anywhere from one to three degrees of freedom, and

higher pairs remove only one degree of freedom [Nor91, How01]. Grueber’s

equation is an analytical expression to compute the degrees of freedom in a

planar mechanism

1Pseudo-joints are present when a load is applied to a compliant link other than at the
joints, inducing a significant change in its behavior.
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DOF = 3(n− 1)− 2Kl −Kh (1.1)

in which n is the total number of linkages, Kl is the total number of low

kinematic pairs, and Kh is the total number of high kinematic pairs. When

DOF = 1 the linkage is called a mechanism, where any of the movable links

can be driven by an external force. The remaining movable links will then

have constrained motion. When DOF = 0 the linkage forms a structure,

in which case external forces do not produce relative motion between links.

If DOF > 1 the linkage will require more than one driving external force

to obtain the constrained motion. In case DOF < 1, there is a redundant

member and the chain is a statically undetermined structure.

Grashof’s criterion and the mobility of the system

The mobility problem has been of interest for a long time in the area of mech-

anism design. A mechanism may encounter a singular configuration under

certain geometric conditions, at which the instantaneous degree of freedom

(the transitory mobility of the mechanism) will be different from the result de-

rived by the Grubler’s equation. When a singular configuration occurs during

the motion, the relative motion between links is in a critical state and the mo-

bility of some link (s) will become zero. Therefore, the study of the geometric

relations for linkages under singular conditions may help in understanding the

mobility of the linkages. Rigid four-bar mechanisms are the simplest movable

linkage, and consists in links attached to two others by single joint or pivot,

conforming a close-loop kinematic chain. If s the length of the shortest link, l

the length of the longest link, and p and q the length of the remaining links,

Grashof’s law states that for at least one of the four links to have full rotation,

the following inequality must hold:

s+ l ≤ p+ q (1.2)

and that none of the four links can make a full revolution if

s+ l > p+ q (1.3)
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Inequality 2.11 is called the Grashof’s criterion or Grashof’s inequality. It is

both necessary and sufficient for the existence of at least one fully-rotatable link

in a four-bar linkage. Extension of Grashof’s criteria to five-bar mechanisms

was first investigated by Ting [15], and extended to N-bar kinematic chains

later by Ting [16] and Ting and Liu [17]. In the derivations of rotation laws

for N-bar linkages, Grashof’s theorem becomes a particular case.

Mechanical Advantage: Amplification/Deamplification of Mo-

tion/Force

A compliant mechanism needs to provide a specified output displacement or

specified output force, according to its main functional objective. Either task

has to be solved in terms of an output performance criterion (a prescribed dis-

placement, force, path or load history). In general and under work conservation

principles, a mechanism that amplifies the output displacement will necessarily

reduce the force that can be delivered at its output port. Conversely, a mech-

anisms that is designed to amplify the output force will produce less output

displacement. The mechanical advantage (MA) of the mechanism is defined

as a ratio of the force/torque between the output and the input [How01]:

MA =
‖F out‖
‖F in‖

(1.4)

Another definition is the ratio between the output and input displacements

[Lob03], also known as the geometric advantage:

GA =
‖uout‖
‖uin‖

(1.5)

It’s important to remark that the computation of MA or GA assumes that

power is conserved between the input and the output, and that the system is

in static equilibrium.

1.0.2 Design of mechanisms: analysis and synthesis

Traditionally, the design of mechanisms was an art, based primarily on the

experience of the designer. Even today, despite scientific and technological
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advances, the task of conceptualizing these devices is still a mixture of art and

science. In this process, kinematic analysis is used to determine the charac-

teristic motion of a mechanism. Nevertheless, an initial seed mechanism is

required to perform this task and therefore its use does not grant the design

of a mechanism from scratch, since the experience and insight of a designer is

required to create the seed mechanism.

Kinematics synthesis deals with the systematic design of mechanisms for a

specified task or performance [ES97, How01]. It begins with a prescribed task

that must be achieved by using a yet unknown sized or shaped mechanism (it

attempts to design a new device matched to a user-specified task). In general,

design problems have many different solutions, and therefore they involve the

iteration between synthesis and analysis. Kinematic synthesis is performed

to determine the dimensions of the mechanism and possesses three customary

tasks: path generation, motion generation and function generation [ES97]. In

path generation, a point of the mechanism is required to travel along a specified

path or preset points. Motion generation is restricted to a finite number of

positions at which the designer desires to control the orientation of output

members. Function generation is the correlation of the input and output links

of the mechanism, and involves satisfying the input-output relationships. The

major categories of synthesis include type, number and dimensional synthesis

[How01]. In type synthesis, the selection of the mechanism best suited to solve

the problem is addressed (e.g. linkages, gears, cams, etc). Number synthesis,

which may be considered a subset of the latter, involves the determination of

the number of links and degrees of freedom the mechanisms should have to

perform the task. At last, dimensional synthesis involves the determination

of the mechanism significant geometry to accomplish the specified task and

performance (e.g. link length, area, angles, ratios, etc), but it assumes the

existence of a presupposed mechanism topology.

As a final remark, mechanism synthesis should preferably be carried out

within the framework of large displacement, non-linear analysis. Designs ob-

tained using linear analysis typically behave differently when modeled using

large displacement analysis. In the best of situations one merely has inaccurate

results but in the worst cases the results become useless for large displacement
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behavior [BS04]. Bruns and Tortorelli [BT01] compared the deformed shape of

an optimal cantilever beam (loaded by at the tip) computed by linear analysis,

with the shape computed by non-linear analysis. The comparison is depicted in

Figure 1.1, from where it can be seen that at low load levels the optimal shape

computed by linear analysis is similar to the shape computed by non-linear

analysis. However, as the load level increases, the linear assumption becomes

invalid and the resulting computed shape is dramatically altered. Therefore,

the use of geometric non-linear finite element modeling is absolutely essential

for mechanism synthesis.

Figure 1.1: Deformed configurations the optimal boundary shape of a can-
tilever beam based on linear elastic analysis (top), and on non-linear elastic
analysis (bottom). Tip loads are: 10 N (left), 1000 N (middle) and 1500 N
(right), Bruns and Tortorelli [BT01].

1.1 A brief historical background on classic

design methods

Up to the 1950s, the field of kinematics was limited to the study of rigid-body

motion as this assumption greatly simplified the analysis of kinematics, which

was captured using only the geometry of the mechanism. The benefits of com-

pliant mechanisms, however, motivated the research of motion transmission by

means of material deformation. Typically, there are two approaches known in

the classic literature for the synthesis of compliant mechanisms, the kinematic-
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based approach and the structural optimization approach, in accordance with

flexibility distribution in the system.

Systems with concentrated compliance

In systems with concentrated compliance kinematic joints are replaced with

flexible hinges, and therefore they behave like classic rigid mechanisms (Fig-

ure 1.2). Existing methods conceived to design rigid-body mechanisms can be

modified and successfully applied in this kinematics-based approach.

Figure 1.2: Mechanisms with concentrated compliance: a rigid crimping me-
chanism (left) and its compliant counterpart (right) [How01]. Areas with lower
stiffness (i.e. smaller cross-section) are clearly visible in the compliant model
(right) and serve as compliant hinges that allow the motion of the mechanism.

Synthesis methods for mechanisms with concentrated compliance had its

genesis in the works of Ashok Midha in the middle 1980s. Her and Midha

[HM87] introduced the link compliance content (lc) in order to define the

degree of compliance of the mechanism as the summation of the degrees of

freedom attributed to the rigid-body degrees of freedom and the elastic de-

grees of freedom. This provided the foundation to develop a systematic but

also straightforward and intuition-based tool to classify and design mecha-

nisms with concentrated compliance [MNH94]. Howell [How93] formulated

the loop closure equations for compliant mechanisms with flexural pivots, in

which compliant links are modeled as cantilever beams with a small-length

flexural pivot located at the fixation to grant the rotation of the beam (the

beam rotates about a fixed point called characteristic pivot). Elliptic integrals

were used to compute the deflection of the mechanism. This approximation

was the foundation for one of the most popular techniques to analize the de-
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flection of mechanisms with concentrated compliance: the pseudo-rigid-body

model (PRBM) [HM94, HM96].

Figure 1.3: Design of a compliant transmission: the inner circle of the joint is
fixed to the ground and torque is applied to the outer circle to allow its motion
(top left) and a detail view of the multiple cross-sections that form the joint
(top right). An schematic view of the four bar mechanism used to model the
joint (bottom left) and its pseudo-rigid body model (bottom right) [PMBV10].

In PRBM, flexible links are modeled as rigid links connected by kinematic

joints and torsional springs as a substitute for the bending stiffness of the

solid hinge. This permitted to use all the information available for the syn-

thesis of rigid-body mechanisms in compliant mechanisms design. Figure 1.3

depicts the pseudo-rigid body model of a compliant joint proposed by Palli et

al. [PMBV10]. Different types of compliant segments require different pseudo-

rigid models that predict its deflection path and force-deflection relationship.

It may be used to design mechanisms to perform the traditional tasks of kine-

matic synthesis (path, motion or function generation) without concern for the
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energy storage in flexible members. In early design stages it may serve as a

fast and efficient method to evaluate different trial designs to meet the speci-

fied design objectives. Nevertheless, PRBM serves for analysis only (an initial

mechanism configuration is needed), and it should be combined with another

method if the creation of mechanisms from scratch is pursued.

Murphy [MMH96] developed a synthesis method based in graph theory to

design compliant mechanisms. Graph theory has been used from the 1960s

for the abstract representation of kinematic structures in the aim to develop a

systematic and automated method to design rigid-body mechanisms. Freuden-

stein and Dobrjanskyj [FD65] developed a mathematical representation of ba-

sic rigid-kinematic chains, in which links are represented by vertices and joints

are represented by edges. This procedure is based on the separation of the

mechanism structure from its function, since all kinematic chains enumerated

using graph theory result on purely topological considerations. An advantage

of graph representation is that kinematic chains can be represented in matrix

form, but perhaps the mayor advantage is that most steps needed to synthesize

a mechanism can be automated, and this led to the creation of the firsts truly

systematic approach for mechanisms synthesis.

With the purpose to extend this methodology for compliant mechanisms,

Murphy added information concerning the nature of link deformation to the

traditional data of link connectivity. Possible deformation in a compliant link

can be specified by determining the link compliance content (lc) of Her and

Midha mentioned above. The combination of the link compliance content

concept with the matrix representation of link connectivity resulted in the

creation of a new method to represent the structure of compliant mechanisms,

where several different topologies can be generated starting from an initial seed

mechanism, using systematic enumeration and atlases of mechanisms2. In his

PhD thesis, Pucheta [Puc08] combined graph theory and the pseudo-rigid-body

model to develop a synthesis tool to conceive planar rigid and/or partially

compliant mechanisms, in which graph theory is used to generate different

topologies and the pseudo-rigid-body to analyze each one of them. Figure 1.4

depicts the design of a bistable actuator for a landing gear mechanism carried

out by Pucheta and Cardona [PC10], using graph theory and the pseudo-rigid-
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Figure 1.4: Design of a bistable actuator for a landing gear mechanism: the
landing gear (top left) and its kinematic chain (top right), the graph repre-
sentation of the proposed solution (bottom left) and the kinematic chain of
this solution (bottom right). References for joint types in graphs are: R =
revolute, C = clamped. In sketches, flexible links have a letter F, other links
are assumed to be rigid. Pucheta and Cardona [PC10].

body model.

Systems with distributed compliance

Methodologies to design mechanisms with distributed compliance (Figure 1.5)

appeared in the middle of the 1990s, departing from the work done in the

kinematic-based approach. In this case strains are evenly distributed so as

to reduce stress concentrations, and the mechanism is treated as a continuum

flexible structure. Therefore, Continuum Mechanics design methods are used

instead of rigid-body kinematics. By leaving material distribution virtually

free, topology optimization techniques posses the ability of being indepen-

dent of prior design choices. Nevertheless, results obtained through optimiza-

tion often need further interpretation and modification involving the designer’s

judgement, so they are still far from being fully systematic.

The typical problem of structural optimization is to find the “best” struc-

2An atlas is a topological design space constituted only by connected topologies in non-
isomorphic ways [PC07, PC10].



14 CHAPTER 1. INTRODUCTION

ture which is, at the same time, of minimal weight and of maximum strength.

The definition of “best” depends on many considerations: the mechanical

model used (linear, non-linear, plasticity, etc), the constraints on the admissi-

ble shapes and the stiffness criterion, among others [ABFJ97]. Most of classical

optimization algorithms solve the same mathematical problem: minimize an

objective function f(x) (if minimizing f(x) improves the design), under a set

of restrictions c(x), by varying the value of one or more design variables xj

between specified bounds [Van84].

Figure 1.5: Mechanisms with distributed compliance: a rigid crimping mech-
anism (left) and its compliant counterpart (right) [How01].

Structural optimization in mechanism design is utilized in three main lev-

els: topology, shape and size optimization. In topology optimization, design

variables describe the connection among various portions of the mechanisms

(input and output ports, fixed region, holes). Shape optimization deals with

the shape that individual segments of the mechanisms must acquire, once a

topology has been established [HM03, All02]. At the lowest level, once the

topology and shape of the mechanism are defined, the last step is size opti-

mization where the design variables are the cross-section dimensions, length of

of beams or truss-like segments, thickness of shells and so on.

In classic topology optimization material is iteratively removed3reducing

the density of an element or by eliminating the element completely. The work

of Kikuchi and Bendsøe [KBe88] pioneered the generation of optimal mecha-

nisms topologies by means of the homogenization method4, treating the design

domain as if it was made of composite material consisting of a solid and void

periodic microstructure. Bendsøe [Be89] and Rozvany et al. [RZS94], [Roz97]

were the first to apply a penalized variable density approach to approximate

the material-void problem, where a density variable is associated with each
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finite element. Further development of material-void problem led to the cre-

ation of the continuous material density parametrization method, in which an

artificial material density function limited by two bounds is defined and the

algorithm varies the material density at each point of the domain. When this

function reaches the lower bound it implies that the element is made of very

soft material, and its eliminated from the structure. If the function reaches

the upper bound then the element becomes the solid portion of the optimal

mechanism. The main inconvenient of this method arises when the optimum

value of the density function is between the bounds. This is an undesirable

feature, not only because the manufacturing process involving variable den-

sity materials is expensive, but also because the mechanism presents natural

hinges by the use of soft and stiff materials, which are a source of numerical

instability. To overcome this inconvenient, algorithms have been developed to

push the design variables to either one of the limits.

Alternative approaches in structural optimization departed from the use of

the homogenization method. Frecker et al. [FAN+97] developed a method that

transformed rigid-link mechanism topologies in equivalent compliant mecha-

nisms using data derived from kinematic synthesis to guide the homogenization

method and an initial domain of truss elements. The initial topology consists

in a network of truss elements (called ground structure), which is reduced to

the final topology through the minimization of the mutual strain energy. Het-

rick [HV99] developed a unified energy formulation using a network of frame

elements, in which topology and dimensional synthesis is performed through

the optimization of energy efficiency. The use of frame elements does not differ

much from the use of truss elements since axial stiffness dominates all other

available modes of deformation in both types of elements. Ground structure

parametrization is a discrete synthesis approach in which the topological syn-

thesis is first solved using discrete algorithms. Some elements are removed for

4There are alternative methods in which the design domain is empty at the beginning of
optimization and material is added until a constraint is fulfilled ([AVMC10]). These will be
described later.

4The homogenization method was originally developed by Bendsoe [KBe88, Be95, BS04]
to design optimal structures with maximum stiffness. Ananthasuresh [Ana94] also worked
in the generation of mechanism topology by means of structural optimization using the
homogenization method.
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Figure 1.6: Comparison between continuous material density parametrization
and ground structure parametrization [LK06].

the ground structure, and the remaining elements will define the topology and

shape of the mechanism. Figure 1.6 depicts a comparison between continuous

material density parametrization and ground structure parametrization made

by Lu and Kota [LK06].

Wang et al. [WCWM05, WW06, WL07] introduces a level set (LSM) based

methodology to compute the topology of multi-material compliant mecha-

nisms. Following the classic level-set definition, where a closed curve is rep-

resented by an auxiliary function that takes positive values inside the curve,

negative values if its outside the curve, and a null value at the boundary,

Wang’s method extends the level set definition to the design of monolithic

compliant mechanisms made of multiple materials, as a topology optimization

process capable of performing changes of the geometry by merging or splitting

parts. The objective function of the optimization scheme is the mechanical

advantage (the ratio of forces) or the geometric advantage (the ratio of dis-

placements) of the mechanism [Wan09]. Figure 1.7 depicts some iterations

of the topology optimization of a bi-material pull-clamp (represented in the
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figure in different colors), computed through LSM.

Figure 1.7: Design of a compliant pull-clamp using LSM (taking advantage
of symmetry): the initial design domain (top left), intermediate iterations
(top right) and (bottom left), and the optimal final design (bottom right)
[WCWM05].

Ansola et al. [AVMC10] proposes an element addition method to synthe-

size 3D compliant mechanisms, based in bidirectional evolutionary structural

optimization (BEVO) which allows for efficient material to be added to the

structure at the same time as the inefficient one is removed. At the begin-

ning of the optimization the design domain is empty, and material will be

added gradually until the volume amount constraint is fulfilled. The objec-

tive function (to be maximized) is the mechanical advantage, and elements of

large sensibility number will be added to the finite element model since those

elements will introduce the largest increase of the objective function. This

method also eliminates the natural hinges that appear by the use of soft and

stiff materials. The optimized topology of a 3D inverting mechanisms com-

puted with BEVO (taking advantage of the symmetry of the model) and the

resulting complete model built upon the results of the finite element analysis

are depicted in Figure 1.8, [AVMC10].

Other optimization techniques were introduced by Lu and Kota [LK03,

LK05], in which a load-path formulation and genetic algorithms are used to

design compliant mechanisms with shape morphing characteristics. Although

structural optimization offers a method to obtain an initial design from prob-

lem specifications (there is no need of initial seed mechanisms), its success
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Figure 1.8: The optimized topology of a 3D inverting mechanisms computed
with BEVO (left), and the resulting complete model (right), [AVMC10].

depends on the proper objective formulations and optimization algorithms,

and most importantly it does not involve any physical insight to how and why

elements of a mechanism combine.

