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Tesis remitida al Comité Académico del Doctorado

como parte de los requisitos para la obtención

del grado de

DOCTOR EN INGENIERIA

Mención Mecánica Computacional

de la

UNIVERSIDAD NACIONAL DEL LITORAL

2013
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Abstract

The study of multi-phase models is a field of great interest in industry and

academia. Multi-phase flows are present in hydraulics, petrochemical industry,

oceanography, siderurgy, atomic energy and many other human activities. This

field is far from being completely understood and the available tools are still in

a developing stage. Nowadays the only general models for this kind of problems

are the Direct Numerical Simulation or other models based in the physics

of fluids. In this scenario, the aim of this thesis is to develop a new model

based on the Volume of Fluid method and the Mixture Model in order to solve

multi-phase flows with different interface scales and the transition among them.

The interface scale is characterized by a measure of the grid, which acts as a

geometrical filter and is related with the accuracy in the solution. This coupled

model allows to reduce the grid requirements for a given accuracy. Having

this objective in mind, a generalization of the Algebraic Slip Mixture Model

is proposed to solve problems involving short and long scale interfaces in an

unified framework. This model is implemented using the OpenFOAMR© libraries

to generate a state-of-the-art solver capable to solve large problems in High

Performance Computing facilities. In addition several other contributions were

made regarding to the conceptualization of the Mixture Model, the development

of a new Riemann-free solver used to solve mixture problems and a set of tools

to help in the implementation process.
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7.3.1 Černe criterion . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.2 Face gradient criterion . . . . . . . . . . . . . . . . . . . 124

7.4 Solver implementation . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5.1 Interaction of a bubble plume with the water surface . . 128

7.5.2 Bubble reactor with free surface capturing . . . . . . . . 133

7.5.3 Dam Break test with degassing . . . . . . . . . . . . . . 140

7.5.4 Rayleigh-Taylor instability . . . . . . . . . . . . . . . . . 146

8 Conclusion 151

8.1 Conclusions of the work . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A A note in OpenFOAM R© programming 157

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 Basic debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Advanced Debugging . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.1 System matrix . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.2 Mesh Search . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3.3 Graphical debugging . . . . . . . . . . . . . . . . . . . . 165

A.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.4.1 Scalar Transport Test . . . . . . . . . . . . . . . . . . . 166

Márquez Damián, Santiago     - 2013 -



xiv CONTENTS

A.4.2 Laplacian Test . . . . . . . . . . . . . . . . . . . . . . . 170

A.4.3 Multiphase Test . . . . . . . . . . . . . . . . . . . . . . . 172

B Resumen extendido en castellano 179

B.1 Modelo de mezcla extendido . . . . . . . . . . . . . . . . . . . . 179

B.1.1 Antecedentes . . . . . . . . . . . . . . . . . . . . . . . . 179

B.1.2 Desarrollo . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 189

Márquez Damián, Santiago     - 2013 -



List of Abbreviations

1D: One dimension/dimensional

2D: Two dimensions/dimensional

3D: Three dimensions/dimensional

ASMM: Algebraic Slip Mixture Model

CARPT: Computer Automated Radiactive Particle Tracking

CD: Central Difference

CFD: Computational Fluid Dynamics.

CPU: Central Processing Unit.

DIC: Diagonal Incomplete-Cholesky

DNS: Direct Numerical Simulations

FCT: Flux Corrected Transport

FDM: Finite Difference Method

FDIC: Faster Diagonal Incomplete-Cholesky

FEM: Finite Element Method.

FVM: Finite Volume Method

GAMG: Geometric-Algebraic Multi-Grid

HRS: High Resolution Scheme

IC: Initial Condition/s

KT: Kurganov & Tadmor

LES: Large Eddy Simulation

l.h.s: Left hand side

LSI: Large-lenght-scale-interface

MULES: Multidimensional Universal Limiter with Explicit Solution

MUSCL: Monotone Upstream-centered Scheme for Conservation Laws

NVD: Normalized Variable Diagram

xv

Márquez Damián, Santiago     - 2013 -



xvi CONTENTS

PBiCG: Preconditioned Bi-Conjugate Gradient

PCG: Preconditioned Conjugate Gradient

PDE: Partial Differential Equation/s

PISO: Pressure Implicit Split of Operators

RANS: Reynolds Averaged Navier-Stokes

SIMPLE: Semi-Implicit Method for Pressure-Linked Equations

SSI: Small-lenghtscale-interface

r.h.s: Right hand side

TVD: Total Variation Diminishing

UD: Upwind Difference

VOF: Volume of Fluid

Márquez Damián, Santiago     - 2013 -



List of Symbols

a: exponent for relative velocity law

~a: generic vector magnitude/local velocity

a′: a front speed

aN : off-diagonal coefficient of the discretization matrix

aP : diagonal coefficient of the discretization matrix

~a: secondary phase acceleration

b: boundary face centroid

b′: b front velocity
~b relationship between velocity of center-of-mass and velocity,~vm, of center-of-

volume ~u

A: anti-diffusive flux

Aij: discretization matrix
~b: generic vector magnitude/r.h.s vector for discretization system

CD: drag coefficient

c: generic reactive constant, mass phase fraction

ck: mass phase fraction for k phase

Co: Courant number

dp: diameter of the particulized phase
~dPN : cell centers’ difference vector
~d: cell-centre to face-centre vector
~dn: boundary face normal vector starting in P

f : face index

fdrag: drag force

fx: generic weighting factor for interpolation

F : face flux

xvii

Márquez Damián, Santiago     - 2013 -



xviii CONTENTS

F̃ : face flux approximation

F 0: face flux at the previous time-step

FC : corrected total flux

FH : high order total flux

FL: low order total flux

FL
f : face flux for the linear term

FNL
f : face flux for the non-linear term

Fm: face flux for ~vm

Fqp: face flux for ~vqp

Fρm: mass face flux
~F: flux

F: total face flux, flux in scalar cases

g,~g: gravitational acceleration

gb: fixed gradient at boundary b

i: cell index

j: face index

k: generic phase index
~k: correction vector for non-orthogonal decomposition

l: left

m: number of finite volumes/mixture sub-index
~M : interface momentum interchange term

N : sub-index for neighbor cell

n: temporal step index

ni: number of faces of the i-th element in a FVM mesh

nf : face unit normal flux

~nf : face unit normal vector

p: pressure, primary phase

p0: total pressure

prgh: modified pressure

P : subindex for the present cell

P±: summation of inflows/outflows

q: secondary phase

Q: generic source

Márquez Damián, Santiago     - 2013 -



CONTENTS xix

Q±: flux difference to extrema

Re: Reynolds number

r: ratio of consecutive gradients/right

s: shock velocity

S: generic scalar source

u: generic scalar

uL: Riemann problem left state

uR: Riemann problem right state
~S: generic vector source

us: stagnation point value

u±: stagnation point value

u∗: values of u at each side of a cell face

vrc: constant for relative velocity law

v0: constant for relative velocity law

v+
m velocity of center-of-mass at top layer

~v: generic velocity

~v0: generic velocity at the previous time-step

~v0: generic velocity at previous time-step

~vdr,k: drift velocity of phase k respect to the velocity of center-of-mass

~vm velocity of center-of-mass

~vpq: relative velocity between phases p and q

V : cell volume

Vp: volume of the particulized phase

VP : volume of present cell
~Sf : face area vector

w: average values in staggered mesh

x: spatial coordinate

~x: generic position vector

y: spatial coordinate

z: spatial coordinate

α: generic scalar magnitude, void fraction

α0
p: initial dispersed phase distribution
~β: generic vector magnitude

Márquez Damián, Santiago     - 2013 -



xx CONTENTS

δ: free surface disturbance

∆t: time interval

∆x: space interval
~∆: non-orthogonal decomposition vector parallel to centers’ difference vector

ε: maximum deviation from pure phases

η: face tangent coordinate

γ: convection schemes’ blending factor

γ0: threshold for small gradients

Γ: fixed-in-time boundary

Γi: boundary of the i-th element in a FVM mesh

Γk: source term for phase k

τ : time in a interval

τD: drift stress tensor

τp: particle relaxation time

τ : viscous stress tensor

θ: model indicator function, angle between face normal and cell-center to

face-center vector

φ: generic scalar magnitude
~φ: vector of uknowns for φ scalar magnitude

φ̃f : face NVD value

φ̃C : cell-center NVD value

κ: mean curvature

λ: limited weighting factor for High Resolution Schemes/FCT weighting factor,

∆t/∆x

ν: generic diffusivity/iteration counter

Ω: fixed-in-time domain

Ωi: volume of the i-th element in a FVM mesh

ξ: spatial coordinate within an interval, cell center to face center vector

coordinate

φ: generic scalar magnitude transported using a low order scheme

ρ: density/spectral radius

ρm mixture density

ρ0
m initial mixture density

Márquez Damián, Santiago     - 2013 -



CONTENTS xxi

ψ: Sweby’s function

σ: surface tension

Márquez Damián, Santiago     - 2013 -



Márquez Damián, Santiago     - 2013 -



List of Figures

1.1 Relational scheme of different models used in multiphase flow . 2

1.2 Representation of short and long geometrical scales in a bubbly

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Domain discretization . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Linear variation of φ between points P and N . . . . . . . . . . . 19

2.3 Scheme of a non-orthogonal mesh showing the directions of ~dPN

and ~Sf vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Face area vector, ~Sf , decomposition in over-relaxed approach

for non-orthogonality. . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Non-orthogonality treatment in a boundary cell. . . . . . . . . . 24

2.6 Cell array in a 1D dimensional mesh showing the nomenclature

of neighbor cells to face f . . . . . . . . . . . . . . . . . . . . . . 30

2.7 One dimensional geometry and magnitudes for Zalesak’s limiter 35

2.8 Location of variables p, ~v and F in a collocated mesh to avoid

pressure checkerboarding. . . . . . . . . . . . . . . . . . . . . . 41

3.1 Example of the velocity of center of mass, relative velocity and

drift velocities for a two phase system . . . . . . . . . . . . . . . 49

3.2 Example of velocity of center of volume, relative velocity, drift

velocities, velocity of center of mass, relation between velocity

of center of volume and center of mass and other auxiliary

quantities, for a bi-phasic system . . . . . . . . . . . . . . . . . 53

3.3 Simple sedimentation experiment . . . . . . . . . . . . . . . . . 58

3.4 Shape of fluxes for αp equation . . . . . . . . . . . . . . . . . . 64

xxiii

Márquez Damián, Santiago     - 2013 -



xxiv LIST OF FIGURES

3.5 Riemann problem solutions for a convex flux . . . . . . . . . . . 66

3.6 Riemann problem solutions for a convex flux for given states . . 68

3.7 Riemann problem solutions for a non convex flux . . . . . . . . 70

3.8 Riemann problem solutions for a non convex flux with initial

condition αp = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Mean velocity, vm, profiles corresponding αp distributions in

previous figure . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Pressure, p, profiles corresponding αp and vm distributions in

previous figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Central differencing scheme using given centered flux at faces . 75

4.2 Scheme of face values reconstruction in a multidimensional frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Evolution of the Rayleigh-Taylor instability. . . . . . . . . . . . 97

5.2 Evolution of the Dam Break test. . . . . . . . . . . . . . . . . . 99

6.1 Solutions of αp with αp = 0.6−0.7 initialization and αp = 0.7−0.5108

6.2 Solutions of αp for αp = 0.3 initialization. Corresponding pres-

sure and center-of-mass velocity . . . . . . . . . . . . . . . . . . 109

6.3 Riemann problem solutions for a convex flux . . . . . . . . . . . 111

6.4 Riemann problem solutions for a convex flux with initial condi-

tion αp = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Geometry and solutions for a cylindrical bubble reactor . . . . . 113

6.6 Velocity of center-of-mass and gas hold-up solutions as a function

of the radius for the bubble column reactor (y = 0.475) . . . . . 116

7.1 Results for the Rayleigh-Taylor in fine and coarse meshes . . . . 120

7.2 Results for the Dam Break test in fine and coarse meshes . . . . 121

7.3 Interface reconstruction using the Černe criterion . . . . . . . . 123
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Chapter 1

Introduction

1.1 Background and motivation

The study of multi-fluid and multi-phase systems has a great interest in

academia and industry. The correct representation and solution of this kind of

systems is a key knowledge in the car engines, atomic energy, petrochemical,

naval and hydraulics, chemistry, and other industries.