1.2 A novel synthesis method with inverse

models

The application of inverse methods to solve theoretical problems in mathe-

matics and physics can be traced back to several decades, in particular in

applications such as dispersion problems (inverse scattering), spectral prob-

lems in differential equations (inverse spectra), quantum mechanics, acoustics,

geophysics, seismology and astronomy to name a few [Tar05]. Perhaps the

most widespread inverse problems are inverse measurement problems, where

the goal is to compute material parameters (e.g. elastic properties, electrical

and thermal conductivity, dielectric constant, etc). However, the application

of inverse methods in problems of solids under large deformations is relatively

recent. When designing structural elements subject to large deformations, it

is useful to know its initial non-deformed configuration. Such method grants

the computation of the initial (unloaded) shape of a body such that it at-

tains the given design shape when subjected to service loads once the steady

state has been attained, neglecting any transient effect. This type of problems

are defined as inverse design problems [BW98], in contrast to classical inverse

measurement problems.
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Previous numerical models for the inverse design analysis of hyperelastic

bodies subjected to large deformations have been proposed by Govindjee and

Mihalic [GM96, GM98] and Yamada [Yam97]. Govindjee and Mihalic [GM96]

presented an inverse finite element formulation for 2D elastostatic problems,

and determined the manufacturing geometry of a material grid, such that once

the grid is extracted from molding matrices, remaining internal stresses force

the grid to attain a perfectly rectangular shape. Subsequently, Govindjee and

Mihalic [GM98] incorporated quasi-incompressibility to the former model, and

solved the problem of a rubber punch for stamping applications, such that

when the punch is under service loads, its shape exactly fits the mold shape

(Figure 1.9).

Figure 1.9: Determination of the manufacturing shape of a rubber punch for
stamping applications: initial deformed configuration (left), and the manufac-
turing shape computed through inverse analysis (right) [GM98].

Troxler [Tro02] presents a 2D inverse method coupled to a re-meshing pro-

cedure for designing nozzles and diffusers in gas turbines, provided they meet

certain distribution of static pressure. More recently, Lu et al. [LZR07a] and

Fachinotti et al. [FCJ08] developed three-dimensional models for the inverse

design of anisotropic hyperelastic solids. This work adresses the computation

of the unloaded shape of the compressor blade of an aircraft engine, such that

it attains the optimal geometry determined by fluid mechanics calculations

under the effects of centrifugal loads (Figure 1.10).

The formulation of inverse finite elements models for other structural mem-

bers is an area of prominent development. Recently, an inverse finite element

model of shells was presented by Zhou et al. [ZL08], and for large deflection
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beams by Albanesi et al. [AFC10]. This latter work was the keystone to

develop a new design method for compliant mechanisms based in inverse anal-

ysis. Since most flexible links in compliant mechanisms are prismatic shaped

(where one of its dimensions, the length, is predominant over the other two)

they can be modeled as large-deflection beam-type elements. This grants the

use of the inverse finite element of large displacement beams as a design tool,

starting from the mechanism task (deformed configuration) and addressing the

computation of the free unloaded configuration (manufacturing shape) of the

mechanism. Several design problems taken from the literature demonstrate

the accuracy of results obtained with this inverse model, and in general a

lower computational cost compared to classical design methods. All kind of

bar-mechanism (including flexural hinges), with concentrated and distributed

compliance, can be modeled with this inverse beam element. Alternative types

of inverse finite elements can be used in addition to the inverse beam element

when the geometry of the body under analysis departs from the extents of a

beam model. The three-dimensional model formulated by Fachinotti [FCJ08]

is for bodies in which the length is of the same order than the height and

width).

Figure 1.10: Computation of the unloaded shape of a turbine compressor
blade: deformed configuration represented as a mesh surface, and manufactur-
ing shape computed through inverse analysis with hyperelasticity represented
as a solid surface [FCJ08].

Future work will consists in the development of an inverse shell element,

in order to extend the inverse tool to the design of shell and membrane type
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of bodies. Problems of sheet metal stamping and inflatable structures can be

addressed with this element, along with simulation of veins and arteries in

biomedical problems.

1.3 Content of this thesis

This thesis pursues the development of inverse finite element methods to design

compliant mechanisms. In this chapter, the historical background of compliant

mechanisms was revised. The standard nomenclature was introduced, and

design methods were briefly discussed.

In Chapter 2, the design of mechanisms by optimization is presented. Struc-

tural optimization methods (e.g. topology, size and shape) are described and

tested in the context of mechanisms design and synthesis. Several applica-

tions were carried out, including topology and size optimization of compliant

mechanisms. Afterward, the synthesis of a four-bar compliant mechanisms for

compliant-segment motion generation tasks solved by structural optimization

is presented. Links were modeled with non-linear, small and large-displacement

FEM elements.

In Chapter 3, a finite element model for the inverse design of solids with

large displacements in the elastic range is presented. It consists in determining

the initial shape of a body, such that it attains the designed shape under the

effect of service loads. Compliant mechanisms and flexible structures of any

shape can be modeled with this element. the treatment of body forces is

discussed, along with the particularization to plane-stress and plane-strain

applications.

In Chapter 4, an inverse finite element model for large-displacement beams

in the elastic range is introduced, as an extension of the previous work in

inverse finite element methods presented in Chapter 3. Flexible links in com-

pliant mechanisms can be modeled with this element, which consists in the

determination of the initial shape of a beam such that it attains a specified

design shape under the effect of service loads.

In Chapter 5, several applications of the inverse FEM for large-displacement

beams are presented. The design of macro and microscale mechanisms with
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concentrated and distributed compliance is studied, in particular in compliant

mechanisms that exactly fulfill a desired shape. The computational cost and

stability of the solution is discussed, along with the advantages and disadvan-

tages of inverse FEM as a design tool for compliant mechanism.



Chapter 2

Design of compliant mechanisms

by optimization

Structural optimization is a frequently used method to design compliant mech-

anisms, in particular when a large portion of the mechanism deforms when its

loaded. The work in this chapter addresses the design of fully compliant mech-

anisms trough size and shape optimization. The complete design of a compli-

ant four-bar mechanism for motion generation tasks will latter be addressed by

optimization. In traditional rigid-body mechanisms, motion-generation tasks

require a rigid-body to move through a specified number of position points.

However, when the body to be guided is flexible and has an initial smooth

shape, the task of moving it from its initial configuration to a final (specified)

configuration is referred to as segment-motion generation, as the flexible body

is moved through a sequence of prescribed shapes in addition to the prescribed

points of rigid-body motion.

2.1 Structural optimization

Shape optimization deals with the shape of the individual segments of a mech-

anism, when topology remains unchanged [All02, HM03]. The general opti-

mization problem in structural design can be formulated as to minimize an

objective function, usually subjected to nonlinear equality and inequality con-

23
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straints:

min f (x)

gj (x) ≤ 0 j = 1, 2, ...,m

hk (x) = 0 k = 1, 2, ...,m (2.1)

cl ≤ cl ≤ cl l = 1, 2, ...,m

xi ≤ xi ≤ xi i = 1, 2, ..., n

where x ∈ Rn is the vector of design variables, xi and xi are given real numbers

that represent the bounds of the variables, and f , the objective function, is a

differentiable, real-valued function [Van84, Kir93]. Equation 2.1 corresponds to

classical structural optimization problems of major interest, termed min-max

problems. Typical objective in structural optimization are

• maximization of stiffness.

• minimization of weight.

• minimization of volume.

• etc

Typical constraints are stresses, buckling loads, natural frequency and nor-

mal modes, suitable flexibility, etc. These constraints relate through laws of

structural mechanics to the design variables of the problem. Algorithms to

search the optimum design can be classified into simultaneous and sequential.

In simultaneous algorithms, trial designs are selected before analysis is started.

Designs computed by sequential search algorithms are generated using results

from previous iterations.

In optimization, the design space is the geometrical space where all feasible

and unfeasible designs lay. Feasible designs are those that do not violate the

imposed constraints [Van84, Kir93, RR05].

The representation of the design space is depicted in Figure 2.1, where

xi i = 1, 2, .., are design variables and every point in the figure represent a
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Figure 2.1: The design space, feasible and unfeasible designs [RR05].

design, and isovalue curves for the objective functions can then be drawn.

Inequality constraints gi(x), i = 1, 2, 3, ..., are represented by boundaries,

and all points inside the space limited by the boundaries represent the feasible

designs.

Figure 2.2: The active constraints of the optimization problem, [RR05].

A constraint gi(x) i = 1, 2, 3, ... is said to be active if a design point lays

in the feasible domain frontier representing the constraint. Figure 2.2 depicts

the evolution of the design variable xi, i = 0, 1, 2, where the constraint g1(x)

is active at the optimum.
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2.2 Topology optimization

Topology optimization is the procedure in which the connection among vari-

ous portions of the mechanisms are computed, typically from scratch. In what

follows, material density reduction scheme will be used to optimize the topol-

ogy of solids, where material is iteratively removed by reducing the density of

an element. Classical objective functions are the maximization of the stiffness

or the minimization of the total mass of the mechanism. The result of the

optimization process is presented as mass density per element.

Two topology optimization schemes were tested, the first is a module of

the Samcef Field R© software package [Sam10]. It’s a linear structural analysis

driver that uses CONLIN, a gradient-based algorithm to carry out the struc-

tural optimization. Results are displayed in a color-scale that indicates where

the mass of material should be placed. The second one is the scheme presented

by Sigmund [Sig01, ACS+01], which is an heuristic approach to topology op-

timization programmed in Matlab R©.

2.2.1 Samcef Field R© CONLIN algorithm

Convex linear programming (CONLIN), was proposed by Fleury [Fle79,

Fle89a] to solve basic sizing problems. The algorithm builds an approxima-

tion of the design space and solves the approximate problem, and the esti-

mation/solving loop is repeated until convergence. The design space is only

limited by the constraints and bounds on variables as the approximation of the

objective function is monotonic [RR02]. Considering any differentiable func-

tion f(x), the following linearization scheme yields a convex approximation:

f(x) ≈ f(xi
0) +

∑
>0

df(x)

dxi0
(
xi − xi0

)
−
∑
<0

df(x)

dxi0
(
xi

0
)2
(

1

xi0
− 1

xi

)
(2.2)

This algorithm exhibits good convergence properties for sizing and shape

optimization problems, however, in some cases the convex approximation

might not be appropriate, leading to slow convergence or oscillations [Sam10].
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Topology optimization of a hyperstatic beam with a center load

The topology optimization of a simple, clamped-clamped (hyperstatic) beam

is analyzed. The objective is to maximize the stiffness and to minimize the

material mass of the beam, such as to use the optimum amount of material to

support the imposed load. The beam is made of polypropylene, with Young

modulus E = 1.4 × 103 N/mm2 and Poisson ratio ν = 0.25, and it’s assumed

to have a constant rectangular cross section (12 mm wide, 12 mm high), and

it’s 80 mm long.

Figure 2.3: The clamped-clamped beam model.

The model is actuated by a vertical resultant force F = 1000 N on its

middle length (Figure 2.3), and was discretized using 1140 linear-hexahedral

elements. The maximum number of iterations was set to 20, the minimum

density value as a 0.01 fraction, and the target volume relative to the mass as

a 0.3 ratio. Results are depicted in Figure 2.4.

2.2.2 Sigmund’s algorithm

Sigmund’s 2D topology optimization algorithm [Sig01, ACS+01] is a linear

method written in Matlab R© based on evolutionary design [XS97]. In order

to control the density distribution a power law called SIMP (Solid Isotropic

Material with Penalization) [Be89, ZHS98] is used, in which material properties

are assume constant within each element of the design domain, and the variable

are the elements relative density. This topology optimization problem can be

written as
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Figure 2.4: Results of the clamped-clamped beam topology optimization per-
formed in Samcef Field R©Ṫhe objective was to maximize the stiffness while
minimizing the material mass. The color-scale indicates the location of the
material mass (red means maximum density, and blue means minimum den-
sity).


minimize : c (x) = UTKU

subjected to : V (x)
V0

= f

: KU = F

: 0 < xmin ≤ x ≤ 1

where U and F are the global displacement and force vectors, respectively,

K is the global stiffness matrix, x is the vector of design variables, xmin is

a vector of minimum relative densities (non-zero to avoid singularity), V (x)

and V0 are the material volume and design domain volume, respectively, and

f is the volume fraction. It uses the heuristic updating approach proposed by

Bendsøe [Be95].

Topology optimization of a hyperstatic beam with a center load

The clamped-clamped (hyperstatic) beam is solved with Sigmund’s 2D topol-

ogy optimization algorithm. It is discretized with 80 elements in the horizontal

direction, and 12 elements in the vertical direction. The model is actuated by
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a vertical resultant force on its middle length. The minimum density value as a

0.01 fraction, and the target volume relative to the mass as a 0.3 ratio. It took

80 iterations to converge to the optimal result, depicted in Figure 2.5, where

the color-scale indicates the location of the material mass. The results are

almost identical to the ones obtained previously with Samcef Field R© topology

optimization, Figure 2.4.

Figure 2.5: Topology optimization solved by Sigmund’s algorithm for the
clamped-clamped beam shown in Figure 2.3. The color-scale indicates the
location of the material mass (dark color means maximum density, and light
color means minimum density). Note the similarities with the optimization
scheme of Figure 2.4.

2.2.3 Topology optimization conclusions

Two separate topology optimization schemes were applied to solve structural

optimization problems, where the objective function was to maximize the stiff-

ness of the structure subjected to the minimization of the material volume. The

main advantages and disadvantages of this procedure are:

Advantages

• The structure is automatically generated by the algorithm incresing the

density of the elements according to the objective function.

• The results are independent of prior design choices.

Disadvantages

• Topology optimization algorithms assume geometrically linear mechan-

ical behavior, hence, inaccurate results may be obtained in systems un-

dergoing large-displacements.
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• The computational cost increases as more elements are used to discretize

the domain.

2.3 Shape optimization

In this section, structural optimization algorithms will be applied in a shape

optimization problem which deals with computing the optimum shape of the

ventilation holes of a turbine disc, such that it maximizes the cross section area

of an air channel used to cool the blades and minimizes the equivalent stress

in the surroundings of the hole [ARFC06]. In shape optimization, gradient-

based algorithms are widely used: sequential quadratic programming (SQP),

generalized method of moving asymptotes (GMMA), and globally convergent

method for moving asymptotes (GCM) among others [Van84].

2.3.1 GMMA Algorithm

Svanberg [Sva87, Sva07] proposed the generalized method of moving asymp-

totes, in which the approximation of a differentiable function f(x) in GMMA

has the form [ZFD96]

fj(x) ≈ cj +
∑
>0

pij
(uij − xi)

+
∑
<0

qij
(xi − lij)

(2.3)

in which lij and uij are the asymptotic parameters, pij and qij depend on the

sign of the derivatives, and cj is

cj ≈ fj
(
xk
)
−
∑
>0

∂fj
(
xk
)

∂xi

(
uij − xki

)
+
∑
<0

∂fj
(
xk
)

∂xi

(
xki − lij

)
. (2.4)

The main property of GMMA is that each function f(x) has its proper mov-

ing asymptote lij or uij for each design variable xi, and this allows to treat each

constraint and the objective function independently [Sva07]. The algorithm

has monotonous behavior, as the sign of the first order derivative remains un-

changed despite change of values of the design variables, making this method
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suitable for structural sizing problems where stress and displacement are con-

straints, in which objective function and constraints vary quasi-monotonously

with respect to design variables.

2.3.2 GCM Algorithm

Originally proposed by Svanberg [Sva87], the globally convergent method for

moving asymptotes (GCM) derives from GMMA. It is a second-order method

suitable for optimization problems where the objective function has a non-

linear response to the design variables xi, and at each iteration i it requires

numerical data computed at a previous iteration i − 1 (the first iteration is

always of first order). The approximation of a function f(x) (differentiable) is

[BDF02, RR05]

fj(x) ≈ cj +
∑
>0

pij
(uij − xi)

+
∑
<0

qij
(xi − lij)

(2.5)

where

cj ≈ fj
(
xk
)
−
∑
>0

∂fj
(
xk
)

∂xi

(
uij − xki

)
+
∑
<0

∂fj
(
xk
)

∂xi

(
xki − lij

)
. (2.6)

Both asymptotes are used simultaneously in GCM and in consequence, pij

and qij take strictly positive values, making the solution a non-monotonous

approximation. The values of pij and qij are defined introducing an extra

parameter ρj that depends on derivatives ∂fi (x
0) and on the increment of the

design variables (xmaxi − xmini ).

2.3.3 SQP Algorithm

Sequential quadratic programming (SQP) [PCGH96, SZ05, Sch05] is a feasible

search direction algorithm. At the beginning of the optimization a search

direction S is created, and then a one-dimensional search is performed to

improve the design as much as possible in this direction. The direction-finding

problem becomes [Van84]
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
minimize Q(S) = F (x) +5F (x) · S + 1

2
STBS

subject to 5 gj(x) · S + δjgj(x) ≤ 0 j = 1, ...m

5hk(x) · S + δhk(x) ≤ 0 k = 1, ...l

Here, design variables are the components of S. Matrix B is a positive

definite matrix which is initially the identity matrix, and will be updated on

subsequent iterations. The scalars δ and δ are problem-dependent and are

used to prevent inconsistencies between the linearized constraints [Fle89b].

The parameter δ should be chosen as near to 1 as possible, and values of δ =

0.90 a 0.95 works well [Van84]. Once determined the search direction S, the

design is updated solving a one-dimensional search problem.

2.3.4 Shape optimization example

The ventilation of the blades (cooling) is used in jet engines to increase the gas

temperature inside the turbine thus increasing power and thermal efficiency

of the engine without increasing the temperature of the blades beyond safe

temperature limits, preserving their expected lifetime. Its achieved by taking

cold air from the compressor and passing it through ventilation holes machined

on a rotating disc located in front of the blades. The shape of the holes play

a major role in the air flow and in the stress distribution of the disc.

The diameter of the disc is 520 mm, and posses 37 ventilation holes ma-

chined in a periodic pattern. The axial-symmetry of the disc was taken in

advantage for modeling, resulting in an 4.86 angle minimum pattern. This

three-dimensional paramemtric model is depicted in Figure 2.6.

Given that the objective function is to minimize the equivalent stress sub-

jected to a ventilation area constraint VA, specified as 127 mm2 ≤ VA ≤
141 mm2. The design variables were chosen as the major and minor radius of

the hole, RA and RB respectively1. The bounds for the design variables are:

6 mm ≤ RA ≤ 12 mm, and 4 mm ≤ RB ≤ 8 mm. The parametric model

defined upon both of this radius depicted in Figure 2.7.

1This represents the most general case, in which the resulting shape of the hole may be
elliptic. The circular shape is a particular case, in wich RA = RB.
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Figure 2.6: The axial-symmetrical model of the disc: the periodic pattern
(left), the 4.86 angle minimum pattern (middle), and the resulting three-
dimensional model (right).

Figure 2.7: The design variables of the parametric model are the major and
minor radius of the hole, RA and RB respectively.

At each iteration of the optimization problem the model is re-meshed. The

structured mesh of 6600 hexaedral elements depicted in Figure 2.8 is used to

maintain the topology of the model in each re-meshing process.

The disc is made of an aluminum alloy with Young modulus E = 2.1 ×
1011 N/m2 and density ρ = 8.2× 103 Kg/m3, and rotates at an angular speed

ω = 1772 rad/s. Boundary conditions are shown in Figure 2.9.

The shape optimization problem can be stated as follows:
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Figure 2.8: Structured mesh of 6600 hexaedral elements.

Minimize: the equivalent stress

fobj = min (σequiv) ∀ elements (2.7)

Subject to: an specified range for the ventilation area

127 mm2 ≤ VA ≤ 141 mm2 (2.8)

Modifying: the set of design variables

6 mm ≤ RA ≤ 12 mm 4 mm ≤ RB ≤ 8 mm (2.9)

Results of the shape optimization problem

Two separate optimization problems were computed for each algorithm. The

BOSS/Quattro [RR05] optimization software was used, along with Mecano and

Asef modules (nonlinear and linear analysis modules, respectively) to carry out

the coupled thermo-mechanical analysis of the problem. A maximum number

of 100 iterations was adopted. The results are summarized in what follows.
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Figure 2.9: The boundary conditions of the model: symmetry conditions (left),
and imposed displacements and temperatures (right).

The first algorithm used for the shape optimization problem was GMMA,

which computed 82 iterations in the first run and 93 iterations in the second

one, showing the worst behavior of the three algorithms due to its oscilating

behaviour, and because it does not tend to reach a convergence value. The best

result obtained with GMMA was σequiv = 176 mN/mm2 and Va = 136.4 mm2.

The highlights of GMMA were:

• none of the constraints were violated.

• very oscilating behaviour.

• there is no tendency to reach convergence at all.

The next algorithm tested was GCM, which computed 100 iterations in

both runs. GCM showed the best behavior of the three algorithms, with very

narrow oscillation values and fast convergence. The drawback of this algorithm

is that the minimum area constraint was violated. The best result of GCM

was σequiv = 163.5 mN/mm2 and Va = 108 mm2, and the highlights were:
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• showed the best behaviour of the three algorithms.

• proved fast convergence.

• narrow oscillation of the results.

• the lowest bound of the constrain was violated.

The last algorithm investigated was SQP, which showed oscillating behavior

until half of the study, from which oscillations diminishes and convergence is

reached. It computed 54 iterations in the first run and 57 iterations in the

second one. None of the constraints were violated and the results obtained

are feasible. The only drawback of SQP is local convergence, present in both

runs performed here, which makes this algorithm unstable. The best result

obtained was σequiv = 165 mN/mm2 and Va = 131 mm2, and:

• none of the constraints were violated.

• proved acceptable convergence.

• it had local convergence, making it unstable.

Figure 2.10: Ventilation hole optimization results: maximum equivalent stress.

From this, we conclude that the problem was successfully solved. A smooth

stress distribution was achieved in the surroundings of the ventilation hole
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(Figure 2.10, and the area of the ventilation hole is between the specified

bounds. The geometry of the ventilation hole resulted elliptic in all cases. The

3D model permitted to analyze other phenomena, such as flexural stress. The

best result was obtained at iteration 55 of the second run of SQP (Table 2.1),

[ARFC06].

Maximum equivalent stress Ventilation Surface RA RB

165 mN/mm2 131 mm2 9.17 mm 4.52 mm

Table 2.1: Best results of the ventilation hole optimization problem.

2.4 Size optimization

The design of mechanisms by size optimization will be treated in this section,

in order to accomplish compliant-segment motion generation tasks [AFPC07].

The behavior of a partially compliant mechanism (partially referring to the

presence of some rigid body or kinematic pair in the mechanism) is similar

to a rigid-body mechanism where a large portion of the mechanism is stiff

and flexibility is reduced to a minimum number of regions. The design of

these type of mechanisms is in general performed using rigid-body replacement,

starting from rigid-synthesis results. Fully compliant mechanism behave quite

differently since flexibility is evenly distributed, and its motion is obtained

from the deflection of an elastic structure.

Figure 2.11: A rigid four-bar mechanism. Link N=4 is grounded link.
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The rigid four-bar mechanism is the simplest movable linkage, and consists

in links attached to two others by single joint or pivot, forming a close-loop

kinematic chain (Figure 2.11). In general they obbey Grashof’s law that states

that for at least one of four links to have full rotation, the following inequality

must hold:

s+ l ≤ p+ q (2.10)

being s the length of the shortest link, l the length of the longest link, and p

and q the length of the remaining links. Its degrees of freedom (DOF) can be

obtained using Grueber’s equation

DOF = 3(n− 1)− 2Kl −Kh (2.11)

in which n is the total number of links, Kl is the total number of lower kine-

matic pairs, Kh is the total number of higher kinematic pairs. A planar rigid

four-bar mechanisms has 4 linkages (n = 4), 4 low kinematic pairs (Kl = 4),

and lacks of high kinematic pairs (Kh = 0), so application of Grueber’s equa-

tion yields

DOFr4bar = 3(4− 1)− 8 = 1 (2.12)

The compliant four-bar mechanism has 2 low kinematic pairs (Kl = 2)

and 2 links (one rigid and one compliant, n = 2). Application of Grueber’s

equation yields

DOFc4bar = 3(2− 1)− 4 = −1 (2.13)

and results a hyperstatic structure. However, the lack of degrees of freedom

can be overcomed by the flexibilities of compliant joints. Addressing motion-

generation in a compliant mechanism implies moving flexible links through a

sequence of discrete prescribed precision shapes in addition to the precision

points of rigid-body motion, involving the guidance of a flexible link instead

of a rigid body.

Saggere and Kota [SK01] introduced this problem and called this task
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compliant-segment motion generation. In his work, flexible members were

modeled as a series of small, straight, rigid elements connected end to end

through linear torsional springs. This requires disassembling the mechanism

and designing each part separately, along with the imposition of appropriate

boundary conditions to accomplish identical displacements and rotations at

the fusing ends (internal forces and moments should be equal in magnitude

but opposite in sign), and therefore all parts are independently in equilibrium.

Al last, the synthesis task is performed through optimization by a numerical

approach.

One of the drawbacks of this discretization is that it does not account

for the shear stress that may appear in the links as they deflect from their

initial to their final configuration. Another drawback is the need to split the

mechanism into individual links to carry out the synthesis task separately in

each one of them. The approach used in this chapter conceives a more realistic

proposal to the systematic synthesis of compliant, single-loop mechanism. An

optimization scheme coupled with finite element models grants the synthesis of

all links simultaneously, [AFPC07]. In an initial approach, compliant links are

modeled using a two-dimensional beam finite element with shear deformation,

and afterward, using a three-dimensional large-deflection beam element. The

extension of this method to synthesize multi-loop mechanisms can be easily

arranged.

Many potential applications of compliant-segment motion generation can

be envisioned. For instance, certain segments of a large flexible space struc-

ture that functions as a reflective surface may be oriented in different directions

and also shaped into different curvatures for the purposes of modulating the

characteristics of reflecting sound or light waves [LK03]. Similar applications

are also practicable at micro level, i.e. micro-mirrors for controlled reflec-

tion of light. Other potential application is the design of stamps, where the

geometry of a flexible stamp may require contoured rigid surfaces that have dif-

ferently shaped curvatures. The common feature in these applications is that

the required task can be efficiently accomplished by a suitable fully compliant

four-bar mechanism.
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2.4.1 Problem description

In four-bar mechanisms, one of the links is called the coupler link, and is the

only one that can trace paths of arbitrary shape because it is not rotating about

a fixed pivot. One of the grounded links serves as the input or driver link, which

may derive its motion by some sort of driving transmission (e.g. by hand, by an

electric motor or a hydraulic or pneumatic cylinder). The remaining grounded

link is called the follower or driven link, because its rotation merely follows the

motion determined by the input and coupler link motion. Figure 2.12 depicts

a typical four-bar mechanism.

A

B C

D

Coupler link

Follower             
link

Input link

Figure 2.12: A compliant four-bar mechanism, and the classification of its
links.

Previous research on this type of mechanisms comprised at least one mov-

ing rigid link, and the coupler-link was always considered a rigid member since

the motion generation objective was based on the definition for conventional

rigid-link mechanisms. In this chapter, the synthesis task is to guide the com-

pliant coupler link with initial smooth configuration to another specified (also

smooth) configuration, as depicted in Figure 2.13. The motion from the initial

to the final configuration of the compliant coupler link is called mechanism

task.

The two ends of the coupler-link are connected to the ends of the input and

follower links (the ones to be synthesized), and the three segments form one

continuous (compliant) planar link. The motion of an unconstrained planar
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Initial Configuration

Final Configuration

B

b

C

c

d d

Figure 2.13: Mechanism task: the guiding of the flexible coupler-link.

link is described by three degrees of freedom: two displacements (one in the x

coordinate and the other in the y coordinate) and one rotation around an axis

perpendicular to the xy plane. The use of a lower kinematic pair removes two

degrees of freedom, allowing only rotations about the hinged end. If a planar

link is clamped, then all its degrees of freedom are removed. The free end of the

follower link may either be pinned or clamped to the ground. However, if the

mechanism is to be actuated from the free end of the input link by torque or

rotation, the only admissible support is a lower kinematic pair. This situation

is represented in Figure 2.14, where B-C is the coupler link to be guided to an

specified final configuration b-c, and A-B and C-D are the two remaining links

to be synthesized. A-B-C-D represents the initial configuration and A-b-c-D

the final configuration of the mechanism.

A

B C

D

c
b

MA ln

Figure 2.14: Specified initial and final configuration of the mechanism, ABCD
and AbcD respectively.

According to this, a more formal definition of the problem can be stated:

given a compliant segment and its initial and final desired configuration, syn-
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thesize the input and follower links of a compliant four-bar mechanism and the

corresponding input rotations that generate the prescribed compliant-segment

motion generation. The synthesis tasks are to determine:

• optimal shapes and sizes of segments A-B and C-D.

• locations of the pivots A and D.

• input torque and/or rotation in pivot A.

2.4.2 Discretization of the mechanism: beam formula-

tions

It was stated before that the discretization of the mechanism in straight rigid-

links connected end to end through linear torsional springs neglects the shear

deformation that could be induced in the compliant links as they deflect, and

this motivated the use of non-linear beam finite elements to model the mech-

anism. Two formulations were tested: the first one is a two-dimensional beam

finite element based in Timoshenko’s beam theory (shear deformation of the

neutral axis is allowed in this theory) derived by Crisfield [Cri00], and the

second one is a three-dimensional large-deflection beam element derived by

Cardona and Geradin [CG88, GC00].

2D Beam finite element formulation

The formulation was derived by Crisfield [Cri00] and it assumes the hypothesis

that plane sections, normal to the axis of the beam, remain plain but not

necessarily normal to the axis after deflection. A very similar formulation

can be found in the work of Omar and Shabana [OS00]. The highlights are

presented in the following paragraphs.

The finite element has initially a general curved geometry, depicted in Fig-

ure 2.15. The displacement in the x-axis direction is labeled u, and in the

z-axis direction is labeled w. Under the assumption that plane sections re-

main plane, the value of u at a distance zl from the centroid can be computed

as follows (Figure 2.16)



2.4. SIZE OPTIMIZATION 43

Figure 2.15: Initially curved beam element, [Cri00].

u = u+ zl
dθ

dx
(2.14)

being θ the rotation of the normal of the beam, defined by

Figure 2.16: Detail of the beam element with shear deformation, [Cri00].

θ =
dw

dx
+ φ (2.15)

where φ is the additional rotation induced by the shear strains [On92]. The

curvature χ is computed as follows

χ =
dθ

dx
(2.16)

Assuming elastic properties, the normal force N , the moment M , and the

transverse shear force Q are computed as

N = EAε M = EIχ Q = GAγ (2.17)

The components of u (displacement in the x direction), w (displacement in
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the z direction), and θ (rotation of the normal) are

u = (u1, u2,∆uq) w = (w1, w2,∆wq) θ = (θ1, θ2,∆θq) (2.18)

where suffix 1 refers to the first node, suffix 2 refers to the second node of the

element, and suffix q is a central node. The shape functions for u, w and θ are

quadratic hierarchical functions, such that the interpolation is carried out in

the form

u = hTuu (2.19)

w = hTww (2.20)

θ = hTθ θ (2.21)

where functions hu = hw = hθ = h are given by

hT =
1

2

(
1− ξ, 1 + ξ, 2

(
1− ξ2

))
(2.22)

The differentiation of Equations (2.19), (2.20) and (2.21) permits the com-

putation of the strains measures

du

dx
= u = bTuu (2.23)

dw

dx
= bTww (2.24)

dθ

dx
= bTθ θ (2.25)

where functions bu = bw = bθ = b are obtained by differentiation of Equa-

tion (2.22)

bT =
1

l
(−1, 1,−4ξ) (2.26)

and the axial strain εx, the shear strain γ and the curvature χ are computed
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as follows

ε = bTuu+
1

2

(
bTww

′)2 − 1

2

(
bTwz

)2
(2.27)

γ = θ +
dw

dx
= bTww + hTθ θ (2.28)

χ =
dθ

dx
= bθθ (2.29)

The vector of internal forces is

qTi =
(
UT
i ,W

T
i , T

T
i

)
(2.30)

where the Ti terms are work-conjugate to the nodal rotations θ. The compo-

nents of qi are given by

Ui =

∫
Nbudx (2.31)

Wi =

∫ (
N
(
bTww

′) bw +Qbw
)
dx (2.32)

Ti =

∫
(Mbθ +Qhθ) dx (2.33)

At last, the stiffness matrix is obtained in the usual manner by differenti-

ation of the internal force vector.

Large-displacement beam finite element formulation

A large-displacement, non-linear beam finite element will also be used to dis-

cretize the mechanism. The model presented here was derived by Cardona and

Géradin [CG88, GC00] to model highly flexible multibody systems. It relies

on the following kinematic hypotheses:

• the beam is initially straight,

• beam cross sections remain plane during deformation, and
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• shear deformation of the neutral axis is allowed.

s

X3

E3

x0

E2

s
e3

x3

e1e2
x2

x1

X1

E1
X2

x

y

X

X0

Y

Figure 2.17: Beam kinematics, [CG88, GC00]

With reference to Figure 2.17, the position of any point X in the reference

configuration is

X = X0 + Y (2.34)

where X0 is the reference position of a cross section at a distance s from the

origin, Y is the position of X in the cross section, relative to X0. After

elastic deformation, the basis {E1,E2,E3} transforms to the basis {e1,e2,e3}
according to the orthogonal transformation

ei = REi i = 1, 2, 3 (2.35)

where R is a linear operator on the abstract three dimensional space and

represents the physical rotation between the two basis. The position of the

same point can be written as

x = x0 +RY (2.36)

where x0 is the new absolute position of the cross-section. The Cartesian

rotational vector ψ is used to parameterize rotations, defined as the vector
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whose direction is that of the rotation axis n and whose length is equal to the

amplitude of the rotation ψ:

ψ = nψ (2.37)

The rotation operator R (a function of ψ) in three dimensional space is

completely determined by means of the Rodrigues’ formulae:

R(ψ) = I +
sinψ

ψ
ψ̃ +

1− cosψ

ψ2
ψ̃ψ̃ (2.38)

where I is the identity matrix and, from now on, ∗̃ is the spin operator applied

to the vector ∗. Since ψ suffices to completely describe the rotation R, the set

of variables {x0,ψ} are used instead of {x0,R} as the unknown of the current

problem.

The deformation of the neutral axis Γ and the curvature K are material

measures, defined by

Γ = RT

(
dx0

dx1

− e1

)
(2.39)

K = T
dψ

dx1

(2.40)

being T the tangent operator

T (ψ) = I +
cosψ − 1

ψ2
ψ̃ +

(
1− sinψ

ψ

)
ψ̃ψ̃ (2.41)

The equilibrium equations are formulated in the deformed configuration: n

and m are the resultant force and moment with respect to X0 of the tractions

acting over the surface S, and n̄ and m̄ the external force and moment per

unit length at X. Assuming static conditions, equilibrium equations are

dn

ds
+ n̄ = 0 (2.42)

dm

ds
+
dx0

ds
× n+ m̄ = 0 (2.43)
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The material counterparts of stress and loads resultants are

N = RTn (2.44)

M = RTm (2.45)

and can be computed following the constitutive relations used in [CG88], in

which the material remains in the linear elastic range. Under these hypotheses,

the following constitutive equations apply

N = CNΓ (2.46)

M = CMK (2.47)

The unknowns of the problem {x0,ψ} are approximated as follows

x0(s) = ϕ1(s)x1
0 + ϕ2(s)x2

0 (2.48)

ψ(s) = ϕ1(s)ψ1 + ϕ2(s)ψ2 (2.49)

where xi0 and ψi are respectively the unknown values of x0 and ψ at node i,

and ϕi is the linear shape function associated to node i, and i = 1, 2. The

vector Q of nodal unknowns and the matrix ϕ of shape functions are defined

as

Q =


x1

0

x2
0

ψ1

ψ2

 , ϕ =

[
ϕ1I ϕ2I O O

O O ϕ1I ϕ2I

]
(2.50)

in which O is the 3× 3 null matrix and I is the 3× 3 identity matrix. Then,

equations (2.48) and (2.49) take the matrix form:[
x0

ψ

]
= ϕQ (2.51)
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The non-linear system of algebraic equations for the unknowns Q yields

F int(Q)− F ext = 0 (2.52)

and this equation is solved with a Newton-Raphson method, where F int and

F ext are respectively the vectors of internal and external forces, respectively,

given by

F int =

∫
B
BTσds (2.53)

F ext =

∫
B
ϕT t̄ds (2.54)

with

B =

[
ϕ′1I ϕ1ĩ ϕ′2I ϕ2ĩ

O ϕ′1I O ϕ′2I

]
, σ =

[
n

m

]
, t̄ =

[
n̄

m̄

]
(2.55)

where ϕ′1 = dϕ1/ds = −1/L and ϕ′2 = dϕ2/ds = 1/L.

2.4.3 Synthesis of the Input and Follower Segments

In the undertaken synthesis problem (figure 2.12) the initial and loaded shapes

of the input and follower links are not known, nor are the tip locations and

length of the segment known. The only data available are the tip loads, dis-

placements and rotations. These inverse problems have, in general, no closed-

form solutions, and they require optimization methods in order to be solved.