Several models have been devised to simulate these phenomena; within the

most often used may be: the Direct Numerical Simulation (DNS), the Volume

of Fluid Method (VOF) (Hirt and Nichols, 1981), the Multi-fluid Method

(Drew, 1983; Ishii and Hibiki, 2010) and the Mixture Model (Manninen et al.,

1996). In DNS applied to multi-phase flow the model is able to represent all

the geometrical and turbulent scales for each phase. To do so, the complete

set of momentum and mass conservation equations is solved for each phase,

setting the corresponding interfacial and boundary conditions. It is clear

that this technique is only applicable to simple real cases or laboratory

tests due to the great computational resources that are required nowadays.

This approach is then more suitable for cases that belong to the physics of fluids.

In the Volume of Fluid Method the geometrical analysis is similar to

DNS, being the mesh size the parameter which determines the details in

1
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2 CHAPTER 1. INTRODUCTION

the representation of the different scales of the problem. The turbulence

is generally solved using either temporal or spatial filtering. The temporal

filtering is implemented by the Reynolds Averaged Navier Stokes Methods

(RANS), meanwhile spatial filtering is done using Large Scale Simulation (LES).

Figure 1.1: Relational scheme of different models used in multiphase flow.

The Multi-fluid model represents the next level of simplification. In this

model the contact surface between phases is not explicitly tracked, considering

all phases as interpenetrating continua. This approach is generally used when

the geometrical structures of the flux cannot be captured by the available

mesh and/or this isn’t an important part of the solution process. To this end,

the mass and momentum conservation equations are solved for each solid,

liquid and gas phase. The representation of phases interaction is included by

means of interchange terms in the mass and momentum conservation equations.

Finally, the Mixture Model has an additional simplification, in which

all the interpenetrating phases are considered as a mixture, solving only

one momentum conservation equation, a mass conservation equation for the
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1.1. BACKGROUND AND MOTIVATION 3

mixture and mass phase fraction equation for all but one phase. The physical

properties used in the mixture equations are given by a combination of each

phase’s properties, using the densities and/or volume fractions in the averaging

process. It is worthy to note that, even though the Mixture Model represents a

simplification respect to the Multi-fluid model, the applicability of each model

and the results’ quality strongly relies in the nature of the problem, giving

similar results in many problems. In addition the Multi-fluid model has a great

weakness due to its ill-posedness (Zanotti et al., 2007) and the lack of closure

laws for the momentum transfer terms between phases (Manninen et al., 1996).

Therefore, the VOF model is used in problems where surface capturing is

crucial, with an important incidence of surface tension and adhesion phenomena

(drop formation, capillarity, jet break-up) or where the free surface position

prediction is essential (nozzles, free-surface problems in hydraulics, naval

industry, reservoirs, liquids separation). In all of these cases the interfaces are

considered of long scale, taking as a reference some measure of the mesh size

(see Figure 1.2.a).

In the case of Multi-fluid and Mixture models the interest is found in

the capacity of predicting the behaviour of flows with small-scale interfaces

–‘‘dispersed interfaces’’–[see Figure 1.2.b)] when is not possible or desirable a

complete modeling. This kind of interfaces is often found in sedimentation

tanks, cyclone separators, annular flow in refineries and fine bubbles flow in

heat exchangers.

As was presented, the DNS represents the only model which is capable

to afford general multi-phase/fluid problems (Scardovelli and Zaleski, 1999;

Tryggvason et al., 2006), nevertheless, the actual computational resources

limitations turn impossible its direct application. On the other hand, due to

their lack of generality, the rest of the models work only in particular cases

accordingly to each model’s hypothesis.

This situation leaves an open discussion respect to the development of
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new models capable to manage several interface scales and/or transitions

between them (see Figure 1.2.c). Thus, a new group of applications could

be included such as the annular mist flow or droplet annular flow, the

transition from churn flow to bubbly flow (Ishii and Hibiki, 2010) citing

cases from the nuclear and chemical industry or the interaction of bubble

plume with a free surface as is frequent in oceanography (Friedl and Fan-

neløp, 2000; Cloete et al., 2009) or siderurgy (Zanotti et al., 2007; Zanotti, 2007).

a) b) c)

Continuum liquid

Continuum gas Dispersed bubbles

Mesh

Figure 1.2: Representation of short and long geometrical scales in a bubbly
flow. a) Long scale interfaces, b) short scale interfaces, c) presence of both
scales simultaneously.

Respect to these cases the state of the art gives few answers. One of the

first works in this field corresponds to Cerne et. al. (Černe et al., 2001). In this

work, a coupling between the VOF and Multi-fluid models is set to the end of

solving the Rayleigh-Taylor instability. Both models are treated separately,

using a switching criterion for the detection of long and short interface scales.

Later Strubelj and Tiselj (Štrubelj and Tiselj, 2011) follow the same work

line but using the Level Set method as the surface capturing technique but

giving a more unified framework without model switching. Another authors

like Yan & Che (Yan and Che, 2010) and Masuda and Nagaoka (Masuda and

Nagaoka, 2006) write the Multi-fluid and VOF methods equations in coupled

way, closing the model by means of momentum and mass transfer terms. This

methodology is used to solve flows with short and long scale bubbles and jet

break-ups.
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An interesting contribution in the field of coupled models is that proposed

by Bohorquez (Bohorquez R. de M., 2008). In this model the Mixture Model is

coupled with VOF in order to solve free-surface flows with dispersed sediments

into the liquid phase. There were then long scale interfaces (water-air) and

short scale interfaces (sediments-liquid). The system is solved using a general

mixture formulation where the key point is the definition of the relative

velocity between phases.

1.2 Objectives

As is presented in its title, the main objective of this thesis is to explore and

develop new techniques for the treatment of long and short scale interfaces

simultaneously. The short scale interface is solved by the Algebraic Slip

Mixture Model (ASMM) meanwhile the long scale interface is managed

by the VOF method. In order to devise a method for the simultaneous

treatment of both interface lengths the cited methods are then written in an

unified framework such as is proposed by (Bohorquez R. de M., 2008) for

gas-solid-liquid systems.

The construction of such a model requires the presentation of all its

building blocks either taken from the literature or specially devised for this

thesis, which gives the secondary objectives. Therefore the Finite Volume

Method is presented giving a summary and introducing the notation; in

addition two interesting topics for the OpenFOAMR©’s community are then

discussed, the High Resolution Schemes framework and the implementation of

the Flux Corrected Transport Method.

In addition, the ASMM is recalled and the details and main issues for

solving it are addressed. This implies the necessity of the correct integration

method for the mass conservation equation of the secondary phase, which is

achieved by Riemann-Free solvers and by the FCT method. The ASMM solver
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need to manage the short scale interfaces is based on these techniques. On the

other hand the VOF method is also recalled and written as a derivation of the

ASMM in order to treat the long scale interface. The derivation of the VOF

method and the development of the ASMM solver fulfills another secondary

objective.

Finally, based on the obtained ASMM solver and working in an unified

framework for ASMM and VOF, problems with both interface scales are solved.

To this end a switching criterion is proposed and compared to which are given

in the literature. This solver is applied in several cases involving gas-liquid

flow problems.

1.3 Thesis outline

For a better reading of the thesis it follows a thesis outline. The first chapter

represents this introduction.

In Chapter 2 a brief introduction to the Cell-centered Finite Volume

method is presented giving a basis to the notation and particular details of the

method. The discretization of a general scalar conservation law in integral form

is addressed leading to a system of algebraic equations. This requires the expla-

nation of discrete differential operators, boundary condition setting and errors.

In addition, two techniques often used in Finite Volume discretization are

explained, namely the High Resolution Schemes (HRS) and the Flux Corrected

Transport (FCT). At the end of the chapter, the discretization of Navier-Stokes

equations is presented, the solution of which is managed by the Pressure

Implicit Split of Operators (PISO) method. This chapter, the first appendix

and the related references give a solid basis for the use of OpenFOAMR© the

tool for Finite Volume Method discretization selected for solver implementation.

Chapter 3 presents the Algebraic Slip Mixture Model as a derivation

of the Multi-fluid method by means of a mass-weighted averaging. The

importance of the dispersed phase transport equation is discussed and the
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equation is presented in a general framework. An analysis is carried out

looking for the phenomenology linked to different definitions of the relative

velocity. The one-dimensional Mixture Model equations are solved obtaining

an original semi-analytical solution. In order to obtain this solution it is

necessary to recall the theory of hyperbolic systems with non-convex flux

which the model pertains to. The model presents additional particularities

such as the incompressibility which leads to lack of evolutive equation for

the pressure. This issue is investigated and a solution method is presented later.

Chapter 4 is devoted to the methods for the solution of the dispersed phase

conservation equation in the Mixture-Model, then a novel centered method for

hyperbolic systems is presented. It is a Riemann-free solver which deals with

a particular flux function where part of the flux is previously calculated at

faces. The derivation of the scheme is then presented, starting from the same

geometrical concepts of the Kurganov & Tadmor (Kurganov and Tadmor,

2000) scheme in which the present scheme is inspired. The extension for the

use of slope limiters in face values reconstruction is also addressed presenting

it in a fully multidimensional framework. In addition the use of the Flux

Corrected Transport method based in global extrema is presented.

In Chapter 5 the Volume of Fluid method is revisited looking for the similar-

ities with the Mixture Model giving and special emphasis to the implementation

in OpenFOAMR©. It relies on the so-called MULES (Multidimensional Uni-

versal Limiter with Explicit Solution) which is a variation of the FCT technique.

Chapter 6 presents a novel Mixture Model solver using eigenvalues

information; it is based on a solver for the dispersed-phase equation using

the technique presented in Chapter 5 and a pressure-velocity coupling by

means of the PISO method. The results for this solver are compared to the

semi-analytical solutions for the sedimentation case given in Chapter 3 and to

the solution of a bubble column reactor.

In chapter 7 a Mixture Model/VOF coupled solver is described and the
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8 CHAPTER 1. INTRODUCTION

corresponding results are presented. The motivation for this solver is based

on the results of the previous chapters and the necessity of capturing the

dynamics of the under-mesh level and the free-surface. This goal is achieved

using an indicator function which switches the models along the geometry.

Several cases including which are presented in the previous chapters are solved

and compared showing the benefits of the interface-capturing technique given

by VOF.

Finally, the last chapter presents the conclusions, the future work and the

articles which share it with the scientific community.

1.4 Contributions of the work

A general contribution of this thesis is the development of novel techniques

in order to solve problems with mixed geometrical scales for the free-surface.

The techniques were implemented in a native parallelized framework as

OpenFOAMR© with the aim of solving problems from academic to industrial

scale using High Performance Computing (HPC).

In addition, the following original contributions were made:

• The conceptualization of the ASMM as a hyperbolic system with re-

strictions where the definition of the flux function for the void fraction

conservation equation plays a principal role.

• An 1D semi-analytical solution for sedimentation and the study of different

test cases.

• The development of a new Riemann-Free solver based in the Kurganov

& Tadmor solver including a given centered flux at faces.

• The development of a new solver for the ASMM based in eigenvalues

information which is capable to manage problems for all the void fraction

range and not only for dilute mixtures.
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• An ASMM-VOF parallelized coupled solver to manage problems with

short and long scale interfaces. This solver is based in a novel indicator

function which can be used in non-structured meshes.

• The application of ASMM-VOF coupled solver to academic and industrial

cases.

• A toolbox for OpenFOAMR© debugging (gdbOF) to help in solvers imple-

mentation.
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Chapter 2

Cell-centered Finite Volume

Method

2.1 Introduction

The solution of the partial differential equations from the models in the con-

tinuum requires the process of discretization in order to be solved by a finite

capacity machine, in terms of CPU power and memory. This objective can be

achieved by several methods, being the Finite Difference Method (FDM), the

Finite Element Method (FEM) and the Finite Volume Method (FVM) among

the most popular. Beyond some particular advantages and disadvantages of

each method the decision of which method will be used is generally a cultural

matter around the workgroup legacy, mathematical background, available

code capabilities, etc. Therefore, the Cell-centered Finite Volume Method

is selected and the practical implementation is given by the OpenFOAMR©

code. The selection of this particular implementation of the FVM is based

on its capabilities for easy solver writing, transparent parallelization, a huge

database of solver examples and the free access to the code via the GNU-GPL

license. This chapter is devoted to the general details of the discretization

procedure of scalar and vector conservation equations in arbitrary meshes. In

addition a brief description of the High Resolution Schemes and Flux Corrected

Transport frameworks and the pressure-velocity coupling is given. The reader

11
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12 CHAPTER 2. CELL-CENTERED FINITE VOLUME METHOD

is referred to the work of Jasak (Jasak, 1996) which is the fundamental source

about OpenFOAMR©’s FVM implementation and to the books of Ferziger and

Peric (Ferziger and Peric, 2002) and Versteeg and Malalasekera (Versteeg and

Malalasekera, 2007) for further and in-deep reading about the FVM.

2.2 Discretization of a general advection-

diffusion-reaction equation

Let be φ (x, y, z, t) a generic scalar magnitude, Ω a fixed-in-time domain in R3

and Γ its boundary as is shown in Figure 2.1.a); then, it is possible to write a

conservation equation for this quantity in integral form as in Eqn. (2.1)

∫
Ω

∂φ

∂t
dΩ +

∫
Γ

~v φ · ~dΓ +

∫
Ω

c φ dΩ =

∫
Γ

ν ~∇φ · ~dΓ +

∫
Ω

Q dΩ (2.1)

where ~v is an advective field, c a generic reactive constant, ν the diffusivity

and Q a source term. The first term represents the variation of φ along the

time, the second one the flux through Γ due to the velocity (or advective) field,

the third one the production or destruction of φ due to reaction, the fourth

one the flux due to the diffusion and finally the last one is the term associated

to the source1. These terms can be reordered in volumetric and surface terms

as in Eqn. (2.2)∫
Ω

(
∂φ

∂t
+ c φ−Q

)
dΩ =

∫
Γ

(
ν ~∇φ− ~v φ

)
· ~dΓ (2.2)

From this equation it follows that the imbalance in φ in the interior of Γ is

simply which crosses the boundary Γ.

Dividing the domain Ω in m finite volumes of any shape with the only

condition of non overlapping such as in Figure 2.1.b) and re-writing Eqn. (2.1)

applied to every volume in Ω and summing up, it reads as in Eqn. (2.3)

1All magnitudes are expressed in the International System of Units in all extension of
this thesis as is usual in OpenFOAMR©
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2.2. DISC. OF A GRAL. ADVECTION-DIFFUSION-REACTION EQN. 13

Figure 2.1: Domain discretization. a) Original domain Ω and its boundary
Γ; b) finite volume discretization of Ω, darker zones show volume mesh; c)
isolated finite volume2.

m∑
i=1

∫
Ωi

[(
∂φ

∂t
+ c φ−Q

)
dΩ−

∫
Γi

(
ν ~∇φ− ~v φ

)]
· ~dΓ = 0 (2.3)

In the case of the volumetric integrals their meaning is clear: each one

represents the integral of the corresponding magnitude within the t-ith finite

volume. In the case of the surface integrals it is necessary to take into account

that the faces which do not lie on the boundary are included in the integral for

both sides of the face. Therefore, the fluxes in these faces cancel each other and

then Eqn. (2.3) reduces to Eqn. (2.2). It is not only an interesting property of

the scheme but a necessary condition for the discretization to work. Due to this

property the discretization manifests the conservative nature of the original law.

It is possible to have a deeper analysis of the scheme considering the finite

volumes as polyhedra (faceted volumes) with a finite number of faces ni. Then

Eqn. (2.3) becomes Eqn. (2.4)

23D modeling and meshing of base sub-figure b) by Santiago F. Corzo using SolidWorksR©

and ANSAR©. Vectorized version and coloring by Santiago Márquez Damián.
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14 CHAPTER 2. CELL-CENTERED FINITE VOLUME METHOD

m∑
i=1

{∫
Ωi

[
∂φ

∂t
+ c φ−Q

]
dΩ−

ni∑
j=1

∫
Γj

[
~ν∇φ− ~v φ

]
· ~dΓ

}
i

= 0 (2.4)

Considering the φ values varying linearly by cell (finite volume) and by

face, see Eqn. (2.9), it is possible to approximate the integrals as in Eqns.

(2.5-2.6), see the proof in Eqns. (2.14)-(2.15)∫
Ωi

α dΩi = αVi (2.5)

∫
Γi

~β · ~dΓi = ~β · ~Sf i (2.6)

being α and ~β two generic scalar and vector magnitudes respectively. Then,

dropping the overbar, Eqn. (2.4) becomes Eqn. (2.7)

m∑
i=1

[(
∂φ

∂t
+ c φ−Q

)
Vi −

ni∑
j=1

(
~∇φ− ~v φ

)
· ~Sf j

]
= 0 (2.7)

being this the spatially discretized expression of the conservation equation for

an scalar magnitude. Now it’s necessary to define the discrete version of the

space and time derivatives and the values of φ at faces calculated from the

cell-center values, which are the real unknowns. The discretization leads to a

linear system of m equations with n unknowns as in Eqn. (2.8).

A · ~φ = ~b (2.8)

The discretization of the general advection-diffusion-reaction equation

usually leads to non-symmetric linear systems, except for the cases with no

advection or with a centered scheme for the advective term. On the contrary,

the presence of symmetric systems is usual in the case of the discretiza-

tion of the pressure equation, thermal problems in solids and solids deformation.

The solution of this system is achieved by the use of iterative Linear

Equations Solvers. OpenFOAMR© has a set of preconditioned iterative
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linear solvers for symmetric and non-symmetric matrices. This set is

composed by the Preconditioned Conjugate Gradient (PCG) and the Diagonal

Incomplete-Cholesky (DIC) and Diagonal Incomplete-Cholesky with Gauss-

Seidel (DICGaussSeidel) smoothers for the symmetric cases. In addition, the

Preconditioned Bi-Conjugate Gradient (PBiCG), the Gauss-Seidel smoother

and the Geometric-Algebraic Multi-Grid (GAMG) can be used in the case

of non-symmetric matrices problems (Saad, 2003). The performance in the

solution of the linear systems is usually improved by the use of preconditioners;

the list of available methods for preconditioning includes: DIC (symmetric),

Faster Diagonal Incomplete-Cholesky (DIC with caching, FDIC), Diagonal

Incomplete-LU (asymmetric, DILU), diagonal and GAMG (OpenCFD, 2012).

In the case of the problems presented in this work the non-symmetric cases

are solved using a PBiCG solver with DILU preconditioning. For the symmetric

problems the PCG method with DIC preconditioner is used for problems up to

100,000 unknowns, beyond this limit the GAMG method results to have better

performance. This trend is true in general but the limit of unknowns depends

on the type of problem, hardware capabilities, etc.

2.3 Discrete version of differential operators

As a starting point for the definition of the differential operators in discrete

form it is necessary describe the variation of the solution φ along the domain.

Since the solution is given in certain points of the space it is necessary to find

the values for other arbitrary points within the domain but not pertaining to

the mesh. Having a linear variation (which leads to a second-order accurate

method) in space and time the value of an arbitrary point can be found as is

shown in Eqns. (2.9-2.10)

φ(~x) = φP + (~x− ~xP ) · (~∇φ)P (2.9)

φ(t+ ∆t) = φt + ∆t

(
∂φ

∂t

)t
(2.10)
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16 CHAPTER 2. CELL-CENTERED FINITE VOLUME METHOD

where ~x represents the position of a generic point within the domain Ω, ~xP is

the position of the cell’s centroid [see Figure 2.1.c)], φP = φ(~xP ) and φt = φ(t).

On the other hand, a three dimensional general form of the Taylor expansion

(Gray and Gubbins, 1984; Jasak, 1996) can be recalled as in Eqn. (2.11)

φ(~x) = φP + (~x− ~xP ) · (~∇φ)P + 1
2
(~x− ~xP )2 : (~∇~∇φ)P+

1
3!

(~x− ~xP )3 :: (~∇~∇~∇φ)P+

. . .+ 1
n!

(~x− ~xP )n :::︸︷︷︸
n−1

(~∇~∇..~∇︸ ︷︷ ︸
n

φ)P + . . .

(2.11)

where (~x− ~xP )n relies on a n-th tensor product and the operator :::︸︷︷︸
n

is the

inner product of two tensor of rank n-th. Comparing Eqn. (2.9) and Eqn.

(2.11) it can be stated that the first term of truncation is proportional to

|~x − ~xP |2. Then, the linear variation proposed for φ leads to a second-order

truncation term. The same analysis can be done for the temporal variation.

Another topic is the selection of the location of the point P . From the

definition of the centroid [Eqn. (2.12)]

VP~xP =

∫
Ωi

~x dΩ (2.12)

it is possible to arrive to a relationship given in Eqn. (2.13)∫
Ωi

~x dΩ− ~xP
∫

Ωi

dΩ =

∫
Ωi

(~x− ~xP ) dΩ = 0 (2.13)

where VP is the volume of the domain Ωi. The same expression can be derived

for surface integral where the centroid of the cell is replaced by the face’s

centroid.

Therefore, an integral of φ(~x) on Ω can be simplified to which is shown in

Eqn. (2.14)
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∫
Ωi

φ (~x) dΩ ∼=
∫

Ωi

[
φP + (~x− ~xP ) · (~∇φ)P

]
dΩ

= φP

∫
Ωi

dΩ +

∫
Ωi

[(~x− ~xP )dΩ] · (~∇φ)P︸ ︷︷ ︸
= 0

= φPVP

(2.14)

where the property presented in Eqn. (2.13) was used. Respect to the surface

integral, it can be simplified in a similar way as in Eqn. (2.15)

∫
Γj

~a d~Γ = ~af ·
∫

Γj

d~Γ +

[∫
Γj

(~x− ~xf )d~Γ

]
︸ ︷︷ ︸

= 0

: (~∇~a)f

= ~af · ~Sf

(2.15)

being ~a a generic vector value at the j-th face, ~af the value of ~a at the face

centroid and ~Sf the face area vector for the same face. Now, it is possible to

obtain the expression for the some differential operators. In the case of the

divergence operator and using the Gauss’ theorem and Eqns. (2.14-2.15), it

reads as in Eqn. (2.16)

∫
Ωi

(
~∇ ·~a

)
dΩ =

∫
Γi

~a · d~Γ

(~∇ ·~a)VP =
∑
j

∫
Γj

~a · d~Γ =
∑
j

(
~af · ~Sf

)
j

~∇ ·~a = 1
VP

∑
j

(
~af · ~Sf

)
j

(2.16)

In the case of the gradient operator it is presented in Eqn. (2.17)

Márquez Damián, Santiago     - 2013 -



18 CHAPTER 2. CELL-CENTERED FINITE VOLUME METHOD

∫
Ωi

~∇φ dΩ =

∫
Γi

φ d~Γ

~∇φ = 1
VP

∑
j

(
φf · ~Sf

)
j

(2.17)

2.3.1 Convective operator

Recalling the general advection-diffusion-reaction equation in Eqn. (2.1) and

taking the convective operator, it is possible to apply the rules given in Eqn.