Boundary conditions on the three segments are derived from the specified

mechanism task, and optimization is used to determine the cross-section height

and width of segment B-C, shapes and sizes of segments A-B and C-D, the lo-

cations of the pivots A and D, and the unknown input torque and/or rotation

in pivot A, so that when it is applied to the synthesized mechanism, its motion

agrees with its specified task.

The motion of the coupler link is determined by its known initial configu-
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ration (length) and also known final configuration (specified mechanism task).

Its change in curvature is translated into displacements and rotations at pivots

B and C. The forces and moments induced by this motion are computed by the

finite element method. Five finite elements per link are used (i = 1...n, where

n = 5). The objective function is set as the volume of the compliant input

and follower links, which has to be minimized (the synthesis aims to satisfy

the specified mechanism task, using the minimum amount of material).

The design variables (figure 2.18) are given by:

A

B C

D

b2
h2

b1
h1

b
h

1 2

1

Figure 2.18: The design variables of the problem.

• the length of the links H.

• the cross-section width b.

• the cross-section height h.

• the position angle α.

• the rotation angle θ.

and on the other hand, constraints are:

• the displacements u and w of the coupler link.

• the rotation angle θ of the coupler link.
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which are derived from the mechanism task t = t(x,w, θ). From here on, suffix

1 refers to the input and the suffix 2 to the follower link. A weight penalization

is added in order to assure that these displacements and rotations are matched.

Thus, the optimization problem can be stated as follows:

Minimize: the volume of material

f =
n∑
i=1

(Hibihi) (2.56)

Subject to: the mechanism task

t(x,w, θ) = t (2.57)

Modifying: the set of design variables

X = [H1, H2, b, b1, b2, h, h1, h2, α1, α2, θ1] (2.58)

2.4.4 Optimization algorithms in MATLAB R©

The optimization problem of Equation (2.56) to (2.58) was setup and solved

with fmincon, the constrained optimization module in MATLAB R© software

package [The10]. Constrained minimization is the problem of finding a vector x

that is a local minimum to a scalar function f(x) subject to constraints on the

allowable x. The aim in constrained optimization is to transform the problem

into an easier sub-problem that can then be solved and used as the basis of an

iterative process, in which the constrained problem is solved using a sequence of

parametrized unconstrained optimizations, which in the limit converge to the

constrained problem. Package fmincon uses different optimization algorithms,

for this particular problem we used active-set and SQP. The main advantages

of SQP over active-set are [The10]:

• In SQP, bounds are not strict and a step can be exactly on a boundary.

This can be beneficial when the objective function or nonlinear constraint

functions is undefined or is outside the region constrained by bounds.
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• A step in the SQP algorithm might fail, and this means that an objec-

tive function or nonlinear constraint function has returned a non-defined

value. The algorithm will attempts to take a smaller step, and this adds

robustness to the method.

• SQP uses a set of linear algebra routines to solve the problem that are

more efficient in both memory usage and speed than the active-set rou-

tines.

2.5 Numerical example

In what follows, we are going to compare the optimization results with the

reference solution of Saggere and Kota [SK01]. Consider a rectangular flexible

beam which is initially straight, and it is required to be guided and deformed

to a new specified configuration. The coupler length is L = 200 mm. The ma-

terial properties are: Young modulus E = 2× 105 N/mm2 and shear modulus

G = 8.33× 104 N/mm2.

The mechanical task is the motion of both ends of the coupler link, which

is d = 10 mm at an angle β = 5.53o, depicted in Figure 2.19. Rotations

at the ends are computed from the change in geometry: θB = −0.1 rad and

θC = −0.08 rad, and no external loads are applied.

200 mm

d d
Initial shape

Final shape

Figure 2.19: Specified task for the compliant coupler-link [SK01].

Next, the compliant input and follower links are synthesized using the

optimization scheme described above. In the first example, the grounded ends

of these segments are hinged to the ground (both ends are lower kinematic

pairs). The chosen bounds for the design variables are summarized in Table 2.2.
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Variable H1 H2 c b1 b2 h h1 h2 α1 α2 θ1

Minimum 10 10 5 5 5 5 5 5 0.1 π 0.1 π -0.4 π
Maximum 120 120 50 50 50 50 50 50 0.9 π 0.9 π 0.4 π

Table 2.2: Bounds for the design variables.

2.5.1 Both free ends hinged to the grounds

The problem solved by Saggere and Kota [SK01] is a partially compliant 4-

bar mechanisms with both free ends hinged to the ground, and the amount

of material volume used to accomplish the mechanisms task is 8.0543×103

mm3. In what follows the same problem is solved using beam finite elements,

improving the results in [SK01] and using less volume to perform the same

mechanisms task.

Discretization using Crisfield’s beam finite element model

The first optimization was computed using Crisfield’s beam finite element

model, which is a small-displacement formulation with shear deformation, and

the results are summarized in Table 2.3.

Design variable SQP Active-set

b1 9.1680 mm 5.0000 mm
h1 8.5166 mm 5.0000 mm
H1 43.9033 mm 50.9249 mm
b2 5.0116 mm 5.0000 mm
h2 7.8631 mm 5.0000 mm
H2 44.8067 mm 69.7444 mm
bh 5.0000 mm 5.0000 mm
hh 11.9848 mm 5.0375 mm
α1 1.5390 rad 1.5630 rad
α2 1.5506 rad 1.5925 rad
θA -0.3837 rad -0.3043 rad
MA -7.9482×105 Nmm -5.1675×104 Nmm

Volume 1.7179×104 mm3 8.0543×103 mm3

Table 2.3: Hinged-hinged 4-bar partially compliant mechanism. Crisfield’s
beam finite element model.
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As we can see in Figure 2.20, both optimization algorithms yield mecha-

nisms in which the length of the follower link is slightly longer than the length

of the input link, and where link deflection is very small under actuation, as

should be expected in hinged segments. The volume of material computed

using the active-set algorithm is 53% lower than the volume computed using

SQP, 8.0543×103 mm3 vs. 1.7179×104 mm3 respectively, demonstrating that

active-set proved much more efficient than SQP in this particular problem.
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Figure 2.20: Hinged-hinged 4-bar mechanism. Crisfield’s beam finite element
model. Displacements are in the same scale than the dimensions of the mech-
anism.

The mechanism task is achieved by using 32% less volume than Saggere

and Kota [SK01] in the worst result (SQP), and using 68% less volume in the

best case (active-set algorithm).

Discretization using Cardona and Géradin’s beam finite element

model

The hinged-hinged four-bar mechanisms was later modeled using Cardona and

Géradin’s non-linear beam finite element, which is a large-displacement model

with finite rotations, and the results are summarized in Table 2.4. As we can

see in Figure 2.21, the resulting length of the follower link is slightly larger
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than the length of the input link. Again, link deflection compared to the over-

all link length is very small. With this finite element model, both optimization

algorithms yielded almost equal material volume. The best solution was ob-

tained with SQP which yielded 8% less volume than active-set, 8.1374×103

mm3 compared to 8.8507×103 mm3 respectively. Reverting the behavior of

the optimization coupled with small-displacement beam model, SQP was more

efficient than active-set in this particular case.

Design variable SQP Active-set
b1 5.0000 mm 5.0000 mm
h1 5.0000 mm 5.2074 mm
H1 50.8619 mm 55.1241 mm
b2 5.0000 mm 5.2694 mm
h2 5.0000 mm 5.6528 mm
H2 69.4608 mm 81.0917 mm
bh 5.0000 mm 5.0000 mm
hh 5.1294 mm 5.0000 mm
α1 1.5568 rad 1.6038 rad
α2 1.5917 rad 1.5786 rad
θA -0.3118 rad -0.2762 rad
MA -5.3759×104 Nmm -4.5362×104 Nmm

Volume 8.1374×103 mm3 8.8507×103 mm3

Table 2.4: Hinged-hinged 4-bar partially compliant mechanism. Cardona and
Géradin’s beam finite element model.

With this discretization the mechanism task is achieved by using less than

halve the volume in Saggere and Kota [SK01]: 68% less volume in the best

result (SQP), and 65% less volume in the worst result (active-set).

2.5.2 One free end hinged and the other clamped to the

ground

The same optimization problem is performed now with an additional fixation

constraint: the free end D of the follower link is now clamped.
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Figure 2.21: Hinged-hinged 4-bar mechanism. Cardona and Géradin’s beam
finite element model. Displacements are in the same scale than the dimensions
of the mechanism.

Discretization using Crisfield’s beam finite element model

The results of the optimization with the small-displacement shear deformation

model and hinged-clamped fixation set are summarized in Table 2.5.

Design variable SQP Active-set
b1 5.3884 mm 5.0391 mm
h1 6.0511 mm 6.0128 mm
H1 53.6244 mm 55.0245 mm
b2 5.2775 mm 5.1227 mm
h2 5.4138 mm 5.0000 mm
H2 99.0420 mm 96.3174 mm
bh 5.4222 mm 5.0000 mm
hh 5.5046 mm 5.2979 mm
α1 1.5666 rad 1.5713 rad
α2 1.6112 rad 1.6089 rad
θA -0.2951 rad -0.2833 rad
MA -1.0008×105 Nmm -8.4598×104 Nmm

Volume 1.0548×104 mm3 9.4321×103 mm3

Table 2.5: Hinged-clamped 4-bar partially compliant mechanism. Crisfield’s
beam finite element model.
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The clamp fixation at D reduces the flexibility of the segment C-d, and

in consequence, a segment of greater length than in the hinged-hinged case

is needed to perform the same mechanisms task. That is exactly what both

algorithms yielded in the hinged-clamp case: mechanisms with longer follower

links compared to the hinged-hinged case, Figure 2.22.
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Figure 2.22: Hinged-clamped 4-bar mechanism. Crisfield’s beam finite ele-
ment model. Displacements are in the same scale than the dimensions of the
mechanism.

Both algorithms yielded almost the same material volume, in which the best

solution of active-set uses 10% less volume than solution computed by SQP,

9.4321×103 mm3 vs. 1.0548×104 mm3 respectively. Once again, the small-

displacement shear deformation model gave better results with the active-set

algorithm. Comparing this results to the ones of Saggere and Kota [SK01],

the same mechanism task is fulfilled with 63% less volume in the best result

(active-set), and with 58% less volume in the worst result (SQP).

Discretization using Cardona and Géradin’s beam finite element

model

The last optimization case was modeled using the large-displacement finite

rotations model, and the hinged-clamped fixation set. Table 2.6 summarizes
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this results.

Design variable SQP Active-set
b1 5.2194 mm 6.4913 mm
h1 5.1635 mm 6.5750 mm
H1 52.0916 mm 53.2499 mm
b2 5.0000 mm 5.3377 mm
h2 5.0000 mm 5.2501 mm
H2 101.8915 mm 81.9988 mm
bh 5.0000 mm 5.1792 mm
hh 5.0000 mm 6.5153 mm
α1 1.5638 rad 1.6416 rad
α2 1.6112 rad 1.6708 rad
θA -0.3119 rad -0.3061 rad
MA -4.4733×105 Nmm -1.0998×105 Nmm

Volume 8.9512×103 mm3 1.1319×104 mm3

Table 2.6: Hinged-clamped 4-bar partially compliant mechanism. Cardona
and Géradin’s beam finite element model.
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Figure 2.23: Hinged-clamped 4-bar mechanism. Cardona and Géradin’s beam
finite element model. Displacements are in the same scale than the dimensions
of the mechanism.

The reduction of flexibility caused by the clamp yielded mechanisms with

longer follower links compared to the hinged-hinged case, Figure 2.23. SQP
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worked better with this large-displacement model, yielding a design that needs

21% less volume than the design of active-set for the same mechanism task,

8.9512×103 mm3 vs. 1.1319×104 mm3 respectively.

Both designs use much less material volume than Saggere and Kota [SK01]

design, yiending a 65% volume save in the best result (SQP), and a 56% save

in the worst result (active-set).

2.6 Conclusions

In this chapter, structural optimization methods (e.g. topology, size and shape)

were described and tested in the context of mechanisms design. Results ob-

tained with topology optimization methods are independent of prior design

choices, being this perhaps the major advantage of this technique. However,

algorithms used in topology optimization assume geometrically linear mechan-

ical behavior, and inaccurate results may be obtained when applied to a com-

pliant mechanisms that usually undergoes large displacement.

An application of shape and size optimization was performed on a turbine

disc where the shape and size of its ventilation holes were optimized, and later

on a four-bar compliant mechanism. Links were modeled with non-linear small

and large-displacement FEM elements. Eight different alternatives were an-

alyzed for the same mechanism task, with different optimization algorithms,

boundary conditions and FEM models (large-displacement and small displace-

ment). Results demonstrated the feasibility of the method, with less material

needed to fulfill the same mechanisms task of a test problem from the litera-

ture.

Structural optimization techniques are general design methods, in which a

multitude of possible designs are obtained without the need of any initial com-

mitment or proposal. However, computational cost is still the main drawback

of this technique.





Chapter 3

Inverse FEM of general 3D

solids [FCJ08]

In this chapter a finite element model for the inverse design of solids with large

displacements in the elastic range is introduced. The problem consists in de-

termining the initial shape of the piece, such that it attains the designed shape

under the effect of service loads. Although the formulation expresses equilib-

rium on the distorted configuration, it uses a standard constitutive equations

library which is expressed as usual for measures attached to the undistorted

configuration. In this way, the modifications to a standard finite elements code

are limited to the routines for the computation of the finite element internal

forces and tangent matrix.

3.1 Introduction

A central aspect when designing a piece to have an imposed shape after severe

deformation, is to compute its undistorted shape. In this analysis, the final

(desired) configuration is supposed to be that of the piece subjected to service

loads once the steady state has been attained, neglecting any transient effect.

The classical (direct) problem in nonlinear elasticity consists in determining

the distorted shape knowing the loads applied to the piece in a given reference

configuration. The subject of this study is the inverse problem that consists

61
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in determining the undistorted configuration knowing the final configuration

and service loads. Strictly speaking, it is an inverse “design” problem [BW98],

in contrast to classical inverse “measurement” problems (often called simply

“inverse problems”), that consists in determining the material data knowing

both the distorted and undistorted configurations as well as the service loads.

Some pieces (like turbine blades) that are designed to be cyclically used,

must recover the original shape after each service cycle, constraining the mate-

rial to lie within the elastic range all along the deformation process. Moreover,

sometimes they are made of laminates with a markedly anisotropic behav-

ior. We will use therefore an anisotropic hyperelastic material law limited to

the small strains domain (however, large deformations can develop). In the

isotropic case, some simplifications could be introduced that allow extending

the formulation to finite hyperelasticity.

Previous numerical models for the inverse design analysis of hyperelastic

bodies subjected to large deformations have been proposed by Govindjee and

Mihalic [GM96, GM98] and Yamada [Yam97]. Both models use the finite

element method in order to discretize the inverse deformation. They differ in

the fact that Govindjee and Mihalic’s model is Eulerian, and the equilibrium

equation is formulated in terms of variables attached to the (known) distorted

configuration, while Yamada’s model is Arbitrary-Lagrangean-Eulerian (ALE),

i.e., the problem is expressed on a reference configuration which is different

from the undistorted and distorted ones.

In reference [GM98] not only the equilibrium equations but also the consti-

tutive equations are written in terms of Eulerian variables, which complicates

the description of orthotropic materials whose preferred directions are usually

defined in the unknown undistorted configuration.

We made an effort in order to use the available material library from our

nonlinear finite elements code [Sam07], in which constitutive equations are

written in terms of Lagrangean variables (Piola-Kirchhoff stresses in terms of

Green-Lagrange strains). In this form, the modifications made into the code

to implement the model for inverse analysis are restricted to the routines for

computing the residual vector and tangent matrix for the inverse finite element

method, preserving the material library, what clearly simplified the develop-
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ment. Another important contribution is the treatment of body forces, not

included in previous works. In fact, in the problems addressed by the previ-

ous inverse design models [GM96, GM98, Yam97], the body forces were not

relevant. However, this is not the case when modelling turbine blades, where

centrifugal body forces are significant. External forces (including body and

surface forces) usually depend on deformation, with the consequent contribu-

tion to the finite element tangent matrix.

An example application of the model is given. The simple case of bending

of a laminated beam is considered, for which the determination of its distorted

shape is an easy task for any available code for large deformation analysis.

Once the distorted shape is known, we evaluate the ability of the present

model to recover the initial shape.

3.2 Kinematic description

Let B0 be the undistorted reference configuration of a continuum body, and

B the objective (final) configuration. The position x ∈ B of any particle P

with position X ∈ B0 is determined by the deformation x = φ(X). The

deformation gradient relative to the reference configuration is :

F = Gradφ, (3.1)

where Grad denotes gradient with respect to X ∈ B0.

In the problem we are interested in, we know the final configuration and

we want to determine the inverse deformation X = ψ(x) giving the position

X ∈ B0 of every particle whose final position is x ∈ B. The inverse deformation

gradient is defined as

f = gradψ = F−1, (3.2)

where grad denotes gradient with respect to x ∈ B.
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Figure 3.1: Distorted configuration B, domain of inverse analysis, and undis-
torted configuration B0 sought as solution.

3.3 Material description

The constitutive law for a general hyperelastic material can be written as

follows [Ogd84]

S =
∂w

∂E
= S(E), (3.3)

where w is the strain-energy density function, S is the second Piola-Kirchhoff

stress tensor, and E is the Green-Lagrange strain tensor defined as

E =
1

2

(
F TF − 1

)
, (3.4)

1 denoting the second-order identity tensor.

3.3.1 Anisotropy in inverse analysis

The constitutive equation (3.3) is formulated in terms of S and E, that are

Lagrangean tensors, i.e. tensors related to the reference configuration. Conse-

quently, the material properties must be attached to this configuration which

is unknown. This hinders the definition of preferred material directions, and

hence the modelling of anisotropic materials.

In the case of laminated bodies for which strains remain small, it is possible

to approximate the preferred directions of anisotropy in the distorted configu-

ration by writing the constitutive equation (3.3) in Eulerian form by a simple
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rotation of the material axes. We rotate the Green-Lagrange strain tensor and

the second Piola-Kirchhoff stress tensor to the spatial axes as follows :

E∗ = RERT =
1

2

(
FF T − 1

)
=

1

2

(
V 2 − 1

)
, (3.5)

S∗ = RSRT . (3.6)

V is the symmetric positive-definite left-stretch tensor and R is the rotation

tensor, both being computed from the polar decomposition of the deformation

gradient :

F = V R. (3.7)

Now, the chain rule together with equation (3.5) yields

Sij =
∂w

∂Eij
=

∂w

∂E∗kl

∂E∗kl
∂Eij

= RkiRlj
∂w

∂E∗kl
, or S = RT ∂w

∂E∗
R, (3.8)

from which we deduce the desired constitutive law in Eulerian form :

S∗ =
∂w

∂E∗
= S∗(E∗). (3.9)

In such a way, we are able to define the material properties with respect to a

system of axes linked to the known distorted configuration.

3.4 Finite element formulation

The inverse design problem consists in finding the function ψ that satisfies the

equilibrium equations, taken here in the weak form :∫
B

tr
[
σT grad (η)

]
dv −

∫
B
b · η dv −

∫
∂Bt

t · η ds = 0 (3.10)

for every admissible variation η, where σ is the Cauchy stress tensor, b is the

given body force per unit distorted volume, t is the traction prescribed on the

portion ∂Bt of the boundary ∂B of the distorted domain B (hence, t is a force

per unit distorted area).

Using the finite element method, the position of particles in the undistorted
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configuration is approximated inside a typical finite element Ωe with nodes

1, 2, . . . , N as follows

X ≈
N∑
I=1

NI(x)XI , (3.11)

where NI(x) is the shape function associated to the node I, and XI is the

unknown position of this node in the undistorted configuration.

Introducing this approximation, and taking variations with respect to the

positions in the undistorted configuration (standard Galerkin formulation), we

get the discrete equation

R = F int − F ext = 0, (3.12)

where F int and F ext are respectively the internal and external force vectors,

given by

F int =

∫
B
bT σ̄ dv, (3.13)

F ext =

∫
B
NTb dv +

∫
∂Bt

NT t ds, (3.14)

b being the gradients matrix, and σ̄ the vector containing the independent

components of the symmetric Cauchy stress tensor σ. 1

In turbine blades modelling, the external forces mainly consist of the cen-

trifugal and pressure forces. The former are represented by the first term of

the r.h.s. of equation (3.14) with b defined as

b = ρacentr, (3.15)

being ρ the density in the distorted configuration, and acentr the centrifugal

1From now on, t̄ denotes the vector (matrix) containing the components of the second-
order (respectively, fourth-order) tensor t. A single rule for the mapping of tensors into
vectors or matrices cannot be defined, since the mapping depends on the tensor symme-
tries involved in certain tensor products. For the sake of conciseness, the definition of the
algorithmic versions of all tensors appearing in the text are given in the Appendix.



3.4. FINITE ELEMENT FORMULATION 67

acceleration, defined as

acentr(x) = ω × [ω × (x− o)] , (3.16)

where ω is the angular velocity vector and o the position of an arbitrary point

on the rotation axis. On the other hand, the pressure force is represented by

the second term of the r.h.s. of equation (3.14) by defining

t = −pn (3.17)

where p is the pressure and n the outer normal to the portion ∂Bt of the

surface of the body in the distorted configuration.

3.4.1 Computation of strains and stresses in finite ele-

ments

By using equation (5.1), the inverse deformation gradient is approximated in

terms of derivatives of the interpolation functions as :

f =
∂X

∂x
≈ ∂NI

∂x
XI . (3.18)

Once f is known, we can compute the (direct) deformation gradient F = f−1,

and then the Green-Lagrange strain E using equation (3.4) as well as its

rotated counterpart E∗ given by equation (3.5).

Entering E∗ in the constitutive law (3.9), we determine the rotated second

Piola-Kirchhoff stress S∗. Then, we are able to compute the Cauchy stress by

means of the relationship

σ = jFSF T = jV S∗V T ,

or, given in Cartesian components :

σkl = jVkmS
∗
mnVln, (3.19)
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where j = detf is the Jacobian of the inverse deformationX = ψ(x). In order

to replace tensor products by matrix products as usual in the finite element

practice, we introduce the tensor

IVklmn =
1

2
(VkmVln + VknVlm) = IVklnm = IVlkmn, (3.20)

which allows us to rewrite (3.19) as follows :

σkl = jIVklmnS
∗
mn. (3.21)

A tensor product like this can be taken to the following matrix expression :

σ̄ = jĪ
V
S̄
∗
. (3.22)

3.4.2 Solution of the nonlinear equilibrium equation

The nonlinear equation (3.12) is solved iteratively using the Newton-Raphson

method (see [ZT00] for details on the implementation of this method in the

finite element context). At each iteration k we have to solve the following

linear equation for the increment ∆q :

R(qk+1) = R(qk) +K(qk)∆q, (3.23)

where K denotes the tangent matrix, given by :

K =
∂R

∂q
=
∂F int

∂q
+
∂F ext

∂q
= K int +Kext. (3.24)

and where q is the vector of unknown nodal parameters, which in this case are

the positions XI of nodes at the initial configuration.

Concerning external forces, we note that there is no contribution to the

tangent matrix from the pressure forces in inverse analysis. In fact, contrary

to what happens in direct analysis, the normal n to the external surface in the

distorted configuration is known and fixed. On the other hand, there would

be no contribution from the centrifugal force vector if ρ were known in the
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distorted configuration. However, the value of the density we usually know

is that related to the undistorted configuration, say ρ0. Then, ρ is computed

from the local mass balance equation

ρ = jρ0. (3.25)

Nevertheless, since we remain within the domain of small strains, the density

ρ ≈ ρ0 and the contribution of the centrifugal forces to the tangent matrix can

be neglected.

Therefore, the tangent matrix reduces to the expression

K ≈K int =

∫
B
bT
∂σ̄

∂q
dv. (3.26)

The computation of ∂σ̄/∂q in an exact analytical way is described in the next

section.

3.4.3 Computation of the stress derivatives

In a typical finite element, after computing the internal forces vector as de-

scribed above, we know the inverse deformation gradient f , the deformation

gradient F , the left-stretch tensor V and the fourth-order tensor IV (which is

a function of V squared), the rotated Green-Lagrange strain E∗, the rotated

Piola-Kirchhoff stress S∗ and the Cauchy stress σ. In order to compute the

tangent stiffness matrix for inverse analysis, we need to compute the deriva-

tives of the Cauchy stress with respect to the nodal parameters of the inverse

motion. For this purpose, we will compute first the corresponding variations :

∆σ̄ = j−1σ̄∆j︸ ︷︷ ︸
∆̄

(1)

+ jĪ
V

∆S̄
∗︸ ︷︷ ︸

∆̄
(2)

+ j∆Ī
V
S̄
∗︸ ︷︷ ︸

∆̄
(3)

. (3.27)

For clarity of presentation, the computation of each term ∆̄
(i)

will be treated

separately.
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Computation of ∆̄
(1)

.

The differentiation rule for the determinant of a second order tensor yields

∆j = j tr (F T∆f) = j (F̄ T )T∆f̄ . (3.28)

Given f by equation (3.18), it is straightforward to compute its determinant

j, its inverse F and its derivative

∆f =
∂NI

∂x
∆XI , or ∆f̄ = N̄ ,x∆q. (3.29)

Then, the first term in the r.h.s. of equation (3.27) can be expressed as

∆̄
(1)

= σ̄(F T )TN̄ ,x∆q. (3.30)

Computation of ∆̄
(2)

.

First, we need to determine

∆S∗ =
∂S∗

∂E∗
∆E∗ = D∗∆E∗. (3.31)

The components D∗mnkl of the fourth-order tensor D∗ of tangent moduli, to-

gether with the rotated second Piola-Kirchhoff stress tensor S∗, are com-

puted in the constitutive-equation software module as a function of the rotated

Green-Lagrange strain E∗. The tensor D∗ verifies the following symmetries :

D∗mnkl = D∗nmkl = D∗mnlk. (3.32)

On the other hand, the variation of E∗ results :

∆E∗ij =
1

2
∆(FikFjk) = Θijkl∆Fkl, or ∆Ē

∗
= Θ̄∆F̄ , (3.33)

with the components of the fourth-order tensor Θ given by :

Θijkl =
1

2
(δikFjl + δjkFil) , (3.34)
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δij denoting the Kronecker delta.

Using the rule of differentiation of the inverse of a second order tensor, we

obtain :

∆Fkm = −Λkmpq∆fpq, or ∆F̄ = −Λ̄∆f̄ , (3.35)

with

Λkmpq = FkpFqm. (3.36)

Then, the second term in the r.h.s. of equation (3.27) can be expressed as

∆̄
(2)

= −jĪV D̄∗Θ̄Λ̄N̄ ,x∆q. (3.37)

Computation of ∆̄
(3)

.

First, let us rewrite the third term of the r.h.s. of equation (3.27) as follows :

∆
(3)
kl = j∆IVklmnS

∗
mn = jΥklpq∆Vpq, or ∆̄

(3)
= j Ῡ∆V̄ , (3.38)

where

Υklpq = (IkmpqVln + IlmpqVkn)S∗mn = Υlkpq = Υklqp. (3.39)

Here, Iijkl = (δikδjl + δilδjl)/2 is the fourth-order identity tensor.

Now, the only missing term to be computed is ∆V . To this end, we begin

by computing ∆V 2 :

∆(VikVkj) = ∆VikVkj + Vik∆Vkj = Φijkm∆Vkm, or ∆V̄
2

= φ̄∆V̄ ,(3.40)

where

Φijkm = IijklVlm + IijmlVlk = Φijmk = Φjikm. (3.41)



72 CHAPTER 3. INVERSE FEM OF GENERAL 3D SOLIDS [?]

On the other hand, since V 2 = 2E∗−1, its variation can also be computed as

∆V̄
2

= 2∆Ē
∗

= −2Θ̄Λ̄N̄ ,x∆q. (3.42)

By making equation (3.40) the same as equation (3.42), we obtain

∆V̄ = −2φ̄
−1

Θ̄Λ̄N̄ ,x∆q. (3.43)

Finally, after replacing the last equation into equation (3.38), the third term

of the r.h.s. of equation (3.27) can be expressed :

∆̄
(3)

= −2jῩφ̄
−1

Θ̄Λ̄N̄ ,x∆q. (3.44)

Final form of ∂σ̄/∂q

The form given to the terms ∆̄
(i)

of the variation of σ̄ allows the immediate

determination of the derivative of σ̄ with respect to the nodal unknowns q :

∂σ̄

∂q
= σ̄(F̄

T
)TN̄ ,x − jĪ

V
D̄
∗
Θ̄Λ̄N̄ ,x − 2jῩφ̄

−1
Θ̄Λ̄N̄ ,x. (3.45)

Therefore, the tangent stiffness matrix results

K =

∫
B
bT
[
σ̄(F̄

T
)T − jĪV D̄∗Θ̄Λ̄− 2jῩφ̄

−1
Θ̄Λ̄

]
N̄ ,x dv. (3.46)

Note that K is non-symmetric, as it was already the case in references [GM96,

GM98].

Although not detailed here, the formulation can be easily extended to ac-

count also for thermal loads.

Remark. In this work, the use of a constitutive law of the type S∗ = S∗(E∗)

makes the linearization of stress with respect to material coordinates somehow

different to what can be found in preceding works in inverse analysis, where

different constitutive laws were used.
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For instance, in the work of Govindjee and Mihalic [GM96] they used a

neo-Hookean isotropic material model defined by

σkl = jµ(c−1
kl − δkl)− λj ln jδkl, (3.47)

where c = fTf , and λ and µ are material parameters that reduce to the Lamé

constants in the case of small strains. Then, they obtain

Dσ
klmn =

∂σkl
∂cmn

=
1

2
j
{
µ
(
c−1
kl c
−1
mn − c−1

kmc
−1
ln − c

−1
kn c
−1
lm

)
− [µ+ λ (1− ln j)] δklc

−1
mn

}
.(3.48)

The variation of σ is completely determined after computing

∆cmn = 2θmnkl∆fkl, or ∆

Therefore, using a constitutive equation of the type σ = σ(c) like equation

(3.47), the derivative of σ with respect to the material coordinates takes the

algorithmic form

∂σ̄

∂q
= 2D̄

σ
θ̄N̄ ,x, (3.50)

which is much simpler than that of equation (3.45) used in this work. Unfor-

tunately, we cannot define a law σ = σ(c) in the case of anisotropic behavior

[TN65].

Note finally that linearization of stresses with respect to material coor-

dinates have been used in other contexts by several authors, for instance in

the work of Thoutireddy and Ortiz [Tho03, TO04] on shape optimization and

mesh adaptivity. They use constitutive laws of the form

P =
∂w

∂F
, (3.51)

where P is the first Piola-Kirchhoff stress tensor, from which they derive the

moduli DP
ijkl = ∂Pij/∂Fkl. Then, the variation of σ = jPF T takes the form

∆σkl =
1

j
σkl∆j + jDP

kmpq∆FpqFlm + jPkm∆Flm. (3.52)
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This linearization is also somehow simpler than the linearization defined by

equation (3.45). Let us remark that the law (3.51) may be used for anisotropic

materials and is not restricted to isotropy, hence it could have been used in

the present formulation for inverse design problems, after applying a similar

technique of rotation of axes to be able to define material properties in a

system of axes linked to the distorted (known) configuration. Nevertheless, in

our case a law of the type S∗ = S∗(E∗) was necessary with the objective of

reutilization of the available material software module.

3.5 Application

3.5.1 Validation test

Let us consider the simple problem of bending a beam under plane strain

conditions. First, we solve the direct problem, i.e., given the undistorted con-

figuration B0 as well as the kinematic boundary conditions and the applied

forces, we determine the distorted configuration B. The problem is schema-

tized in Figure 3.2. The domain is discretized using trilinear hexahedral finite

elements. Even if it is essentially a 2D problem, 3D elements are used for

generality. In order to represent a plane strain state, a one-element-wide mesh

is used, and the faces normal to the k-axis are constrained to move in their

planes.

Table 3.1: Material data for the beam bending problem.

E1 = 500 N/cm2 ν12 = 0.3 G12 = 192.31 N/cm2

E2 = 1000 N/cm2 ν23 = 0.2 G23 = 312.50 N/cm2

E3 = 750 N/cm2 ν13 = 0.25 G13 = 288.46 N/cm2

The bar is made of horizontal laminates with fibers disposed in the i-

direction. The material has an orthotropic behavior, characterized by the

Young moduli E1, E2, E3, Poisson ratii ν12, ν23, ν13, and shear ratii G12, G23,

G13 with respect to the orthotropy orthogonal axes {u(1),u(2),u(3)}. Table
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P=100 NL=48 cm

h=16 cm

Orthotropic
basis in

i

j

k

(solution of direct analysis)

(domain of direct analysis)

Figure 3.2: Direct problem.

3.1 lists the values we assumed for these properties. Further, we adopt the

hyperelastic constitutive law :

S̄ = D̄Ē, (3.53)

where

D̄ =



1−ν23ν32
αE2E3

ν12+ν32ν13
αE1E3

ν13+ν12ν23
αE1E2

0 0 0
1−ν13ν31
αE3E3

ν23+ν21ν13
αE1E2

0 0 0
1−ν12ν21
αE1E2

0 0 0

G12 0 0

symmetric G23 0

G13


, (3.54)

with

ν21 =
E2

E1

ν12, ν31 =
E3

E1

ν13, ν32 =
E3

E2

ν23,

α =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν32ν13

E1E2E3

. (3.55)

Here, the orthotropy axes {u(1),u(2),u(3)} coincide with the Lagrangean princi-
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i

j

k

(domain of inverse analysis)

(solution of inverse analysis)

P

Orthotropic
basis in

Figure 3.3: Inverse problem.

pal axes, which are also coincident with the Cartesian coordinate basis {i, j,k}.
The domain of the inverse design analysis is the distorted configuration

B computed as solution of the direct analysis and shown in Figure 3.2. The

inverse problem is schematized in Figure 3.3. The objective of the computation

is to verify if we are able to recover the original undistorted configuration as

solution.

The orthotropy axes coincide now with the Eulerian principal axes v(i) =

Ru(i), where R is the rotational part of the deformation gradient F and varies

throughout the domain. Although in this case these axes can be exactly de-

termined from the previous direct analysis, in practice they will be given for

the distorted geometry taking into account the laminated nature of the body

and the desired fiber orientations when under loading.

Figure 3.4 shows a plot of the inverse solution, displaying a map of the

magnitude of the displacements u = x−ψ(x).

We define an error measure of the inverse model computation, as a distance

between the nodes of the mesh used for the direct analysis and the positions

obtained as solution of the inverse analysis. After solving the equilibrium

equation (3.12) with a very small residue norm ‖R‖ < 1.6 × 10−11 (the L2-

norm of the residue vector R), we obtained a maximum error of 26.6µm at

the nodes where the concentrated forces were applied. The relative error with

respect to the displacements magnitude is less than 0.01%, which demonstrates
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Figure 3.4: Displacement modulus from the inverse analysis.
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Figure 3.5: Evolution of the residue norm during the inverse analysis.

the excellent accuracy of the inverse model.

Figure 3.5 shows the evolution of ‖R‖ as a function of iterations. We note

that after the 5th iteration, when the trial solution entered into the convergence

radius of the solution, an optimal (quadratic) convergence rate is observed.
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Appendix: Algorithmic form of tensors

A symmetric stress tensor, e.g. σ, is mapped in a vector according to the rule:

σ̄ = v̄σ(σ) = [σ11 σ22 σ33 σ12 σ23 σ31]T .

Accordingly, S̄ = v̄σ(S), S̄
∗

= v̄σ(S∗), ∆̄(i) = v̄σ(∆(i)).

For a symmetric strain tensor, say E, the following rule holds

Ē = v̄ε(E) = [E11 E22 E33 2E12 2E23 2E31]T ,

and so as Ē
∗

= v̄ε(E∗), c̄ = v̄ε(c) and V̄
2

= v̄ε(V 2). This convention is

adopted also for the left-stretch tensor V , which transforms to V̄ = v̄ε(V ).

For non-symmetric second-order tensors like f , having nine independent

components, we apply the transformation

f̄ = v̄f (f) = [f11 f21 f31 f12 f22 f32 f13 f23 f33]T ,

so F̄ T = vf (F T ) , E∗ and c This is also the case for the symmetric strain-like

tensor c.

Fourth-order tensors t having the symmetries Tijkl = Tjikl = Tijlk are

mapped into matrices whose general expression is

t̄ = M̄
s
(t, α, β) =



T1111 T1122 T1133 αT1112 αT1123 αT1131

T2211 T2222 T2233 αT2212 αT2223 αT2231

T3311 T3322 T3333 αT3312 αT3323 αT3331

βT1211 βT1222 βT1233 αβT1212 αβT1223 αβT1231

βT2311 βT2322 βT2333 αβT2312 αβT2323 αβT2331

βT3111 βT3122 βT3133 αβT3112 αβT3123 αβT3131


,(3.56)

where the coefficients α and β depend on the nature of the second-order tensors

involved in the tensor product we aim to replace by a simpler matrix product.