(2.16) as follows in Eqn. (2.18)

∫
Γ

(~v φ) · ~dΓ =
∑
f

(φ~v)f · ~Sf =
∑
f

φf

(
~vf · ~Sf

)
=
∑
f

Ffφf =
∑
f

Ff

(2.18)

where the notation of the summation was simplified to an index f representing

each of the cell faces. In addition, the the face flux through a face can be

defined as in Eqn. (2.19)

Ff =
(
~vf · ~Sf

)
(2.19)

Finally, two magnitudes often used can be defined, the total face flux,

Ff = Ff φf , and ~Ff = ~vf φf which is just named as the flux. This flux

corresponds to the argument of the spatial derivative of transport problems.

In this context, the calculation of φf leads to the appropriate selection

of a convection scheme. The basic convection schemes are the Central

Differencing (CD) and the Upwind Differencing (UD). Recalling Figure 2.1.c)

and focusing on the variation of φ between the points P and N it is pos-

sible to find the value in the face between these points as is shown in Figure 2.2.

Assuming a linear variation of φ between points P and N the face value

can be calculated as in Eqn. (2.20)
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Figure 2.2: Linear variation of φ between points P and N .

φf = fxφP + (1− fx)φN (2.20)

where fx = fN

PN
is a weighting factor and ~dPN is the cell centers’ difference

vector . The presented calculation of fx corresponds to the CD scheme. On

the other hand, the UD scheme can be written in the framework given by Eqn.

(2.20) defining fx = 1 if F > 0 and 0 otherwise. This implies that φf takes the

value from the upwind cell respect to the advective velocity direction. The CD

scheme has the property to be second order accurate but unbounded, meanwhile

UD is bounded but only first order accurate (Hirsch, 2007). Blendings between

both schemes can be used in order to achieve both accuracy and boundedness,

this topic is addressed in Section 2.5.

2.3.2 Diffusive operator

In the case of the diffusive operator the discretization is carried out as is shown

in Eqn. (2.21)

∫
Ω

~∇ · (ν ~∇φ) dΩ =
∑
f

(ν ~∇φ)f · ~Sf =
∑
f

(ν)f (~∇φ)f · ~Sf (2.21)

If the vectors ~dPN and ~Sf are parallel (See Figure 2.3) there is a simple

way to calculate the factor (~∇φ)f · ~Sf needed in Eqn. (2.21) as shown in Eqn.

(2.22)
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20 CHAPTER 2. CELL-CENTERED FINITE VOLUME METHOD

Figure 2.3: Scheme of a non-orthogonal mesh showing the directions of ~dPN
and ~Sf vectors.

(~∇φ)f · ~Sf = |~Sf |
φN − φP
|~dPN |

(2.22)

Another way to obtain the value of this factor is evaluating the cell-centered

gradient via Eqn. (2.17) both in cell P and cell N and then interpolate it

to the face. Even when it is possible, it requires information from second

neighbors, which implies a bigger computational molecule and also more entries

in the diffusive matrix. The studied case corresponds to an orthogonal mesh (a

mesh with all right angles between faces), this case is far from being general

since most industrial meshes need some grade of non-orthogonality to fit the

geometry. To this end the factor (~∇φ)f · ~Sf is calculated having into account

the decomposition of the vector ~Sf as in Eqn. (2.23)

(~∇φ)f · ~Sf = ~∆ · (~∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ ~k · (~∇φ)f︸ ︷︷ ︸
non-orthogonal correction

(2.23)

where the proposed decomposition is ~Sf = ~∆ + ~k. The vector ~∆ is parallel

to ~dPN , then, this contribution is calculated using Eqn. (2.22), while the

non-orthogonal correction calculation depends on the decomposition selected.

There are several decompositions, the one which is used in OpenFOAMR© is

the over-relaxed approach (Jasak, 1996) [See Appendix A or (Márquez Damián

et al., 2012)]. The vector decomposition is depicted in Figure (2.4), where
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2.3. DISCRETE VERSION OF DIFFERENTIAL OPERATORS 21

~∆ is defined as ~∆ =
~dPN

~dPN · ~Sf |
~Sf |2. As was indicated, the orthogonal part is

discretized in the standard way therefore Eqn. (2.23) is now written as in Eqn.

(2.24)(Mathur and Murthy, 1997; Versteeg and Malalasekera, 2007)

(~∇φ)f · ~Sf = |~∆|φN − φP∣∣∣~dPN ∣∣∣ + ~k · (~∇φν−1)f (2.24)

Here ~∇φν−1 is calculated using Eqn. (2.17) in an iterative way being ν the

iterator index. This is a kind of deferred correction as is explained in Sections

5.6 and 8.6 of (Ferziger and Peric, 2002) and implies the solution of the whole

system several times for the same time-step, which is more time consuming

but allows to keep a compact computational molecule.

Figure 2.4: Face area vector, ~Sf , decomposition in over-relaxed approach for
non-orthogonality.

2.3.3 Temporal discretization

In order to analyze the discretization of the temporal term is worthy to recall the

final expression of the spatially discretized general advection-diffusion-reaction

equation [Eqn. (2.7)]

m∑
i=1

(
∂φ

∂t
+ c φ−Q

)
Vi −

[
n∑
j=1

(
~∇φ− ~v φ

)
· ~Sf j

]
i

= 0 (2.25)

Integrating this expression in a ∆t interval it gives which is shown in Eqn.
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(2.26)

∫ t+∆t

t


m∑
i=1

(
∂φ

∂t
+ c φ−Q

)
Vi −

[
n∑
j=1

(
~∇φ− ~v φ

)
· ~Sf j

]
i

 dt = 0

(2.26)

Recalling the assumed linear variation of φ along the time step given by

Eqn. (2.10)

φ(t+ ∆t) = φt + ∆t

(
∂φ

∂t

)t
(2.27)

it is possible to find the expression for the time derivatives and integral as is

shown in Eqns. (2.28)-(2.29)

(
∂φ

∂t

)
P

=
φnP − φ0

P

∆t
(2.28)

∫ t+∆t

t

φ(t) dt =
1

2

(
φ0 + φn

)
∆t (2.29)

where φn represents the value of φ at the present time-step and φ0 its value

at the previous time-step. In the case of no time variation in the physical

properties the discretization for cell P reads as in Eqn. (2.30)

φnP−φ0
P

∆t
VP +1

2

∑
f Ffφ

n
f − 1

2

∑
f (ν)f (~∇φ)nf · ~Sf

+1
2

∑
f Ffφ

0
f − 1

2

∑
f (ν)f (~∇φ)0

f · ~Sf

= QVP − 1
2
c φnPVP − 1

2
c φ0

PVP

(2.30)

which is an example of Crank-Nicholson discretization and is second order

accurate, but can produce unboundedness. This expression can be generalized

as in Eqn. (2.31)
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φnP−φ0
P

∆t
VP +θ

∑
f Ffφ

n
f − θ

∑
f (ν)f (~∇φ)nf · ~Sf

+(1− θ)
∑

f Ffφ
0
f − (1− θ)

∑
f (ν)f (~∇φ)0

f · ~Sf

= QVP − θ c φnPVP − (1− θ) c φ0
PVP

(2.31)

this expression leads to the Generalized Trapezoidal Method (Hirsch, 2007).

Choosing θ = 0 it gives the Forward-Euler Method which is explicit and

restricted to Co 6 1 and is not directly available in OpenFOAMR©. Taking

0 < θ 6 1 leads to implicit methods, particularly for the case of θ = 1/2 the

Crank-Nicholson scheme presented in Eqn. (2.30) is recalled. The case of θ = 1

is known as the Backward-Euler method which only first order accurate and

always bounded. These methods are available in OpenFOAMR© under the name

of crankNicholson3 and Euler. There is also available a backward method

which is a back-difference method using two backward time-steps. This scheme

is second order accurate, however, the boundedness of the solution is not

guaranteed. Here it is important to note that even when implicit methods

can be used, some terms are treated always explicitly, this is the case of the

non-orthogonal corrections used in the diffusive term studied in section 2.3.2.

The High Resolution Methods presented later in this chapter also use this

technique in order to evaluate the gradients needed for the limiting of φ at faces.

2.4 Boundary conditions

The solution of a problem within the domain Ω depends on the governing

equations representing a particular phenomenon and on the boundary conditions

given at the Γ boundary [see Figure 2.1.)]. These boundary conditions represent

the interaction of the phenomenon inside the domain with the universe outside

it. In this analysis the boundary conditions will be divided in basic and derived

3The courier font will hereinafter be used to denote OpenFOAMR© keywords or commands
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groups.

2.4.1 Basic boundary conditions

The basic group of boundary conditions is given by the Dirichlet and Neumann

boundary conditions which fix the value or the gradient normal to the boundary,

respectively. To start the analysis it is important to make clear the treatment

of the non-orthogonality at the boundaries. To do so a boundary cell is

considered as in Figure 2.5 (De Villiers, 2006). In the figure some new entities

are presented, the boundary face centroid b, the vector joining the cell center

and face center ~d and the vector normal to the face and starting in P , which is

called ~dn. This vector is calculated as is shown in Eqn. (2.32)

Figure 2.5: Non-orthogonality treatment in a boundary cell.

~dn =

(
~Sf · ~d

)
~Sf∣∣∣~Sf ∣∣∣2 (2.32)

• Fixed value boundary condition

This boundary condition fixes the value of φ = φb at the face boundary b.

The way that this boundary condition is imposed depends on the kind of
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term which is being assembled:

– Convective term. From Eqn. (2.18) the convection term is dis-

cretized as follows

∫
Γ

~v φ · ~dΓ =
∑
f

φf

(
~vf · ~Sf

)
=
∑
f

Ffφf

therefore, fixing the boundary condition is straightforward and relies

in taking
∫

Γ
~v φ · ~dΓ =

∑
f Fbφb. This approach is ever true except

for, perhaps, the pure UD scheme. In this case if the flux Fb is

positive, i.e. it gives a transport outside the domain and the UD

scheme takes the value of the face from the upwind cell-centroid

and not from the given value φb. The use of the given φb can result

in unbounded solutions for Peclet number beyond unity.

– Diffusive term. According to Eqn. 2.21 the diffusive term is assem-

bled by the following expression

∫
Γ

~∇ · (ν ~∇φ) dΩ =
∑
f

(ν)f (~∇φ)f · ~Sf

this expression requires the calculation of the gradient at the bound-

ary face which is achieved by means of the given values and the

cell center, φP , and the face center, φb, by a first order approxima-

tion. In order to derive the value of this face gradient the following

additional entities are defined in Figure 2.5: n represents the face

normal direction, η is the face tangent direction and ξ the direction

of ~d as is proposed by Mathur and Murthy (Mathur and Murthy,

1997). Since the known distance for gradient calculation is
∣∣∣~d∣∣∣ the

calculation of ∂φ
∂ξ

is straightforward, on the other hand the needed

gradient is ~∇φ ·~n = ∂φ
∂n

, now, it is necessary to find a relationship

between both expressions. From Figure 2.5 it is clear that this

relationship reads as follows
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∂φ

∂ξ
=
∂φ

∂n
cos θ − ∂φ

∂η
sin θ

where θ is the angle between ~d and ~n. Thus, isolating the face

normal gradient it becames

~∇φ ·~n =
∂φ

∂n
=
∂φ

∂ξ

1

cos θ
+
∂φ

∂η
tan θ

now, since ∂φ
∂ξ

= φb−φP
|~d| and cos θ =

~d · ~Sf
|~d| |~Sf | it is possible to write

(~∇φ)b · ~Sf =

∣∣∣~d∣∣∣ ∣∣∣~Sf ∣∣∣
~d · ~Sf

∣∣∣~Sf ∣∣∣ φb − φP∣∣∣~d∣∣∣ +
∂φ

∂η
tan θ

finally, due to the transversal gradient ∂φ
∂η

is null because the constant

value of φ on the face, and doing some algebraic simplifications the

desired expression for the face normal gradient is obtained

(~∇φ)b · ~Sf = |~Sf |
φb − φP
|~dn|

The effect of this first order approximation is supposed to be marginal

and does not affect the order of approximation of the general prob-

lem.