For tensors like D, D∗, Dσ and Υ that are multiplied by a symmetric strain

tensor to obtain a symmetric stress tensor, we have α = β = 1. On the other

hand, the tensor IV relating two symmetric stress tensors in equation (3.38), is
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mapped into the matrix Ī
V

= M̄
s
(IV , 2, 1). It is the same case for φ relating

∆V 2 and ∆V in equation (3.40), which maps into φ̄ = M̄
s
(φ, 2, 1).

Special mappings are needed for fourth-order tensors without such sym-

metries. For tensor Θ relating the symmetric strain tensor ∆E∗ and the

non-symmetric tensor ∆F in equation (3.33), we have :

Θ̄ =



Θ1111 Θ1121 Θ1131 Θ1112 Θ1122 Θ1132 Θ1113 Θ1123 Θ1133

Θ2211 Θ2221 Θ2231 Θ2212 Θ2222 Θ2232 Θ2213 Θ2223 Θ2233

Θ3311 Θ3321 Θ3331 Θ3312 Θ3322 Θ3332 Θ3313 Θ3323 Θ3333

2Θ1211 2Θ1221 2Θ1231 2Θ1212 2Θ1222 2Θ1232 2Θ1213 2Θ1223 2Θ1233

2Θ2311 2Θ2321 2Θ2331 2Θ2312 2Θ2322 2Θ2332 2Θ2313 2Θ2323 2Θ2333

2Θ3111 2Θ3121 2Θ3131 2Θ3112 2Θ3122 2Θ3132 2Θ3113 2Θ3123 2Θ3133


,(3.57)

The same transformation applies to θ in equation (??).

The tensor Λ relating non-symmetric tensors ∆F and ∆f in equation

(3.35) maps into the matrix

Λ̄ =



Λ1111 Λ1121 Λ1131 Λ1112 Λ1122 Λ1132 Λ1113 Λ1123 Λ1133

Λ2111 Λ2121 Λ2131 Λ2112 Λ2122 Λ2132 Λ2113 Λ2123 Λ2133

Λ3111 Λ3121 Λ3131 Λ3112 Λ3122 Λ3132 Λ3113 Λ3123 Λ3133

Λ1211 Λ1221 Λ1231 Λ1212 Λ1222 Λ1232 Λ1213 Λ1223 Λ1233

Λ2211 Λ2221 Λ2231 Λ2212 Λ2222 Λ2232 Λ2213 Λ2223 Λ2233

Λ3211 Λ3221 Λ3231 Λ3212 Λ3222 Λ3232 Λ3213 Λ3223 Λ3233

Λ1311 Λ1321 Λ1331 Λ1312 Λ1322 Λ1332 Λ1313 Λ1323 Λ1333

Λ2311 Λ2321 Λ2331 Λ2312 Λ2322 Λ2332 Λ2313 Λ2323 Λ2333

Λ3311 Λ3321 Λ3331 Λ3312 Λ3322 Λ3332 Λ3313 Λ3323 Λ3333


,(3.58)

Finally, N̄ ,x is the matrix reordering the derivatives of the shape functions
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in the following way :

N̄ ,x =



∂N1

∂x
0 0 ∂N2

∂x
0 0 · · ·

0 ∂N1

∂x
0 0 ∂N2

∂x
0 · · ·

0 0 ∂N1

∂x
0 0 ∂N2

∂x
· · ·

∂N1

∂y
0 0 ∂N2

∂y
0 0 · · ·

0 ∂N1

∂y
0 0 ∂N2

∂y
0 · · ·

0 0 ∂N1

∂y
0 0 ∂N2

∂y
· · ·

∂N1

∂z
0 0 ∂N2

∂z
0 0 · · ·

0 ∂N1

∂z
0 0 ∂N2

∂z
0 · · ·

0 0 ∂N1

∂z
0 0 ∂N2

∂z
· · ·


. (3.59)

Plane stress and plane strain problems

Under plane strain conditions, with strains Eij = Eji restricted to the plane

containing the vectors u(1) and u(2) of the orthotropic basis {u(1),u(2),u(3)},
i.e. E13 = E23 = E33 = 0, the orthotropic hyperelastic constitutive law (??)

is valid whenever the vector counterparts of S and E as well as the matrix

counterpart of the elastic moduli D be expressed as

S̄ =[S11 S22 S12]T , Ē = [E11 E22 2E12]T ,

D̄ =


1−ν23ν32
αE2E3

ν12+ν32ν13
αE1E3

0
1−ν13ν31
αE1E3

0

symmetric G12


where E1, E2, and E3 are the Young moduli, ν12, ν23, and ν13 the Poisson

ratii with respect to the orthotropy orthogonal axes {u(1),u(2),u(3)}, G12 is

shear modulus in the plane containing the axes u(1) and u(2), and ν31, ν32 and

α are given by equation (??) and (??). In this case, the out-of-plane stresses

are:

S13 = S23 = 0, S33 =
ν13 + ν12ν23

αE1E2

E11 +
ν23 + ν21ν13

αE1E2

E22. (3.60)
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Under plane stress conditions, with stresses Sij = Sji restricted to the plane

containing the vectors u(1) and u(2) of the orthotropic basis {u(1),u(2),u(3)},
i.e. S13 = S23 = S33 = 0, the orthotropic hyperelastic constitutive law (??) is

valid whenever the vector counterparts of S and E were expressed as above,

and the matrix counterpart of the elastic moduli D be expressed as

D̄ =
E1

E1 − E2ν2
12

 E1 ν12E2 0

E2 0

symmetric G12

E1
(E1 − E2ν

2
12)

 (3.61)

where E1, E2, ν12 and G12 are those material properties already defined for

plane strain conditions. In this case, the out-of-plane strains are:

E13 = E23 = 0, E33 = −ν13

E1

S11 −
ν23

E2

S22. (3.62)

Stratified or transversely isotropic material

Now, let us consider a stratified or transversely isotropic material that exhibits

a rotational symmetry of mechanical properties within the plane of the strate,

say the xy-plane. Under plane strain or plane stress conditions, the orthotropic

hyperelastic constitutive law (??) is valid whenever the vector counterparts of

S andE as well as the matrix counterpart of the elastic moduliD be expressed

as [ZT00]

S̄ = [Sxx Syy Sxy]
T , Ē = [Exx Eyy 2Exy]

T (3.63)
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D̄ =
E3

(1 + ν1)
(

1− ν1 − 2E1

E3
ν2

3

)×


E1

E3
(1− ν2

3) E1

E3
ν3(1− ν1) 0

E1

E3
ν3(1− ν1) E1

E3
(1− ν2

3) 0

0 0 G3

E3

(
1− ν1 − 2E1

E3
ν2

3

)


(3.64)

for plain strain, and

D̄ =
E3

1− E1

E3
ν2

3


E1

E3

E1

E3
ν2

3 0
E1

E3
ν2

3 1 0

0 0 G3

E3

(
1− E1

E3
ν2

3

)
 (3.65)

for plain stress, where E1 and ν1 are respectively the Young modulus and the

Poisson ratio associated to the behavior in the plane of the strata, and E3, G3

and ν3 are respectively the Young modulus, the shear modulus and the Poisson

ratio corresponding to the direction normal to the strata.

3.6 Conclusions

The present work introduced a finite element model for the inverse design

analysis of three-dimensional geometrically nonlinear statics problems with

hyperelastic materials.

Anisotropic materials were handled without modifying the constitutive-

equation software module developed for classical (direct) large deformation

elastic analysis. An exact computation of the tangent matrix made possible

to obtain an optimum convergence rate. Plane stress and plain strain models

are also derived.

An example showed the excellent accuracy of the model, measured by its

ability to recover the original mesh of the corresponding direct analysis.



Chapter 4

Inverse FEM for

Large-Displacement Beams

Many design methods for compliant mechanisms model flexible links as large-

deflection beam-type elements with prismatic cross-section. Modeling a beam

using the 3D or plane stress inverse finite element method of the previous

chapter is evidently a considerable waste of computational resources. This

motivated the formulation of an inverse finite element method for large-

displacement beams in the elastic range [AFC10], as an extension of the previ-

ous work in inverse finite element methods. It grants the determination of the

initial shape of a beam such that it attains a specified design shape under the

effect of service loads. The inverse FEM formulation for large-displacement

beams is introduced in this chapter.

4.1 Introduction

The general IFEM approach in Fachinotti et al. [FCJ08] motivated the develop-

ment of inverse FEM for large-displacement beams, aimed at the design of com-

pliant mechanisms and two- and three-dimensional highly flexible beam struc-

tures. Compliant mechanisms have low mass and very high flexibility, so large

displacements behavior ought to be considered. This IFEM is based on the

non-linear beam formulation proposed by Cardona and Géradin [CG88, GC00].

83
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Equilibrium equations are written in terms of Eulerian variables, however, con-

stitutive equations are expressed in terms of Lagrangian variables. While in the

geometrically exact beam theory equations are derived directly from a three-

dimensional non-linear theory and the appropriate kinematic assumptions are

taken afterward, the work presented here proceeds as in [CG88, GC00] where

kinematic beam assumptions are formulated before expressing non-linear strain

measures.

Two simple tests were proposed for validation purposes. The first one was

the two-dimensional bending of a cantilever beam, for which an analytical

solution is available [How01]. The second problem is the 45-degree bend of

a cantilever beam, which has been widely used as a benchmark for three-

dimensional flexible beams models [CG88, GC00, BB79, SVQ86, DOO88].

4.2 Beam Kinematics

Let us consider a beam of cross-section A0 and length L, with initial configura-

tion B0 = A0× [0, L] ∈ R3 and current deformed configuration B = A× [0, l] ∈
R3 (Figure 4.1). We assume deformation of the beam takes place such that the

cross-section does not change and remains plane; however, shear effects make

the cross-section to not remain normal to the centroidal line [CG88, GC00].
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Figure 4.1: Description of beam kinematics.
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The current position x ∈ B of a generic point can be expressed as

x(s) = x0(s) + y(s)

where s is the length parameter along the neutral axis of the beam, x0 is the

trace of the neutral axis on the cross section A containing the point x and

normal to the neutral axis, and y is the position of x in the cross section

relative to x0.

Before deformation, this same material point occupied the positionX ∈ B0:

X(S) = X0(S) + Y (S)

where S is the length parameter along the neutral axis of the undeformed beam,

X0 ∈ B0 is the position occupied by the point at x0 ∈ B before deformation,

and Y is the position of X relative to X0.

Vectors y and Y are related by

Y = RTy (4.1)

where R is the so-called rotation operator, which belongs to the Lie group

of proper orthogonal linear transformations. Since sections are assumed to

remain plane during deformation, the transformation (4.1) is constant on the

cross section A.

Let {E1,E2,E3} be an orthonormal basis in B0, such that E1 = dX0/dS

is normal to the cross section A0, and E2 and E3 define the principal axes of

inertia of the cross section A0 of the undeformed beam. The corresponding

orthonormal triad in B is {t1, t2, t3}, with

ti = REi i = 1, 2, 3

Let us also consider an orthonormal basis {t∗1, t∗2, t∗3} in B, such that t∗1 =

dx0/ds is normal to the cross section A and tangent to the neutral axis, and

t∗2, t
∗
3 are aligned along the directions of the principal axes of inertia of the
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cross-section. The corresponding orthonormal triad in B is {e1, e2, e3}, with

ei = RT t∗i i = 1, 2, 3

Note that although t∗1 and E1 are aligned with the neutral axes in B and

B0 respectively, e1 and t1 are not in general aligned with the neutral axes in

B0 and B because of shear deformation. We remark that, for the same reason,

A and A0 do not contain the same material points.

In the inverse analysis, the variables x0 that determine B are assumed to

be known. Then, we have to solve a problem for the unknowns X0 and R in

order to completely determine B0.

4.2.1 Parametrization of rotations

Let us introduce the Cartesian rotational vector ψ, which is defined as the

vector whose direction is that of the rotation axis n and whose length is equal

to the amplitude of the rotation ψ:

ψ = nψ

Using ψ, the rotation operator in three dimensional space is completely deter-

mined by means of Rodrigues’ formula:

R(ψ) = I +
sinψ

ψ
ψ̃ +

1− cosψ

ψ2
ψ̃ψ̃ (4.2)

where I is the identity matrix and, from now on, ũ is the skew-symmetric

matrix associated to the vector u given as

ũ =

 0 −u3 u2

u3 0 −u1

−u2 u1 0


Using this operator, the cross product of two vectors u and v can be obtained

as

u× v = ũv
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Let us note that R→ I when ψ → 0.

Since ψ suffices to completely describe the rotation R, we consider the

minimal set of variables {X0,ψ} –instead of {X0,R}– as unknown fields of

the inverse problem.

4.2.2 Spatial deformation measures

Material deformation measures are given by the vectors of deformation of the

neutral axis Γ and curvature K [GC00]:

Γ = RT dx0

dS
− dX0

dS

K = T
dψ

dS

where T is the tangent operator

T (ψ) = I +
cosψ − 1

ψ2
ψ̃ +

(
1− sinψ

ψ

)
ψ̃ψ̃ (4.3)

(note that T → I as ψ → 0).

The spatial counterparts of vectors Γ and K, say γ and κ respectively, are

obtained by applying a rotation to the current configuration:

γ = RΓ =
dx0

dS
−RdX0

dS

κ = RK = RT
dψ

dS

Since the length parameter S along the undeformed beam can be expressed

as a function of the current length parameter s, the derivative of any function

φ with respect to S can be computed using the chain rule:

dφ

dS
=
φ′

S ′

with (∗)′ ≡ d(∗)/ds. Then, the spatial measures of the deformation of the

neutral axis and curvature, referred to the known deformed frame, can be
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computed using the expressions:

γ =
1

S ′
(x′0 −RX ′0) (4.4)

κ =
1

S ′
RTψ′ (4.5)

4.3 Governing Equilibrium Equations

We formulate the equilibrium equations in the known deformed configuration

B [FCJ08]. Let A be the cross-section containing point x ∈ B and normal

to the neutral axis in the deformed configuration. The area of A is assumed

to be constant along the beam. Let us call n and m the resultant force and

moment with respect to x0 of the tractions acting over the surface A, and n̄

and m̄ the external force and moment per unit length at x.

Then, assuming static conditions, the translational and rotational equilib-

rium equations at every point x ∈ B can be expressed as follows:

n′ + n̄ = 0

m′ + x′0 × n+ m̄ = 0

The weak form of the equilibrium equations over B can be written as:∫
B

(n′ + n̄)
T
δX0 ds+

∫
B

(m′ + x′0 × n+ m̄)
T
δψ ds = 0

where δX0 and δψ are admissible variations of X0 and ψ.

Finally, after integration by parts, the equivalent variational problem takes

the following form: Find X0(s) and ψ(s) such that∫
B

[
nT (δX ′0 + x′0 × δψ) +mT δψ′

]
ds =

∫
B

(
n̄T δX0 + m̄T δψ

)
ds (4.6)

for all admissible δX0 and δψ.
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4.3.1 Constitutive equations

Let us make the following assumptions [GC00]:

• the material remains in the linear elastic range, and

• although the beam may undergo large rigid-body rotations, its material

strains remain small.

Then, the following linear constitutive laws apply:

n = Cnγ (4.7)

m = Cmκ (4.8)

where Cn = Cn
ij t
∗
i ⊗ t∗j and Cm = Cm

ij t
∗
i ⊗ t∗j are the second order tensors

of elastic integrated properties over the cross section. The matrices of elastic

coefficients Cn
ij and Cm

ij referred to the principal axes of the deformed beam

are written:

Cn =

 EA 0 0

0 GA2 0

0 0 GA3

 , Cm =

 GJ 0 0

0 EI2 0

0 0 EI3


being EA the axial stiffness, GAi the shear bending stiffness along the trans-

verse axis t∗i , GJ the torsional stiffness, and EIi the bending stiffness along

the principal axis t∗i (i = 2, 3).

4.4 Finite Element Method

Based on the “direct” beam element proposed by Géradin and Cardona [GC00],

the current “inverse” beam element representing the deformed configuration

B is a straight, mixed linear-linear finite element. The element geometry is

linearly interpolated:

x0(s) = ϕ1(s)x1
0 + ϕ2(s)x2

0, 0 ≤ s ≤ l = ‖x2
0 − x1

0‖
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where xi0 is the position of node i, i = 1, 2, and ϕi is the linear shape function

associated to node i, defined as

ϕ1 = 1− s

l
, ϕ2 =

s

l

t
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0
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Figure 4.2: Finite element model of the inverse beam.

The unknowns of the inverse problem are approximated as follows:

X0(s) = ϕ1(s)X1
0 + ϕ2(s)X2

0 (4.9)

ψ(s) = ϕ1(s)ψ1 + ϕ2(s)ψ2 (4.10)

where X i
0 and ψi are respectively the unknown values of X0 and ψ at node i.

Since x0 and X0 are both linearly interpolated, arc-length parameters s

and S along the neutral axes in the deformed and undeformed configurations

are related by the linear expression:

S =
L

l
s

with L = ‖X2
0 −X1

0‖, and then

S ′ =
L

l
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4.4.1 Discretised equilibrium equations

Following the standard Galerkin finite element formulation [ZT00], we approx-

imate the unknowns X0 and ψ as well as their their variations using equations

(4.9) and (4.10). Then, the equilibrium equations (4.6) give rise to the follow-

ing non-linear system of algebraic equations for the nodal unknowns X i
0 and

ψi:

F int(Q)− F ext = 0 (4.11)

where Q is the vector of nodal unknowns defined as

Q =


X1

0

ψ1

X2
0

ψ2


and where F int and F ext are the vectors of internal and external forces, re-

spectively, given by

F int =

∫
B
BTσ ds , F ext =

∫
B
ϕT t̄ ds

with

B =

[
ϕ′1I ϕ1x̃′0 ϕ′2I ϕ2x̃′0

O ϕ′1I O ϕ′2I

]
, σ =

[
n

m

]

ϕ =

[
ϕ1I O ϕ2I O

O ϕ1I O ϕ2I

]
, t̄ =

[
n̄

m̄

]
.

Here, O is the 3×3 null matrix and I is the 3×3 identity matrix; note also that

ϕ′1 = −1/l, ϕ′2 = 1/l and x′0 = (x2
0 − x1

0)/l are constant within the element.

The external loads n̄ and m̄, are assumed to be given and independent of

the unknowns; therefore the external force vector F ext does not depend on the

unknowns.