This boundary condition is named fixedValue and requires the given

value at the face.

• Fixed gradient boundary condition

In the case of the fixed gradient boundary condition the fixed magnitude

is the gradient normal to the boundary face, it is calculate as follows

 ~Sf∣∣∣~Sf ∣∣∣ · ~∇φ

b

= gb
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– Convective term. Since the value φb is not given this has to be

calculated from the cell-center value φP and the given gradient gb

which is obtained by

φb = φP + ~dn ·
(
~∇φ
)
b

= φP +
∣∣∣~dn∣∣∣ gb

this value is used to calculate the expression
∫

Γ
~v φ · ~dΓ =

∑
f Fbφb

– Diffusive term. In the case the fixing of the boundary condition is

direct since

(~∇φ)b · ~Sf = gb

then, the diffusive operator is assembled as
∫

Γ
~∇ · (ν ~∇φ) dΩ =∑

f (ν)f gb

The fixed gradient boundary condition is named fixedGradient and the

value of the normal gradient is required. The case of zero flux (gradient)

or Homogeneous Neumann boundary condition is called zeroGradient.

2.4.2 Derived boundary conditions

From the basic boundary conditions it is possible to derive a series of new

boundary conditions which are useful in the real practice. They are presented

in the following list with the OpenFOAMR© nomenclature as a future reference:

• slip. Equivalent to zeroGradient in case of a scalar magnitude; for

a vector magnitude the normal component is fixedValue zero, and

tangential components are set to zeroGradient. This boundary condition

is often used with the velocity in order to set slip walls;

• empty. Used in faces perpendicular to the directions which will be not

calculated. Used to set 2D and 1D problems using full 3D meshes;
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• symmetryPlane. Sets a symmetry plane;

• wedge. Allows to set an axi-symmetric problem. This boundary condition

has to be set in the plane normal to the tangential direction;

• inletOutlet. Sets either zeroGradient or fixedValue for positive or

negative face flux. It is intended to be used for outflow boundaries;

• totalPressure. The static pressure of the boundary is set from a given

total pressure p0 as p = p0 − 1
2
ρ |~v|2;

• buoyantPressure. This boundary conditions sets the ~∇p · ~Sf =

−~∇ (ρ |~g|) · ~Sf and is used where the value of the pressure is not known;

• pressureInletOutletVelocity. This boundary condition sets a velocity

inlet/outlet boundary condition in the patches for where the pressure is

specified.

2.5 High Resolution Schemes Implementation

In the general scalar transport equation an important issue is the necessity of

calculating face values of the transported magnitude. The improper calculation

of these values can bring unboundedness or numeric diffusion problems when the

advective terms are assembled and solved. In simple advection discretization

schemes, such as Central Difference (CD) and Upwind Differencing (UD) a

compromise between accuracy and boundedness must be accepted. While UD

is completely bounded it is only first order accurate, on the other hand CD is

second order accurate but generates unbounded values when it is used with

Courant numbers beyond unity and with high Peclet numbers. In this context

the High Resolution Schemes (HRS) allow to assemble advective terms with

better accuracy than first order without losing boundedness. The derivation

of the basic HRS framework starts with the basic schemes. Therefore, from

CD discretization the face value φf can be calculate as in Eqn. (2.33) (Jasak,

1996).
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φf = fxCD φP + (1− fxCD)φN (2.33)

where fxCD = fN
PN

is the weighting factor for linear interpolation, being P and

N the centroids of the cells sharing the face. This expression can be rearranged

in Eqn. (2.34).

φfCD = fxCD (φP − φN) + φN (2.34)

On the other hand, for UD the same equation can be used, taking into

account that the weighting factor must be redefined as fxUD. This factor is 1

if F = ~v · ~Sf > 0 and 0 otherwise.

A linear combination of the aforementioned methods can be used giving

place to the Blended Differencing (BD) methods defined by Eqn. (2.35).

φf = (1− γ)φfUD + γφfCD, (2.35)

where γ is a blending factor. Replacing Eqn. (2.34) in (2.35), Eqn. (2.36) is

obtained, and can be rewritten in Eqn. 2.37 (Berberovic et al., 2009).

φf = [(1− γ) fxUD + γfxCD] (φP − φN) + φN (2.36)

φf = λ (φP − φN) + φN (2.37)

Equation (2.37) allows for a compact form of blending, being

λ = (1 − γ) fxUD + γfxCD, a limited weighting factor. The blending

factor γ, 0 6 γ 6 1, can be selected as a constant (Ferziger and Peric, 2002)

or evaluated in a local basis using a limiter function as is done in the High

Resolution Schemes based on Total Variation Diminishing (TVD) (Harten,

1983) or Normalized Variable Diagram (NVD) (Leonard, 1991).

In the particular case of OpenFOAMR© the whole HRS framework is im-

plemented around TVD schemes, therefore, those schemes which are based in
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the NVD diagram have to be rewritten in TVD form. Following Darwish &

Moukalled (Darwish and Moukalled, 2003) the face value can be obtained by

means of Eqn. (2.38)

φf = φN +
1

2
ψ(rf ) (φP − φN) (2.38)

where ψ(rf ) is the Sweby’s function (Sweby, 1984; Hirsch, 2007) for a particular

TVD limiter depending on rf the ratio of consecutive gradients of the solution

defined as is Eqn. (2.39) (see Figure 2.6)

rf =
φP − φU
φN − φP

(2.39)

Figure 2.6: Cell array in a 1D dimensional mesh showing the nomenclature of
neighbor cells to face f .

Comparing Eqn. (2.39) with Eqn. (2.37) it follows that the blending factor

λ is related to Sweby’s function as in Eqn. (2.40)

λ =
1

2
ψ(rf ) (2.40)

The above expressions are strictly valid for structured meshes, where cell

U can be univocally determined. In the case of an unstructured mesh a better

expression was derived (Darwish and Moukalled, 2003) which is shown in Eqn.

(2.41)

rf =
2~∇φP · ~dPN
φN − φP

− 1 (2.41)

where ~∇φP is the φ gradient in a given cell.
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In the case of NVD schemes they are written in terms of φ̃f and φ̃C (Leonard,

1991; Jasak et al., 1999), which are defined as in Eqn. (2.42)

φ̃C =
φP − φU
φN − φU

φ̃f =
φf − φU
φN − φU

(2.42)

These variables are related by the NVD functions as φ̃f = f(φ̃C), where

f(φ̃C) is function inscribed in the NVD diagram. In order to use NVD schemes

in OpenFOAMR© it is necessary to translate the limiter expression in terms of

r and ψ(r). Hirsch (Hirsch, 2007) gives an equivalence formula which is shown

in Eqn. (2.43)

φ̃f =

[
1 +

1

2
ψ′(r′)

]
φ̃C (2.43)

where r′ is defined as r′ = (φN − φP )/(φP − φU ) and ψ′(r′) is the expression of

the Sweby’s function for a given limiter in terms of r′. Darwish and Moukalled

(Darwish and Moukalled, 2003) gave a relationship between ψ′(r′) and ψ(r)

such that 1/r′ψ′(r′) = ψ(r), thus isolating ψ′(r′) the result is given by in Eqn.

(2.44)

ψ′(r′) = r′ ψ(r) (2.44)

replacing ψ′(r′) in Eqn. (2.43) a new equivalence formula is found which is

shown in Eqn. (2.45 )

ψ(r) =

φ̃f

φ̃C
− 1

r′
(2.45)

now, since r′ = 1
φ̃C
−1 (Hirsch, 2007) then the above expression can be presented

as in Eqn. (2.46 )

ψ(r) = 2

φ̃f

φ̃C
− 1

1
φ̃C
− 1

(2.46)

Finally, recalling the OpenFOAMR©’s version of Sweby’s function given by

Eqn. (2.40), λ = 1
2
ψ(rf ) the desired relationship between the NVD formulation

and the OpenFOAMR©’s TVD framework is given by Eqn. (2.47)
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λ =

φ̃f

φ̃C
− 1

1
φ̃C
− 1

(2.47)

2.6 Flux Corrected Transport

The Flux Corrected Transport (FCT) is a technique introduced by Boris and

Book (Boris and Book, 1973) and improved by Zalesak(Zalesak, 1979) as a way

to guarantee boundedness in the solution of hyperbolic problems. Following

Kuzmin et.al (Kuzmin et al., 2003) Zalesak’s limiter remains the only genuinely

multidimensional high-resolution scheme available to date.

2.6.1 Theoretical foundation

Consider the solution of Eqn. (2.48)

∂φ

∂t
+∇ · ~F = 0 (2.48)

by means of the Finite Volume Method (FVM), where φ is the transported

quantity and ~F a flux of this quantity, being this flux a linear or nonlinear

function of φ. The solution of the problem by an explicit temporal scheme

reads (Equation 2.49):

φn+1
i − φni

∆t
V +

∑
f

(
~Fn · ~S

)
f

= 0 (2.49)

where i is the index that identifies the analyzed cell, n is the index for temporal

steps, V the cell volume, f the i cell face index and ~S the face area vector

for the f -th face of cell i. Finally, isolating φn+1
i (Equation 2.50) for a 1-D

equispaced grid:

φn+1
i = φni −

∆t

V

(
Fni+1/2 − Fni−1/2

)
(2.50)

where Fn =
(
~Fn · ~S

)
f

is the total flux due to the transportive effect of a

velocity. The values of the flux depend on many variables but particularly on
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the values of φ at faces. Boundedness of the temporal solution can be achieved

via face value limiting, such as in TVD/NVD schemes, or by limiting the face

fluxes. The values of F are obtained by a lower order and bounded method

and a limited portion of the values obtained by a high order and possible

unbounded method. The sequence described by Zalesak and written as is

present in OpenFOAMR©’s context can be summarized as follows:

1. Compute FL, the transportive flux given by some low order scheme which

guarantees to give monotonic results.

2. Compute FH , the transportive flux given by some high order scheme.

3. Define the anti-diffusive flux A = FH − FL.

4. Compute de corrected flux FC = FL + λA, with 0 6 λ 6 1.

5. Solve the equation by the given temporal scheme (Equation 2.50) using

corrected fluxes:

φn+1
i = φni −

∆t

V

(
FCi+1/2 − FCi−1/2

)
(2.51)

The procedure is applied in such a way that no new extrema are found in

φn+1
i with respect to the previous time-step. The critical step is clearly the

fourth, where it is necessary to find the λ weighting factors. By means of these

λ’s it is possible to measure the effect of high order schemes in flux calculation.

If λ = 0 the flux used for time integration has low order, on the contrary with

λ = 1 the flux used has high order.