The internal force vector F int depends on the unknowns via the internal

efforts σ, whose dependence on the unknowns will be analyzed in next section.
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In order to avoid shear locking, F int is evaluated using reduced integration

with only one sampling point located at s = l/2, yielding:

F int = BT
spσsp l

where (∗)sp ≡ ∗|s=l/2, and

Bsp =
1

l

[
−I 1

2
∆̃x0 I 1

2
∆̃x0

O −I O I

]

with ∆x0 = x2
0 − x1

0.

4.4.2 Computation of deformation and stress in the cur-

rent finite element

By evaluating equations (4.4) and (4.5) at the sampling point, we obtain:

γsp =
1

L
(∆x0 −Rsp∆X0) (4.12)

κsp =
1

L
RspT sp∆ψ (4.13)

with ∆X0 = X2
0−X1

0, ∆ψ = ψ2−ψ1, and Rsp = R(ψsp) and T sp = T (ψsp)

are given by equations (4.2) and (4.3), respectively, evaluated at ψsp = (ψ1 +

ψ2)/2.

Now, the internal efforts at the sampling point are obtained using equations

(4.7) and (4.8):

nsp = Cnγsp

msp = Cmκsp

4.4.3 Linearization of the discrete equilibrium equa-

tions

The non-linear discrete equilibrium equations (4.11) are solved using the

Newton-Raphson method [ZT00]. At each iteration k, the residual vector
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F = F int − F ext is approximated using the linear Taylor expansion:

F (k) ≈ F (k−1) + S(k−1)(Q(k) −Q(k−1)) = 0

where S(k−1) is the tangent stiffness matrix:

S =
dF

dQ

evaluated at iteration (k − 1).

As already mentioned, only the internal forces are assumed to depend on

the unknowns.

By differentiating F int with respect to the unknowns Q, we obtain

S = lBT
sp

dσsp
dQ

Then, it only remains to compute the derivatives of the stresses, evaluated at

the sampling point s = l/2, with respect to Q:

dσsp
dQ

=


dnsp
dQ

dmsp

dQ

 =

[
Cn O

O Cm

]
dγsp

dX1
0

dγsp

dψ1

dγsp

dX2
0

dγsp

dψ2

dκsp

dX1
0

dκsp

dψ1

dκsp

dX2
0

dκsp

dψ2



4.4.4 Derivatives of deformation measures.

Derivatives of γ.

From now on, let us obviate the subscript sp for notation convenience, keeping

in mind however that all the variables are evaluated at the sampling point

located at s = L/2.

By taking variations in equation (4.12), we obtain

δγ = − 1

L
γδL− 1

L
δR∆X0 −

1

L
Rδ(∆X0) (4.14)
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The variation of L takes the form

δL = δ‖∆X0‖ =
1

L
∆XT

0 δ(∆X0) (4.15)

From [GC00], we know that

δRu = −RũT δψ (4.16)

for an arbitrary vector u. Then,

δR∆X0 = −R∆̃X0T δψ

Now, we can express the variation of γ given by equation (4.14) in terms

of the variations δψ and δ(∆X0) as follows:

δγ = − 1

L

(
1

L
γ∆XT

0 +R

)
δ(∆X0) +

1

L
R∆̃X0T δψ

Since δψ = (δψ1 + δψ2)/2 and δ(∆X0) = δX2
0 − δX1

0, we derive from the

above equation that:

∂γ

∂X1
0

=
1

L

(
1

L
γ∆XT

0 +R

)
= − ∂γ

∂X2
0

∂γ

∂ψ1 =
1

2L
R∆̃X0T =

∂γ

∂ψ2

Derivatives of κ.

By taking variations in equation (4.13), we obtain

δκ = − 1

L
κδL+

1

L
δRT∆ψ +

1

L
RδT∆ψ +

1

L
RT δ(∆ψ) (4.17)

Using equation (4.15), we have

κδL =
1

L
κ∆XT

0 δ(∆X0)
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Using equation (4.16), we have

δRT∆ψ = −RT̃∆ψT (δψ)

In order to compute the last term in the r.h.s. of equation (4.17), note that

δT∆ψ = Aδψ

with

A =

[
∂T

∂ψ1

∆ψ
∂T

∂ψ2

∆ψ
∂T

∂ψ3

∆ψ

]
Now, we can express the variation of κ given by equation (4.17) in terms

of the variations δψ, δ(∆ψ) and δ(∆X0) as follows

δκ = − 1

L2
κ∆XT

0 δ(∆X0) +
1

L
R
(
A− T̃∆ψT

)
δψ +

1

L
RT δ(∆ψ)

Since δψ = (δψ1 + δψ2)/2, δ(∆ψ) = δψ2 − δψ1 and δ(∆X0) = δX2
0 − δX1

0,

we get from the above equation that:

∂κ

∂X1
0

=
1

L2
κ∆XT

0 = − ∂κ

∂X2
0

∂κ

∂ψ1 =
1

2L
R
(
A− T̃∆ψT − 2T

)
∂κ

∂ψ2 =
1

2L
R
(
A− T̃∆ψT + 2T

)

4.5 Validation Examples

4.5.1 Bending of a flexible cantilever beam

Let us consider the plane bending of a flexible cantilever beam with constant

rectangular cross section, whose geometrical and material properties are listed

in Table 4.1. We assume the beam is clamped at the origin of a reference frame

O-xyz, and it is aligned along the x-axis in the undeformed configuration. It

bends in the xz plane under a force P = 105 N exerted at the free end in the

z-direction. The magnitude of force is such that resulting deflections are large,
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out of the range of linearized beam deflections equations.

Beam width b = 3 cm
Beam height d = 6 cm
Beam length L = 2 m

Young modulus E = 2.10× 1011 N/m2

Shear modulus G = 1.05× 1011 N/m2

Table 4.1: Geometrical and material data for the problem of plane bending of
a flexible cantilever beam.

In order to define the domain of inverse analysis, we need to know the

whole elastica. An analytical expression of the elastica can be computed by

assuming that shear effects on deformation are negligible. This hypothesis is

well justified since the beam has a high slenderness ratio. The large deflection

w(x) of a cantilever beam with bending stiffness EIy under a vertical load P

applied at the free end is given by the solution of the differential equation:

d2w

dx2
+

P

EI
(xtip − x)

(
1 +

dw

dx

)3/2

= 0

subject to the boundary conditions:

w(0) = 0,
dw

dx

∣∣∣∣
x=0

= 0

The solution of the above boundary value problem is

w(x) =

∫ x

0

1√
β2(χ)− 1

dχ, 0 ≤ x ≤ xtip (4.18)

with

β(χ) =

[
P

EI

(
xtipχ−

χ2

2

)]−1

This integral does not have a closed solution, and is numerically evaluated

using Gauss-Kronrod quadrature [Sha08] by setting the absolute tolerance to

10−10. The position xtip = [xtip 0 ztip]
T and the rotation angle ψtip = ‖ψtip‖
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of the loaded end after deformation are obtained by using Howell’s elliptic-

integral solutions [How01]:

xtip = 1.408070 m

ztip = 1.2843651 m

ψtip = 1.063764 rad
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Figure 4.3: Plane bending of a flexible cantilever beam: undeformed and de-
formed neutral axes. Note that the scales for x and z are equal.

The deformed beam, as determined using equation (4.18), is depicted in

Figure 4.3. This is actually the domain B of inverse analysis. Then, several

meshes are defined by dividing B into N = 2, 4, 8, 12, 16, 20 segments of equal

length h = L/N , each one approximated using a straight finite element. The

target solution is the undeformed beam aligned with the x-axis.

Figure 4.4 depicts the L2-norm of the error in initial position X0 and

rotationψ for the different meshes. It can be seen that for 20 finite elements the

error in displacement is approximately of 10−3 m, which is very small compared

to the dimensions of the beam (2 m long), demonstrating the accuracy of the
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model. Note that a quadratic convergence rate is obtained for both error

measures.

Concerning the performance of the Newton-Raphson solver, let us mention

that for all the meshes considered here, it always took 6 iterations to attain

‖F int − F ext‖ < 10−8‖F ext‖ starting from the initial guess X i
0 = xi0 and

ψi = 0 at every node i.

4.5.2 Cantilever 45-degrees bend

Let us now consider the cantilever 45-degrees bend depicted in Figure 4.5. The

structure is clamped at the origin O of the reference frame O-xyz, and lies in

the plane xy when undeformed. The beam has a unit square cross section,

the Young modulus is E = 107 and the shear modulus is G = 5 × 106. It is

bent and twisted by the action of the force P = 600 applied at the free end, in

the z-direction. This problem was used as a benchmark for three-dimensional
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Figure 4.4: Bending of a flexible cantilever beam: errors in the approximation
of positions and rotations (measured in L2-norm) using the proposed inverse
finite element model, as a function of the element size. For 20 finite elements
the error in displacement is approximately of 10−3 m, which is very small
compared to the dimensions of the beam (2 m long).
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flexible beam models by several authors [CG88, GC00, BB79, SVQ86, DOO88].
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Figure 4.5: Cantilever 45-degree bend: solutions of direct and inverse analyses.

First, a direct analysis is performed. The beam is discretized using eight

equal finite elements [CG88, GC00]. The computed position of the loaded

end is shown in Figure 4.5. Then, an inverse analysis using the beam inverse

model is performed, starting from a grid drawn on the computed deformed

configuration. The solution of the inverse analysis should fit the original grid

of the direct analysis. As it can be seen in Figure 4.5, the model is highly

accurate, and almost complete agreement with the initial mesh is obtained.

For instance, the distance between the given and the computed position at the

free-end (loaded) node in the undeformed configuration is 0.1179 (less than

0.2% of the displacement at the same node).

A quadratic convergence rate was obtained for the Newton-Raphson itera-

tions, taking 7 iterations to attain an equilibrium error norm ‖F int −F ext‖ <
10−8‖F ext‖, starting from an initial guess X i

0 = xi0 and ψi = 0 at every node

i.
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4.6 Conclusions

A finite element model for the inverse analysis of large-displacement beams

has been presented. The objective in this kind of analysis is to solve inverse

design problems, where the undeformed configuration is determined knowing

the deformed configuration and the applied loads. A linear elastic constitutive

relation is assumed.

Two and three-dimensional test-examples have been shown, illustrating the

accuracy of the model. The performance was measured either by comparison

to an analytical solution (2D case) or by its ability to recover the original mesh

of the corresponding direct analysis (3D case).



Chapter 5

Design of compliant mechanisms

that exactly fit a desired shape

Several applications of the inverse FEM for large-displacement beams intro-

duced in the previous chapter are presented here. These consist in mechanisms

and compliant structures with distributed and concentrated compliance. This

inverse FEM allows to design compliant mechanisms that exactly fulfill the

loaded mechanism shape, with lower computational costs compared with other

design methods. It is specially suited for problems where an object has to be

manipulated by the mechanism, allowing to maximize contact points between

the mechanism and the object geometry. In particular, grippers, pliers and

brakes are studied here, where results show a perfect matching of the contact

shapes.

5.1 Compliant joint

A compliant joint used as a non-linear transmission between the motors and

the moving link of a robot was proposed by Palli et al. [PMBV10], where the

desired flexibility of the joint is achieved by exploiting the characteristics of

four-bar mechanisms. This mechanism connects two concentric shafts (Figure

5.1 on the left). Compliant transmission elements (CTE) offer advantages

over rigid counterparts, such as protection of actuators from shock due to

101
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impact of moving links with stiff objects, the compactness of the resulting

designs and customization of the flexibility. This is an example of a compliant

mechanism with concentrated compliance, in which Palli et al. [PMBV10] used

an optimization scheme in order to achieve the design constraints (desired

shape under loading).
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Figure 5.1: A compliant joint with distributed compliance proposed in
[PMBV10] (left), and the solution computed with the inverse FEM for large-
displacement beams (right). The inner circle of the joint is fixed to the ground,
and torque is applied to the outer circle in order to deform the model.

The joint under study is made of an aluminum alloy with Young modulus

E = 69 × 103 N/mm2 and shear modulus G = 25 × 103 N/mm2. Its outer di-

ameter is 46 mm, and has a constant width of 4.7 mm. Links have a constant

height of 5 mm (resulting in a 5 mm height and 4.7 mm width cross-section).

For the finite element inverse analysis, the desired shape of the entire mecha-

nism was discretized using 254 beam elements of equal length (each element

is a two node-straight element, so more elements means better approximation

to curved links). The inner circle of the joint is fixed to the ground, and

torque is applied to the outer circle in order to deform the joint. Identical

torque/deflection relations to the ones computed by [PMBV10] are obtained

using inverse fem. The solid line in Figure 5.1 on the right represents the

computed undeformed shape for manufacturing the joint, in order to verify

the design requirements. The analysis took 12 Newton-Raphson iterations to

attain an equilibrium error norm ‖F int − F ext‖ < 10−8‖F ext‖ starting from
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the initial guess X i
0 = xi0 and ψi = 0 at every node i.

5.2 Compliant S-clutch

This mechanism connects two concentric shafts (Figure 5.2). When deformed

under the effect of given centrifugal loads, the clutch shoe must engage the fric-

tion surface of the outer drum. The objective is to design a clutch that engages

at a certain angular speed. The deformed geometry of the clutch should match

very closely the geometry of the drum, to ensure a smooth distribution of the

contact force between both surfaces. This reduces stress concentration and

makes wear evenly distributed in the contact surfaces. Crane [Cra99] studied

this kind of mechanisms using a pseudo-rigid body model. We refer to [Wei04]

for several examples of industrial S-clutches.

Outer drum

Engine shaft
Clutch shoe

Friction surfaces

{S-clutch
Driven shaft

Figure 5.2: A compliant S-clutch.

The S-clutch studied here is made of an aluminum alloy with Young mod-

ulus E = 69× 103 N/mm2 and shear modulus G = 25× 103 N/mm2. In order

to simplify the manufacture of the piece, the clutch shoes are assumed to have

a constant rectangular cross section (30 mm wide, 10 mm high). A second

design requirement is that the clutch matches the inner diameter of the drum

(110 mm) when the angular speed is 1000 RPM. The model is fixed at the

radius center.

For the inverse FEM analysis, the desired shape was discretized using 64

beam elements of the same length. The solid line in Figure 5.3 represents the

computed undeformed shape for manufacturing the clutch in order to verify
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Figure 5.3: Compliant S-clutch: deformed (given design requirement), and
undeformed (computed) configuration. The model is fixed to the ground at
the center.

the design requirements. The analysis took 5 Newton-Raphson iterations to

attain an equilibrium error norm ‖F int − F ext‖ < 10−8‖F ext‖ starting from

the initial guess X i
0 = xi0 and ψi = 0 at every node i.

5.3 Compliant gripper

A simple compliant gripper was proposed by Lan and Cheng [LC07], which

allows to grab an object of a certain size and shape when acted upon. They

carried out a direct analysis using intrinsic functions to parameterize the topol-

ogy and the generalized multiple shooting method (GMSM) to analyze the

deflection of the mechanisms. These techniques were then integrated into an

optimization scheme in order to achieve the design constraints (desired shape

under loading).

Figure 5.4 depicts the target loaded shape in dashed line and the actuation

force P = 24 N, as computed by Lan and Cheng using a quadratic polynomial

to parameterize the angle of rotation of the beam axis. The gripper has con-
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stant rectangular cross section (10 mm wide and 5 mm high). It is made of

polypropylene, with Young modulus E = 1.4 × 103 N/mm2 and Poisson ratio

ν = 0.25.

0 5 10-5-10

0

5

10

15

P

Domain of inverse analysis
Solution of current inverse analysis
Solution from Lan and Cheng, 2007

x [cm]

z
[c

m
]

-5

20

-15 15

Figure 5.4: Compliant gripper: deformed (given design requirement) and un-
deformed (computed) configurations. Comparison with a reference solution
[LC07]. The actuation force is P = 24 N.

If we take as domain of analysis the desired shape of the gripper when

actuated, we can apply the method of inverse analysis to compute the unknown

initial shape. The deformed gripper is modeled using 46 flexible beam finite

elements. The undeformed configuration obtained as solution of the current

inverse analysis is depicted in solid line in Figure 5.4. This solution agrees

with that of Lan and Cheng, depicted in hollow circles in the same figure. The

solution of the discrete non-linear equation using the Newton-Raphson method

took 6 iterations to get an equilibrium error norm ‖F int−F ext‖ < 10−8‖F ext‖,
starting from the initial guess X i

0 = xi0 and ψi = 0 at every node i.
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5.4 Compliant Biomedical Instruments

One of the fastest growing areas in Biomedical Engineering is minimally in-

vasive surgery (MIS). Aided by the recent advances in millimeter and sub-

millimeter scale engineering that allows the construction of miniature medical

tools, MIS techniques have revolutionized surgery by allowing operations to

be conducted trough incisions ranging from a few millimeters to centimeters

[FG09]. These procedures have dramatically reduced the risk of infection, re-

duce the duration of surgery as well as recovery time, and reduced hospital

stays with less cost and less scaring. Surgical instruments based on compli-

ant mechanisms offer a number of potential advantages over traditional MIS

instruments and current robotic systems, like precisely completion of complex

movements and haptic feedback [KLK+05]. Their monolithic nature elimi-

nates wear debris, pinch points and lubrication, all of which are critical in

the sensitive internal environment of the body. In what follows we present

promising applications of inverse FEM in the design of compliant mechanisms

for minimally invasive surgery instruments.

5.4.1 Compliant lens folding device

Intraocular lens (IOL) are used in cataract surgery as a replacement of the eyes

natural lens, and have approximately 6 mm of diameter. Once folded, a soft

IOLs is inserted through a small tube into the eye through incisions of 3.2 mm

or less. This is not only clinically advantageous compared to other procedures

due to faster recovery from surgery, but also reduce astigmatism. These new

lenses can be folded to be inserted through a small tube into the eye. After

the folded IOL has been pushed completely through a delivery tube introduced

into the eye, the IOL memory causes it to spring back, regaining its original

shape. Erdman and Loftness [EL05] propose a rigid four-bar mechanism to

fold the lens, Figure 5.5. The fold is not symmetric, and the lens assumes a

σ shape which is advantageous for delivery through a small diameter delivery

tube.

A compliant folder assures a reliable and repeatable action, and it will not

impart damage to the lens during the process as it’s made of a single soft-



5.4. COMPLIANT BIOMEDICAL INSTRUMENTS 107

Figure 5.5: Rigid IOL folding device: inactive open position (left), and closed
“sigma shaped” position, (right), by Erdman and Loftness [EL05].

curved flexible segment. Other advantage over its rigid counterparts is the

reduced number of parts, i.e. it is monolithic and consists in only one piece.

Not only this reduces manufacturing and assembly costs, but it is also simpler

to sterilize.
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Figure 5.6: Inverse analysis results of the compliant IOL proposal. The model
is hinged to the ground.