2.6.2 Zalesak’s weighting factors

To start the weighting factor determination given by Zalesak (Zalesak,

1979; Gopala and van Wachem, 2008) it is worthy to recall that given a

cell i, its value at time n + 1 depends on the net flux in the cell as was

shown in Eqn. (2.50). The net flux is the summation of all fluxes into cell

i and away from cell i. The value of cell i at time n + 1 must be neither
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greater than a local maximum nor lesser than a local minimum (due to trans-

portive properties of equation which is being solved). Thus, the net flux must

be corrected in order not to create new maximum or minimum [See Eqn. (2.51)].

Eqn. (2.51) can be rewritten as in Eqn. (2.52),

φn+1
i = (φLi )n − ∆t

V

(
λi+1/2Ai+1/2 − λi−1/2Ai−1/2

)
= φni − ∆t

V

(
FLi+1/2 − FLi−1/2

)
− ∆t

V

(
λi+1/2 Ai+1/2 − λi−1/2 Ai−1/2

)
(2.52)

In this way, the values at time n+ 1 can be calculated in two steps, firstly

by a low order flux, FL, and then adding a high-order or anti-diffusive flux, A,

limited by the λ factors.

Once time advancement is obtained via a low order flux, giving a bounded

solution, the possible unboundedness will be due to anti-diffusive fluxes. Then,

a conservative criterion is used by which the maximum is created only due to

the inflow and the minimum only by the outflow. These flows are calculated

as a summation of all face inflows and all face outflows.

Supposing a cell is neighbored by three other cells and the flux in two faces

is entering into the cell, then, there are three possibilities for the third flux:

1. This flux is away from the cell, then, considering the flux as the sum of

all inflows the result is an overestimated net flow.

2. This flux is null, then summation of all inflows gives the correct net flow.

3. This flux is into the cell, then this flux had to be taken in account in the

prior summation.

Therefore, limiting this inflow summation such that value at time n+ 1 do

not reach the local maximum guarantees the boundedness. The same concept

is applied for outflow summation. As can be seen, this criterion is excessive in

Márquez Damián, Santiago     - 2013 -



2.6. FLUX CORRECTED TRANSPORT 35

cases when outflow summation is similar to inflow summation.

Figure 2.7: One dimensional geometry and magnitudes for Zalesak’s limiter.
Based on (Kuzmin et al., 2003).

Based on these concepts the following quantities can be defined (see

Figure 2.7), P±i are the summations of inflows and outflows for A, Q+
i =(

φmaxi − φLi
)

∆t
V

, Q−i =
(
φLi − φmini

)
∆t
V

are the net fluxes in order to reach the

local maximum and minimum. Now, it is possible to calculate the maximum

fraction of A that can be used in order not to generate new maximum nor

minimum, as in Eqn. (2.53)

λ±i =

{
min

{
1, Q±i /P

±
i

}
, if P±i > 0,

0, if P±i = 0
(2.53)

Finally each cell has its own λ’s; now it is necessary to obtain the face λ’s.

The calculus of λ’s was done by means of fluxes that take in account the face

area. Thus, the proportional part of anti-diffusive fluxes given by the λ’s can
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be directly applied to fluxes on each face regardless of its area. On the other

hand each face is shared by two cells, then the flux in this face is into one cell

and away from the other. In this sense each anti-diffusive flux can be limited

by two λ’s; the logical decision, in order to guarantee boundedness is to choose

the smaller one as in Eqn. (2.54),

λi+1/2 =

{
min

{
λ+
i+1, λ

−
i

}
, if Ai+1/2 > 0,

min
{
λ−i+1, λ

+
i

}
, if Ai+1/2 < 0

(2.54)

Finally, the method requires the determination of the local extrema; a

simple but useful option is that given by Eqn. (2.55)

φai = max(φni , φ
L
i )

φmaxi = max(φai−1, φ
a
i , φ

a
i+1)

φbi = min(φni , φ
L
i )

φmini = min(φbi−1, φ
b
i , φ

b
i+1)

(2.55)

This selection guarantees to preserve the extrema present in the last solution

and not to generate new maximum nor minimum. Zalesak’s FCT method

has other improvements and implementation details which can be found in

the original paper (Zalesak, 1979). The actual presentation gives the required

background for OpenFOAMR©’s implementation.

2.6.3 OpenFOAM R©’s weighting factors

OpenFOAMR© implementation of FCT theory is called MULES (Multidimen-

sional Universal Limiter for Explicit Solution); it relies on similar concepts

respect to Zalesak’s limiter but the determination of λ’s is iterative. Another

extension is the possibility of set global extrema for the problem, which is a key

feature in multiphase flows. The whole procedure is presented in Algorithm 1.

This formulation takes into account that each cell has a net flux. Then

the maxima and minima are not only calculated by the inflow and the outflow

respectively, which is a quite conservative assumption. To do so, for example,

the outflow is also used in the calculation of the limiters for the maxima. In
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Algorithm 1 Steps for MULES limiter

1. Calculate local extrema as

φi
a = max(φi

n, φi,N
n)

φi
b = min(φi

n, φi,N
n)

where φi,N
n are all the neighbors by face for the i-th cell. In addition the

inflows and outflows for each cell have to be calculated as P+ = −
∑

f Af
−

and P− =
∑

f Af
+, where Af

− are the inflows and Af
+ the outflows;

2. Correct the local extrema by the limits imposed by user’s defined global
extrema φmaxG and φminG

φi
a = min(φmaxG, φi

a)

φi
b = max(φminG, φi

b)

3. Find Q±i as

Q+
i =

V

∆t
(φi

a − φin) +
∑
f

FLf

Q−i =
V

∆t

(
φi
n − φib

)
−
∑
f

FLf

4. Set λν=1
f = 1 for all faces. Do the following loop nLimiterIter (hard-

coded to three) times to find the final λf ’s

λ∓,ν+1
i = max

[
min

(±∑f λ
ν
fAf

± +Q±i

P±i
, 1

)
, 0

]

λf
ν+1 =

{
min {λP+,ν+1, λN

−,ν+1} , if Ai+1/2 > 0,
min {λP−,ν+1, λN

+,ν+1} , if Ai+1/2 < 0

where λP and λN represent the λ’s for the owner and neighbor cell of a
given face f .
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case of small inflows or outflows the values of λ’s rapidly converge to values

close to Zalesak’s ones.

2.7 Discretization of the Navier-Stokes equa-

tions

The presented discretization methods for a general advection-diffusion-reaction

equation in terms of the cell-centered finite volume method set the basis for the

discretization of the Navier-Stokes system, which is presented in Eqn. (2.56)
∂~v
∂t

+ ~∇ · (~v ⊗ ~v) = −~∇p+ ~∇ ·
(
ν ~∇~v

)
~∇ ·~v = 0

(2.56)

Here the momentum equation is presented with the continuity equation

which corresponds to the case of constant density in space and time, thus, it is

a case of incompressible flow. This system deals with three principal issues,

first, the incompressibility which leads to a lack of pressure evolution equation

and requires an special treatment for pressure-velocity coupling, the left two

other issues are related to the advective term which has to be stabilized and

particularly by its non-linearity. The stabilization is treated by the methods

early presented in this chapter. Regarding the non-linearity, it can be solved

by using a non-linear system or by the linearization which is the chosen option.

Therefore, the advective term is linearized using the assumption of small

Courant numbers (Co < 1) and then ~v0 ∼= ~v, as is presented in Eqn. (2.57)∫
Ω
~∇ · (~v ⊗ ~v0) dΩ ∼=

∑
f ~vf ~v

0
f · ~Sf

=
∑

f F
0 ~vf

= aP~v +
∑

f aN~vN

(2.57)

where ~v0 is the velocity at the previous time-step, aP are the diagonal

coefficients of the discretization matrix, aN the off-diagonal ones and F 0 the
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face flux at the previous time-step. All these quantities are a function of ~v0.

Here it is important to note that, for purposes which will be clear soon, the

pressure is discretized at cell centres and the velocities are calculated at faces

in the form of fluxes, therefore the flux F 0 is only calculated from ~v0 eventually

at the first time-step; in the rest of the calculation this flux is taken from the

previous time-step pressure-velocity loop, which assures the enforcement of

the continuity equation (conservative flux). Respect to the incompressibility

restriction it will be treated in this work by the PISO (Pressure Implicit Split

of Operators) procedure (Issa, 1986), as is implemented in OpenFOAMR©

(Jasak, 1996; Peng Karrholm, 2008).

2.7.1 Derivation of an equation for the pressure

Since no evolution equation is given for the pressure it is necessary to devise

a method to obtain at least a discretized equation which allows to solve for

the pressure. Writing the momentum equation in a semi-discretized form as in

Eqn. (2.58) it is possible to start its derivation

aP~vP = ~H (~v)− ~∇p (2.58)

This equation is obtained by the integral form of the momentum equation

using the discretization method described previously. The pressure gradient is

not discretized at this time, which follows the spirit of the Rhie and Chow

interpolation procedure (Rhie and Chow, 1983). It is important to note

that in order to allow future face interpolations of matrix’s coefficients the

discretization has been divided by the volume of each cell.

The ~H (~v) operator accounts for the advective and diffusive terms as well as

all the source terms including the source part of the transient term, therefore

it results to be which is shown in Eqn. (2.59)

~H (~v) = −
∑
f

aN~vN +
~v0

∆t
(2.59)
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Now, discretizing the continuity equation as in Eqn. (2.60)

~∇ ·~v =
∑
f

~vf · ~Sf = 0 (2.60)

and isolating the velocity at cell-centers from the discretized version of momen-

tum equation [Eqn. (2.58)] as in Eqn. (2.61)

~vP =
~H (~v)

aP
− 1

aP
~∇p (2.61)

These velocities can be interpolated at faces as in Eqn. (2.62):

~vf =

(
~H (~v)

aP

)
f

−
(

1

aP

)
f

(
~∇p
)
f

(2.62)

which gives a base for face flux calculation. Now, using the obtained expression

for the velocity at faces it can be substituted in Eqn. (2.60) to find an equation

for the pressure [Eqn. ( 2.63)]

~∇ ·
(

1

aP
~∇p
)

= ~∇ ·

(
~H (~v)

aP

)
(2.63)

Finally the set of discrete equations for the Navier-Stokes system results to

be which is shown in Eqn. (2.64)


aP~vP = ~H (~v)−

∑
f
~S(p)f

∑
f

[(
1
aP

)
f

(
~∇p
)
f

]
· ~Sf =

∑
f

(
~H(~v)
aP

)
f
· ~Sf

(2.64)

where ~S(p) is a source term give by the gradient of the pressure. In addition it

is necessary a way to assemble the face flux F , see Eqn. (2.65)

F = ~vf · ~Sf =

( ~H (~v)

aP

)
f

−
(

1

aP

)
f

(
~∇p
)
f

 · ~Sf (2.65)
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2.7.2 The PISO algorithm for pressure-velocity cou-

pling

Having a system to solve is now possible to derive an algorithm for pressure-

velocity coupling. As was stated previously this algorithm is based on the PISO

method, which uses a segregated approach. In this approach the equations

of the system are solved one by one in a loop looking for the convergence

to a solution in pressure and velocity. The complete algorithm is shown in

Algorithm 2 and shows the sequence necessary to obtain a set of pressure

and velocity that satisfies the Navier-Stokes system. To this end and to

avoid the pressure checkerboarding present in collocated meshes (Ferziger and

Peric, 2002; Versteeg and Malalasekera, 2007), the pressure, p, is solved at the

cell-centres and the velocity, ~v, is calculated at the faces in the form of a flux,

F , as is shown in Figure 2.8.

Figure 2.8: Location of variables p, ~v and F in a collocated mesh to avoid
pressure checkerboarding.

This method allows to obtain a staggered scheme from the collocated mesh.

The iterative solution has a feedback through the operator ~H (~v) which uses the

~v calculated in the previous iteration and takes into account the influence of the

solution of the pressure equation. This technique does not take into account

that ~H (~v) operator’s coefficients also change with ~v due to the nonlinear
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coupling of the advective term previously discussed. The hypothesis used

for this solution is that the non-linear coupling of the advective term is less

important than the pressure-velocity coupling. Thus, the coefficients of ~H (~v)

are only re-calculated at the next time-step or doing outer corrections.
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Algorithm 2 PISO method for pressure-velocity coupling

1. Obtain an approximation for the velocity field solving the momentum
equation [first equation in Eqn. (2.64)], using the previous time-step
pressure for the pressure gradient and the previous time-step flux for
advective term linearization. This step is called the momentum predictor

aP~vP = ~H (~v)−
∑
f

~S(p0)f

2. Assemble an approximation of the face flux which is also needed in the
r.h.s. of the pressure equation

F̃f =

(
~H (~v)

aP

)
f

· ~Sf

3. Using the approximated velocity obtained, assemble and solve the pressure
equation [second equation in Eqn. (2.64)], this step is called the pressure
solution

∑
f

[(
1

aP

)
f

(
~∇p
)
f

]
· ~Sf =

∑
f

F̃f

4. Find the final flux correcting the approximated flux by the pressure effect
using Eqn. (2.65)

F = F̃ −

[(
1

aP

)
f

(
~∇p
)
f

]
· ~Sf

5. Correct the cell-centered velocity due to the new pressure distribution.
This stage is called the explicit velocity correction and is achieved by
Eqn. (2.61)

~vP =
~H (~v)

aP
− 1

aP
~∇p

6. Go to step 2 nCorrectors times or end.
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Chapter 3

Algebraic Slip Mixture Model

characterization

3.1 Introduction

The Algebraic Slip Mixture Model (ASMM) is a multi-phase model for n

interpenetrated phases based on the Multi-fluid model (Ishii, 1975; Ishii and

Hibiki, 2010). In this model all the phases are treated as a mixture which

exhibits mean properties for density and viscosity. In the Multi-fluid model a

mass and momentum equation are solved for each phase; on the other hand the

ASMM reduces the system to a mass and momentum equation for the whole

mixture and one mass conservation equation for each of the n− 1 phases. Since

the momentum equations for these n − 1 phases are not solved, additional

algebraic relations for each phase velocities respect to the mixture velocity are

given. These algebraic relationships for the slip velocities give the name to this

mixture model. Finally a closure law for all phases volume fractions is also

included. Even when ASMM is physically more limited than the Multi-fluid

model its results are in some particular cases comparable to that model due to

the lack of closure laws available for the latter. In addition ASMM results to be

considerably less computationally expensive, and robust. The objective of this

chapter is to revise the fundamentals of the ASMM method as a derivation from

the Multi-fluid model, discussing the principal issues in solving the resulting

45
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system of equations. These issues are related to pressure-velocity coupling and

the hyperbolic nature of the volume fraction conservation equation. In order

to set a basis for further analysis a one dimensional ASMM system is solved

finding semi-analytical expressions for the void fraction, pressure and velocity.

3.2 Theory fundamentals

The starting point for the formulation of the ASMM is the Multi-fluid method

which solves mass and momentum equations for each phase. Following the

theoretical foundation given by Manninen et.al. (Manninen et al., 1996) and

using Fluent’s nomenclature (Fluent Inc., 2006) the basic equations of the

Two-Fluid method are presented, i.e. the mass conservation for each phase,

Eqn. (3.1) and the corresponding momentum equation, Eqn. (3.2)

∂ (αkρk)

∂t
+ ~∇ · (αkρk~vk) = Γk (3.1)

∂

∂t
(αkρk~vk) + ~∇ · (αkρk~vk ⊗ ~vk) = −αk ~∇pk + ~∇ ·

(
αkτ k

)
+ αkρk~g + ~Mk (3.2)

where αk is the volume fraction of phase k, which obeys the geometrical closure

law
∑

k αk = 1. The term Γk represents the rate of mass generation of phase k

at the interface and ~Mk is the average interfacial momentum source for phase

k. It is important to note that most of the uncertainties in the results of

Multi-fluids method come from the determination of this last term. Finally, τ k

represents the viscous stress tensor. The presented set of equations has been

given in the so-called mass-weighted average for the velocity.

3.2.1 Velocity of center of mass based formulation

The Mixture Model can be formulated using either the so called velocity of

center-of-mass, mixture velocity or mass averaged velocity or in terms of

the velocity of center-of-volume. Starting from the Multi-fluid method, the

derivation of the velocity of center of mass based formulation is as follows.

Márquez Damián, Santiago     - 2013 -



3.2. THEORY FUNDAMENTALS 47

From the continuity equation for phase k [Eqn. (3.1)] and summing over all

phases the result is given in Eqn. (3.3)

∂

∂t

n∑
k=1

(αkρk) + ~∇ ·
n∑
k=1

(αkρk~vk) =
n∑
k=1

Γk (3.3)

where n is the number of phases. Since the overall mass is conserved, the right

hand side of Eqn. (3.3) vanishes, and then the continuity equation for the

mixture is written as in Eqn. (3.4)

∂

∂t
(ρm) + ~∇ · (ρm~vm) = 0 (3.4)

where ~vm is the velocity of center of mass defined by Eqn. (3.5)

~vm =

∑n
k=1 αkρk~vk
ρm

(3.5)

and ρm the mixture density which is calculated as in Eqn. (3.6)

ρm =
n∑
k=1

αkρk (3.6)

The mixture momentum equation is obtained by the summation of each

phase momentum equation as is presented in Eqn. (3.7)

∂
∂t

∑n
k=1 αkρk~vk + ~∇ ·

∑n
k=1 αkρk~vk ⊗ ~vk

= −
∑n

k=1 αk
~∇pk + ~∇ ·

∑n
k=1

(
αkτ k

)
+
∑n

k=1 αkρk~g +
∑n

k=1
~Mk

(3.7)

Using the definitions of Eqn. (3.6) and Eqn. (3.5) it is possible to rewrite

the summation of the advective terms of Eqn. (3.7), as is shown in Eqn. (3.8)

~∇ ·
n∑
k=1

αkρk~vk ⊗ ~vk = ~∇ · (ρm~vm ⊗ ~vm) + ~∇ ·

(
n∑
k=1

αkρk~vdr,k ⊗ ~vdr,k

)
(3.8)

Replacing in Eqn. (3.7) and using the viscous tensor definition for the stress
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tensor (Manninen et al., 1996), the final form of the momentum equation for

the mixture is obtained in Eqn. (3.9).

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
+ ρm~g+

~F − ~∇ · (
∑n

k=1 αkρk~vdr,k ⊗ ~vdr,k)

(3.9)

where ~F is a body force, p is the pressure for the mixture which is often taken

to be equal to the pressure of each one of the phases (Drew, 1983) and µm is

the dynamic viscosity of the mixture given by Eqn. (3.10)

µm =
n∑
k=1

αkµk (3.10)

This simple expression is valid when the effects of the relative motion and

the interfacial deformation are not important (Manninen et al., 1996) and

can be used for bubbly flows with high viscosity ratios between the fluid and

bubbles (Ishii and Hibiki, 2010). Finally ~vdr,k is the drift velocity (relative

velocity between k phase velocity and velocity of center of mass, see Figure

3.1) for the secondary phase k defined by Eqn. (3.11).

~vdr,k = ~vk − ~vm (3.11)

The drift velocity has no physical meaning but can be related to the relative

velocity ~vpq (See Figure 3.1) for a given phase, p, respect to other phase, q.

The relative velocity, ~vpq is then defined by Eqn. (3.12)

~vpq = ~vp − ~vq (3.12)

Now, defining the mass fraction for any phase, k, as in Eqn. (3.13)

ck =
αkρk
ρm

(3.13)

it is possible to relate the drift velocity and the relative velocity, ~vpq, by Eqn.

(3.14):
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Figure 3.1: Example of the velocity of center of mass ~vm, relative velocity ~vpq
and drift velocities ~vdr,p and ~vdr,q for a two phase system [adapted from (Ishii
and Hibiki, 2010)].

~vdr,p = ~vqp −
n∑
k=1

ck~vqk (3.14)

If only one dispersed phase is present Eqn. (3.14) can be written in a simpler

form [See (Manninen et al., 1996) Eqn. (27)] as in Eqn. (3.15)

~vdr,p = ~vpq (1− cp) (3.15)

where cp is the mass fraction for the dispersed phase.

Using the assumption that a local equilibrium is reached in a short spatial

length scale it is possible to use an algebraic formulation for relative velocities.

Following Manninen (Manninen et al., 1996) and taking into account only the

drag force, the slip velocity between two phases, p and q, can be obtained by

Eqn. (3.16)
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|~vpq|~vpq =
4 dp
3CD

(ρp − ρm)

ρq
~a (3.16)

where dp is the diameter of the droplets or bubbles of the secondary phase p,

CD defined as in Eqn. (3.17), is the drag coefficient and ~a (Eqn. 3.18) is the

secondary-phase acceleration.

CD =
24

Rep

(
1 + 0.15 Re0.687

p

)
Rep 6 1000 (3.17)

where Re = dpρq |~vpq |
µq

.

~a = ~g − (~vm · ~∇)~vm −
∂~vm
∂t

(3.18)

Finally, the expression for the slip velocity given in Eqn. (3.19) is obtained

replacing Eqns. (3.17) and (3.18) in (3.16)

~vpq =
τp
fdrag

(ρp − ρm)

ρp
~a (3.19)

where τp =
ρpd2

p

18µq
is the particle relaxation time and fdrag is given by Eqn. (3.20),

which follows the drag laws given by Schiller and Naumann (Schiller and

Naumann, 1935).

fdrag =

{
1 + 0.15 Re0.687

p Rep 6 1000

0.0183 Rep Rep > 1000
(3.20)

Finally, it is necessary to have an equation for the evolution of the secondary

phases’ volume fraction. Starting from the continuity equation of phase p, the

volume fraction equation for that phase can be obtained, Eqn. (3.21):

∂

∂t
(αpρp) + ~∇ · (αpρp~vm) = −~∇ · (αpρp~vdr,p) (3.21)

In summary, the system of equations for mixture mass and momentum

balance and secondary phase mass conservation can be written for a two

component mixture [see (Manninen et al., 1996), section 3.5.1] as in Eqn. (3.22)
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

∂
∂t

(ρm) + ~∇ · (ρm~vm) = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
+

ρm~g − ~∇ · [ρmcp (1− cp)~vpq ⊗ ~vpq]

∂
∂t

(αp) + ~∇ · (αp~vm) = −~∇ · [αp (1− cp)~vpq]
(3.22)

where the momentum equation has a term accounting for the momentum

exchanging between the phases, which is calculated by the drift tensor, τD in

Eqn. (3.23)

τD = ρmcp (1− cp)~vpq ⊗ ~vpq (3.23)

This system of three equations has three unknowns, they are: ~vm, p and

αp. Respect to ρm it is linked to αp via its constitutive equation, Eqn. (3.6).

As is usual in incompressible problems the pressure has no evolution equation,

then it becomes a Lagrange Multiplier for the restriction given by the mixture

density transport equation. This characteristic leads to a pressure-velocity

coupling that may be treated in several ways. Among the most popular methods

there are the Fractional-Step or PISO/SIMPLE like methods (Gastaldo et al.,

2008). This issue appears also in reacting flows (Babik et al., 2005; Najm

et al., 1998; Knio et al., 1999), the Low-Mach solvers applied in that problems

are also an inspiration for the solution of ASMM problems. In addition αp

has to be bounded in the [0, 1] interval to have physical meaning. Since vm

is not divergence free and since the momentum and mixture conservation

equations depend on αp the boundedness is not a direct consequence of the

correct discretization of the third equation in Eqn. (3.22), but of the whole

system (Gastaldo et al., 2011).
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3.2.2 The role of αp equation

As it was stated previously the αp equation represents the mass conservation

of the secondary, dispersed phase. Its relevance is particularly important when

the dynamics of the problem strongly depends on the evolution of the phases.