Figure 5.6 depicts the targeted deformed shape under an actuation force

of 10 N. The compliant folder is made of polypropylene, with Young modulus

E = 1.4 × 103 N/mm2 and Poisson ratio ν = 0.25, and it’s assumed to have

a square cross section (2 mm high and wide). For the inverse FEM analysis,
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the desired shape was discretized using 55 beam elements of equal length. The

model is hinged to the ground, and the solid line represents the computed

manufacture shape that will perfectly match the σ shape upon actuation in a

safe and repeatable folding procedure. The analysis took 4 Newton-Raphson

iterations to attain an equilibrium error norm ‖F int − F ext‖ < 10−8‖F ext‖
starting from the initial guess X i

0 = xi0 and ψi = 0 at every node i.

5.4.2 Compliant microvalves

Microfluidic systems are powerful tools for handling bio-molecules such as

cells, DNA, RNA, proteins or neurons, and they range from disposable lab-on-

chips to high output instruments. Micropumps ([LS04], [Woi05]), micromixers

([NW05])and microvalves ([KC06]) are typical microfluidic systems. Seide-

mann et al. [SBB01] proposed a passive microvalve (also known as a check

valve) to seal a 200 µm microfluidic channel (Figure 5.7), which only opens

to forward pressure, showing diode-like characteristics. It is operated by the

pressure difference across the valve.

Figure 5.7: Flow channel with released check valve, [SBB01].

The check valve is fabricated of SU8, a monomer with a wide elastic range

without plastic deformation, which has Young modulus E = 4×103 N/mm2 and

Poisson ratio ν = 0.22. SU8 can be applied by masking, electroplating molds

or injection molds, and this enables the design of complex planar structures.

Taking as domain of the analysis the desired shape of the valve under a

specified pressure, inverse FEM can be applied to compute the unknown initial
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(manufacture) shape. Applications range from the opening or closure of the

valve at a specified pressure (such as a relief valve), mantention of a specified

(constant) pressure drop in the microchannel, or bypassing a certain fluid flow.
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Figure 5.8: Inverse analysis of the check valve proposed by [SBB01].

Figure 5.8 depicts the targeted deformed valve under an actuation pressure

P = 1.2 KPa. It is modelled using 85 flexible beam finite elements with

constant rectangular cross section (h = 15 µm high and b = 20 µm wide),

and it is fixed at the bottom. The solution of the discrete non-linear equation

using the Newton-Raphson method took 7 iterations to get an equilibrium error

norm ‖F int − F ext‖ < 10−8‖F ext‖, starting from the initial guess X i
0 = xi0

and ψi = 0 at every node i.

5.4.3 Compliant microgrippers

With the development of minimally invasive surgery (MIS), surgeons no longer

needed to physically place their hands within the body to perform an opera-

tion. Instruments and viewing equipment are inserted into the body through

small incisions, and the surgeon may now remotely teleoperate a robot in a

comfortable, dexterous, and intuitive manner from outside the body [CKS04].

These devices may be manually driven prototypes, or servo-controlled by the
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surgeon [CF99, FJ05]. Microgrippers fall in the operative instruments cat-

egory, and their size ranges from a few micrometers [WHH+06] to several

millimeters, being 5 mm the most common size [FG09]. In this category we

can also find other instruments such as forceps, scissors, retractors, clip pliers,

suturer and stapling devices to name a few [LE03]. As minimally invasive

surgery instruments become smaller, compliant mechanisms are an attractive

alternative to pin joined linkages and rigid parts. They can provide multiple

degrees of freedom in a single monolithic part, and can be scaled to smaller

sizes without encountering issues relating precision assembly [FSH+05].

Figure 5.9: The SMA microgripper, [KJPM00].

The compliant microgripper proposed by Kohl et al. [KJPM00] (Figure 5.9)

is a 2 × 3.9 × 0.1 mm3 microgripper with a stress-optimized geometry, built

in a shape memory alloy (SMA) conceiving a high flexibility design. As the

geometry is made up of two circular beams on top and a folded beam structure

at the bottom it has distributed compliance behavior. When the microgripper

is acted by a force in the beam structure at the bottom, the circular beams

are deformed and the gripping jaws are closed.

Figure 5.10 depicts the target loaded shape in dashed line. The actuation

force is P = 160 µN. The microgripper has constant rectangular cross section

(0.5 mm wide and 0.5 mm high), and it is made of Nitinol, a super-elastic Ni-Ti

alloy with Young modulus E=28× 103 N/mm2 and Poisson ratio ν = 0.30.

Inverse analysis was used to compute the unknown initial shape. The

deformed microgripper is modelled using 96 flexible beam finite elements. The
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Figure 5.10: Inverse analysis results of the SMA microgipper proposed by
[KJPM00].

undeformed configuration obtained as solution of the current inverse analysis

is depicted in solid line in Figure 5.10. This solution agrees with that of

[KJPM00]. The solution of the discrete non-linear equation using the Newton-

Raphson method took 5 iterations to get an equilibrium error norm ‖F int −
F ext‖ < 10−8‖F ext‖, starting from the initial guess X i

0 = xi0 and ψi = 0 at

every node i.

5.5 Inverse FEM as a tool to design compli-

ant mechanisms: advantages and disad-

vantages

In the previous section we have presented numerical applications of the inverse

beam model applied to compliant mechanisms design. Inverse FEM allows to

perfectly match the desired shapes of the objects. It is convenient to make

some final comments of the advantages and inconveniences found in the design

process while using inverse FEM.
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5.5.1 Computational cost

The rate of convergence of the inverse beam model is quadratic (order 2), as

it should be in any method using the Newton-Raphson algorithm [ZT00]. In

general, the solutions obtained trough the use of the inverse finite element

model demanded much less computational cost than the original solution pro-

cedure used by the respective author. Optimization was the preferred solution

method by Lan and Cheng [LC07] in the compliant gripper, and by Kohl et

al. [KJPM00] in the compliant microgripper. Only a few Newton-Raphson

iterations are required to obtain a solution with IFEM, compared to the large

amount of iterations needed in optimization problems.

In the other hand, Palli et al. [PMBV10] in compliant joints design, and

Crane [Cra99] in compliant clutches design use the PRBM to create a mecha-

nism and direct finite element models to compute the mechanisms performance.

The inverse finite element model also proved to converge faster than the direct

finite element model, what is another advantage of this method. The number

of iterations and the residue norm are summarized in Table 5.1.

5.5.2 Stability check and feasibility of a design: detect-

ing critical points

Once a design is obtained, the stability of the mechanism all along the deforma-

tion path1be verified, given that if stability is not satisfied, one cannot assure

that the computed geometry in the inverse analysis will attain the design shape

under the effect of service loads. If the path represents a configuration of static

equilibrium it is called equilibrium path and each point on the load-deflection

curve is called an equilibrium point. Certain points in the equilibrium path

of a structure have special significance. A structure that is initially stable

may lose stability as it moves to another equilibrium position. The non-linear

equilibrium equation of the inverse finite element model

R = F (Q)int − F ext (5.1)

1The curve in the load-deflection diagram of a structure is called a path.
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where F (Q)int and F ext are respectively the internal and external force vec-

tors, is solved iteratively using the Newton-Raphson method. At each iteration

k, the following linear equation is solved

R(Qk) = R(Qk−1) +K(Qk−1)∆Q (5.2)

where K denotes the tangent matrix, given by :

K =
∂R

∂q
(5.3)

and where Q is the vector of unknown nodal parameters, which in this case

are the positions XI and rotations ψI of the nodes in the initial configuration.

In general, that transition from a stable to an unstable state is associated with

the occurrence of critical points at which K becomes singular. Critical points

have been classified into limit points (points at which the tangent to the equi-

librium path is horizontal) and bifurcation points (points at which two or more

equilibrium paths cross and there is an abrupt transition from one deformation

mode to another). Other points of interest are turning points (points at which

the tangent to the equilibrium path is vertical) and failure points(points at

which the equilibrium path stops or breaks). All equilibrium points that are

not critical are called regular. Stability is assessed by comparing the potential

energy of the actual configuration with that of the equilibrium position. If all

previous states have a higher potential energy, the actual equilibrium is stable.

If at least one state has a lower (equal) potential energy the equilibrium is

unstable.

There is no interest in tracing the equilibrium path in inverse FEM but

rather to detect the occurrence of critical points, in which case two simple

evaluation procedures may be used for this task2: the determinant test and

the spectrum test ofK [AG87, Cri00, Fel10]. Since the tangent stiffness matrix

is singular at critical points, the most intuitive procedure consists in comput-

ing the determinant of K. This approach is generally impractical given its

computational cost. The spectrum test consists in the computation of the

eigenvalues λ of the tangent matrix K. The set of λi’s are the solution of the
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eigenproblem

Kzi = λizi (5.4)

where zi are the eigenvectors corresponding to the eigenvalues λi. If K is

real and symmetric (with real eigenvalues) a simple procedure can be used to

detect critical points [Fel10]:

• If all λi > 0 the equilibrium position is strongly stable

• If all λi ≥ 0 the equilibrium position is neutrally stable

• If some λi < 0 the equilibrium position is unstable

Given the small size of the problems under study we have adopted the lowest

eigenvalue test criterion to evaluate stability at each loadstep, without altering

the computational efficiency of the inverse method. If at a given loadstep the

lowest eigenvalue is null or negative, the design is classified as non-feasible, and

a new one must be proposed3. The results of lowest eigenvalue test criterion

are summarized in Table 5.1.

Mechanism Iterations ‖F int − F ext‖ Eigenvalues

Compliant joint 12 < 10−8‖F ext‖ All positive
Compliant clutch 5 < 10−8‖F ext‖ All positive
Compliant gripper 6 < 10−8‖F ext‖ All positive
Compliant IOL folder 4 < 10−8‖F ext‖ All positive
Compliant microvalve 7 < 10−8‖F ext‖ All positive
Compliant microgripper 5 < 10−8‖F ext‖ All positive

Table 5.1: Stability and computational costs of the example mechanisms

2They consist in searching for critical points without being concerned with tracing equi-
librium paths up to those points.

3The discretization of the mechanism has a significant effect in the lowest eigenvalue test
criterion, and this method may accuse an instability even if the mechanism is in strongly
stable equilibrium. For example, if the discretization presents sharp edges or closed angles
it is prone to have negative eigenvalues in the tangent matrix K. However, the same
mechanism but with a different discretization results in positive eigenvalues of matrix K.
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5.5.3 Intersections and interpenetrations

In some cases, intersections of beam elements exist in the undeformed con-

figuration, resulting in a non-feasible mechanism where beam elements cross

each other at areas that would invalidate the desired motion (that means that

the code itself is not able to check that some elements are crossing each other

in non-feasible ways). This happens even though inverse FEM started from

a valid deformed geometry. The undeformed geometry of the compliant bi-

cycle brake depicted in Figure 5.11 has intersections at the mid-length of the

brakes’s arms (we remark that the lines in these figures represent the beam

axis and not the beam itself). The compliant gripper depicted in Figure 5.12

has multiple intersections beetween beam elements.
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Figure 5.11: Non-feasible results for a compliant brake: the continuum line
represents the beam axis in the undeformed geometry. Note that this line al-
most self-intersects at the mid-length of the brakes’s arms, leading to undesired
intersections and self-contact.

The compliant planar clutch depicted in Figure 5.13 has intersections be-

tween its arms, crossing itself in a spiral-like shape. Intersections led to trial

and error design process (in which the variation of the beam cross-section or

the material is needed to solve the issue). In most cases the use of intuition is

sufficient to propose a new feasible design.
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Figure 5.12: Non-feasible results for a compliant gripper: multiple self-crossing
of beam elements.
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Figure 5.13: Self-crossing of beam elements in a planar clutch design. The
model is fixed at the center point O.

The self-crossing of beam elements in a planar problem can be overcome

by using 3D mechanisms. The nodal x and z coordinates of the 3D clutch

design in Figure 5.14 are the same than those of the planar clutch, but the y

coordinates of the arms in located in two different xz planes. This 3D design

fulfills the design requirement and eliminates intersections. Nevertheless, it is

important to remark that intersections and interpenetrations can ocurr in 3D

mechanisms as well.



5.5. ADVANTAGES AND DISADVANTAGES OF IFEM 117

-50 -40 -30 -30 -10 0 10 20 30 40 50
0

0.5
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

Deformed (known)
Undeformed (solut.)

X [mm]

Z
 [

m
m

]

Y [mm]

Figure 5.14: A feasible 3D clutch design that eliminates the self-crossing of
beam elements present in its planar counterpart.

5.5.4 Violation of the design domain

Another inconvenient found while using the inverse finite element model was

the violation of the design domain in some cases. As it evolves from the

deformed to the undeformed configuration certain elements may be located

outside of the allowed design domain in an intermediate configuration.
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Figure 5.15: Violation of the design domain in the compliant clutch design.
The model is fixed at the center point O.

Figure 5.15 depicts one of such cases, where in an intermediate configu-
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ration (different from the deformed and undeformed configuration), the arms

of the compliant clutch invade the boundary of the design domain. In other

words, the arms of the clutch engage contact with the drum before the specified

centrifugal load has been applied (at lower RPM than the specified), and this

led to an unfeasible design. Again, the intuition of the designer is sufficient to

propose a new alternative that grants a feasible design.

A possible way to interrupt the computation or to impose restrictions if

this occurs would be to implement a simple contact problem of the type node-

to-segment with penalty [PL04] or soft contact algorithms with friction for 3D

beams [Lit07]. This in currently under study.



Chapter 6

Closure

6.1 Conclusions

The many advantages of compliant mechanisms compared to their rigid-body

counterparts have produced a growing interest in compliant mechanism design

and synthesis methods. This thesis has explored the use of different computa-

tional methods to design compliant mechanisms.

A novel methodology based in inverse FEM was developed and imple-

mented, constituting a very useful tool that allows engineers to conceive designs

in less time and at much lower costs than the ones involved in traditional exper-

imental and optimization-based design, and avoids the trial and error approach

used in the design process. It is specially suited for applications where an ob-

ject has to be manipulated by the mechanism, allowing maximizing contact

points between the mechanism and the object geometry.

The main contribution of this thesis is the development and use of inverse

FEM to design compliant mechanisms, departing from classical design meth-

ods used up-to-date. This novel methodology permits to exactly compute the

initial shape of a body such that it fulfills the specified design shape under

service loads and undergoing large defections. The method is numerically effi-

cient due to an analytically exact Newton-Raphson scheme. It is original since

there is no background of inverse finite element methods among the procedures

used to design compliant systems, and does not rely on the use of optimiza-

119
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tion techniques. Compliant mechanisms and structures, with distributed and

concentrated compliance, can be designed using inverse FEM with lower com-

putational costs compared with other classical design methods.

The first approach to determine the mechanism design for a given task

was based on optimization methods. Structural optimization methods (e.g.

topology, size and shape) were tested in several applications. Results obtained

with topology optimization methods are independent of prior design choices,

allowing the user to create designs starting from scratch, being this perhaps the

major advantage of this technique. Nevertheless, almost all algorithms used in

topology optimization assume geometrically linear mechanical behavior, and

inaccurate results may be obtained when applied to a compliant mechanisms

that usually undergoes large displacement. Shape and size optimization were

performed with different gradient-based algorithms. The computational cost

is still the main drawback of these methods.

It became evident that IFEM could make important contributions in the

field of compliant mechanism design, in particular as a re-design tool. Early

work focused in a general inverse FEM for 3D solids, however, as most flexible

links in compliant mechanisms can be modeled as large-deflection beams, it

became evident that modeling a beam using the 3D or plane stress IFEM is

a considerable waste of computational resources. This motivated the formula-

tion of an inverse finite element method for large-displacement beams in the

elastic range, as an extension of the previous work specifically addressed to

the design of compliant mechanisms. The difference with respect to general

3D solid is that in beam elements it is not possible to precisely define prin-

cipal transverse Lagrangian coordinates (used to derive the constitutive law)

in the cross-section when torsional efforts are present. The workaround was

the formulation of the problem in Eulerian form, in which principal axis can

be defined since this is the current known (deformed) configuration, and the

derivation of the constitutive law is straightforward.

The inverse FEM for large-displacement beams has a good computational

efficiency, requiring only a few iterations to converge to a feasible solution.

The stability and feasibility of the design is assessed by the lowest eigenvalue

test criterion. Several 2D and 3D mechanisms, in the macro and micro-scale,
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were successfully tested, and validated with great precision against the results

of the literature, as for example compliant transmission mechanisms (clutch

and joint), robotic surgery tools for minimally invasive surgery (grippers and

microgrippers), and passive elements for microfluidic systems (microvalves).

The main flaws of this method at the present state are the intersection and

interpenetration of beam elements, and the violation of the design domain. In

the first case, intersections of beam elements result in a non-feasible design

in which self-crossing of beam elements invalidate the desired motion. In the

latter case, during the deformation of the body, some elements may be located

outside of the specified design domain.

6.2 Further Research

Several shortcomings must be circumvented in order to extend the capabilities

of IFEM and make it an automatic design tool.

Extension of the inverse FEM to large-displacement shells in the elastic

range [ZL08] is currently in progress. This will allow to extending the model to

sheet metal forming, deep drawing processes, and medical imaging technology

of vascular organs, and detection of veins and arteries that tend to develop

aneurysms [LZR07b]. The combination of different type of elements (beam,

shell, solid, etc.) connected by kinematic joints to model flexible multibody

would permit to construct a library of mechanical elements for IFEM analysis.

In the case of sheet metal forming or deep drawing modeling though IFEM,

where large displacements in the plastic range are encountered, two approaches

are found in the literature: a one step and the multiple step inverse approach.

The work of Batoz [BGM98, GBN+00, NBEB04, NDBG04b, NDBG04a] has fo-

cused in the one step inverse approach, where Hencky plasticity is used [Lub02],

which is strictly valid for proportional loading and grants a preliminary solu-

tion to sheet metal forming problem when flexural efforts are predominant.

Improvement in precision is achieved with the multiple step inverse approach

[LC01, KKH01, KH02, YHCD06] where the load is applied gradually. How-

ever, even in this case, the assumption of proportional load is an excessive

simplification of the problem. Under the assumption of proportional loading,
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multiple step inverse FEM may be used as a tool to compute fast preliminary

results, that may be used as a starting point in the search of more precise

solutions using for instance, optimization algorithms [ABR11].

Contact algorithms are currently under study to consider friction forces

(e.g in the compliant clutch), and to interrupt the computation or to impose

restrictions if intersection and interpenetration occurs. For this purpose, con-

tact models of the type node-to-segment with penalty [PL04] or soft contact

algorithms with friction for 3D beams [Lit07] may be adequate choices.
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