The αp equation can be written using the usual notation in hyperbolic equations

analysis such as given by Eqn. (3.24)

∂αp
∂t

+ ~∇ · ~F (αp) =
∂αp
∂t

+ ~∇ ·
{
αp

[
~vm +

(
1− αp ρp

ρm

)
~vpq

]}
= 0 (3.24)

where ~F (αp) is the flux for this hyperbolic equation. It is, in general, a

non-convex flux, therefore, single and compound waves can be present as

a part of the solution (LeVeque, 2002). The kind of waves depends on the

relative velocity selected law (~vpq) and the particular initial conditions for each

problem. This information is crucial to apply the necessary stabilization for

advective terms.

For the sake of simplicity in the analysis it is valuable to set a general

constitutive law for the relative velocity, ~vpq, as it is shown in Eqn. (3.25)

~vpq = ~vrc (1− αp)a (3.25)

where ~vrc and a are constants for the model. The ~vrc constant can be

interpreted as the velocity of a single bubble or droplet moving in the

continuum phase. This expression is flexible and allows to match several other

models, for example, the previously presented Schiller and Naumann drag law

can be fitted selecting an appropriate value for vrc and with 0 6 a 6 1. Other

constitutive law of this kind is that was given by Barceló et al. (L.F.Barceló

et al., 2010) for their study of water-petroleum segregation. In addition, the

book of Ishii & Hibiki (Ishii and Hibiki, 2010) provides a complete reference

for drag laws in several industrial cases.
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3.2.3 Velocity of center of volume or volumetric flux

formulation

As was stated previously another formulation can be devised for ASMM in

terms of the velocity of the center of volume or volumetric flux. This velocity

is defined by Eqn. (3.26)

~u =
n∑
k=1

αk~vk (3.26)

which in the case of only two phases p and q simplifies to Eqn. (3.27)

~u = αp ~vp + αq ~vq (3.27)

Figure 3.2: Example of velocity of center of volume ~u, relative velocity ~vpq,
drift velocities ~vdr,p and ~vdr,q, velocity of center of mass ~vm, relation between

velocity of center of volume and center of mass ~b and other auxiliary quantities,
for a bi-phasic system.

With the aid of Figure 3.2 it is possible to give a relationship between ~u

and the previously studied velocity of center of mass ~vm. This relationship is
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given by vector the ~b [see Eqn. (3.28)] for a bi-phasic system.

~vm = ~u+~b (3.28)

From the figure it is clear that the value of ~b is given by Eqn. (3.29)

~b = −~vdr,p − αq ~vqp = ~vqp

[
1− αpρp

ρm
− αq

]
(3.29)

After some algebraic manipulations the final form is given in Eqn. (3.30)

~b = ~vqp αq (1− αq)
ρq − ρp
ρm

(3.30)

Replacing Eqn. (3.30) in Eqn. (3.28), the desired relationship is obtained

as is shown in Eqn. (3.31)

~vm = ~u+ αq (1− αq)
ρq − ρp
ρm

~vqp (3.31)

Starting again from the Multi-fluid method it is possible to find a mass

conservation equation for the mixture written in terms of the velocity of center

of mass. Then, for a given phase k of the system its mass conservation equation

(without sources) reads as in Eqn. (3.32)

∂αkρk
∂t

+ ~∇ · (αkρk~vk) = 0 (3.32)

assuming constant densities for all phases and dividing each mass conservation

by its corresponding density, the mass conservation equation becomes which is

shown in Eqn. (3.33)

∂αk
∂t

+ ~∇ · (αk~vk) = 0 (3.33)

then summing over all phases and recalling that
∑n

k=1 αk = 1 the final expres-

sion is given by Eqn. (3.34)

~∇ · ~u = 0 (3.34)

where ~u is the previously defined velocity of center of volume [Eqn. (3.26)].
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Now, taking a bi-phasic system with phases p and q the mass conservation

equation for the primary (continuum) phase can be obtained, following Figure

3.2 the relationship given in Eqn. (3.35) is obtained.

~vq = ~u+ (1− αq) ~vqp (3.35)

Replacing this expression in Eqn. (3.33) for the q phase allows to write the

mass conservation equation for the q phase [Eqn. (3.36)]

∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0 (3.36)

Finally the mixture momentum equation can be rewritten in terms of the

primary phase void fraction αq and the relative velocity of the primary phase

respect to the secondary one ~vqp. Starting from the expression of the drift

tensor τD in Eqn. (3.23) and doing some algebraic simplifications, it becomes

which is shown in Eqn. (3.37)

τD = ρmcp (1− cp)~vpq ⊗ ~vpq = αp ρp

(
1− αpρp

ρm

)
~vpq ⊗ ~vpq (3.37)

Now taking into account that ~vqp = −~vpq and αq = 1− αp the drift tensor

can be expressed as in Eqn. (3.38)

τD = αq (1− αq)
ρq ρp
ρm

~vqp ⊗ ~vqp (3.38)

In summary, the continuity equation and momentum balance for the mixture

and the mass conservation equation for the primary phase in center of volume

based formulation may be written as in Eqn. (3.39)
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

~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
+

ρm~g − ~∇ ·
[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(3.39)

In this formulation the momentum equation can also be written in terms of

~u. The resulting system is often called the Drift-Flux Model (Manninen et al.,

1996) because its relies in the calculation of fluxes (center of volume velocities)

instead of velocities (center of mass velocities).

3.3 1D simplified formulation

The equation system in the center-of-mass based formulation obtained for a

two-phase mixture (3.22) can be written in 1D. In addition, if the inviscid case

is taken into account, the results are then expressed like in the system given in

Eqn. (3.40).



∂
∂t

(ρm) + ∂
∂z

(ρmvm) = 0

∂
∂t

(ρmvm) + ∂
∂z

(ρmvmvm) = − ∂
∂z
p− ∂

∂z

[
ρmcp (1− cp) v2

pq

]
+ ρm g

∂
∂t

(αp) + ∂
∂z
{αp [vm + (1− cp) vpq]} = 0

(3.40)

where αp, vm and p are functions of the time, t, and the axial coordinate, z.

The hypothesis of inviscid flux is based on the fact that all viscous effects

related to the dispersed phase are taken into account in the relative velocity

definition. In addition the effects of the mixture viscosity are zero in the
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transversal direction since no profile is developed in a one dimensional problem.

The remaining term in the axial direction has marginal importance as will

become clear in the chapter devoted to the implementation of a full 3D solver.

As it was stated in the previous section the system given in Eqn. (3.40)

deals with the incompressibility and the determination of p. In Fractional-Step

or SIMPLE1/PISO like methods a prediction of vm, αp and p is done based in

p data from previous time-step. Next vm, p and eventually αp are corrected

assembling and solving a Poisson or Quasi-Armonic equation for p based on ρm

conservation equation. In addition, as will be demonstrated later, the effects of

the drift term in the momentum equation are negligible.

3.3.1 One dimensional semi-analytical solution for sedi-

mentation

Starting from the formulation of ASMM in 1D and under particular boundary

conditions it is possible to arrive to a semi-analytical solution for the system

given in Eqn. (3.40). The considered case consists in the sedimentation

of a mixture of two fluids with different densities, starting from a domain

completely filled with the mixture, as it is shown in Figure 3.3.

The mixture is composed by two fluids, the more dense phase with density

ρq = 1000 and the dispersed, less dense phase, with density ρp = 1, the

gravitational acceleration is g = −10, while αp represents the volume fraction

of the dispersed phase. Starting from the initial condition with αp = α0
p and

due to buoyancy effects the less dense phase moves upwards and the more

dense phase settles down at the bottom of the domain. The dynamics of the

problem is governed by the relative velocity law, vpq(αp).

1Semi-Implicit Method for Pressure-Linked Equations
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Figure 3.3: Simple sedimentation experiment. a) Initial conditions; b) settling
transitory; c) steady state and d) scheme of problem variables.

Determination of the center-of-mass velocity

Recalling the mixture density conservation equation in Eqn. (3.40) (first

equation) and the constitutive equation for the mixture density in Eqn. (3.6),

they read as follows

∂

∂t
(ρm) +

∂

∂z
(ρmvm) = 0 ρm =

n∑
k=1

αkρk (3.41)

Next, if only two phases are taken into account these expressions can be

simplified as in Eqn. (3.42)

∂

∂t
(ρm) +

∂

∂z
(ρmvm) = 0 ρm = αpρp + (1− αp) ρq (3.42)

Now, taking the temporal derivative of ρm Eqn. (3.43) is obtained

∂

∂t
(ρm) = (ρp − ρq)

∂

∂t
(αp) (3.43)

this expression requires the evaluation of the temporal derivative of αp which

can be extracted from the αp conservation equation in Eqn. (3.40) (third

equation) as in Eqn. (3.44)
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∂

∂t
(αp) +

∂

∂z
{αp [vm + (1− cp) vpq]} =

∂

∂t
(αp) +

∂

∂z
(αp vp) = 0 (3.44)

then, isolating the temporal derivative Eqn. (3.45) is obtained

∂

∂t
(αp) = − ∂

∂z
(αp vp) (3.45)

therefore, replacing the obtained expression in Eqn. (3.43) a new form of the

temporal derivative of the mixture density is obtained, which is shown in Eqn.

(3.46)

∂

∂t
(ρm) = (ρq − ρp)

∂

∂z
(αp vp) (3.46)

which can be used in the conservation equation for the mixture density, Eqn.

(3.42) as follows

∂

∂t
(ρm) +

∂

∂z
(ρmvm) = (ρq − ρp)

∂

∂z
(αp vp) +

∂

∂z
(ρmvm) = 0

or

∂

∂z
[(ρq − ρp) (αp vp) + (ρmvm)] = 0 (3.47)

In addition, being vp = vm + (1− cp) vpq, then the last expression becomes

which is shown in Eqn. (3.48)

∂

∂z
{[(ρq − ρp) (αp vp) + (ρmvm)] + [αpρp + (1− αp)ρq] vm} = 0 (3.48)

This expression indicates that the argument of the derivative is constant in

space. If vm = 0 and αp = 0 are assumed for z = 0, (no slip wall and perfect

settling at the bottom) this constant is zero, then it becomes

[(ρq − ρp) (αp vp) + (ρmvm)] + [αpρp + (1− αp)ρq] vm = 0

next, with some extra algebra, the final expression is given by Eqn. (3.49)
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vm = αp

(
ρp
ρm
− 1

)
vpq (3.49)

Now the value of vm is linked algebraically to αp therefore, the solution of

αp implies the solution of vm. To this end, it is necessary to select a law for

vpq.

Determination of the secondary phase void fraction

Recalling the third equation in Eqn. (3.40) it reads [Eqn. (3.50)]:

∂

∂t
(αp) +

∂

∂z
{αp [vm + (1− cp) vpq]} = 0 (3.50)

expanding cp and vpq using Eqns. (3.13) and (3.15) it results in Eqn. (3.51)

∂

∂t
(αp) +

∂

∂z

{
αp

[
vm +

(
1− αp ρp

ρm

)
vrc (1− αp)a

]}
= 0 (3.51)

Here, using the expression obtained for vm [Eqn. (3.49)] it is possible to

arrive to the final equation for αp [Eqn. (3.52)]

∂

∂t
(αp) +

∂

∂z

[
vrc
(
αp − α2

p

)
(1− αp)a

]
= 0 (3.52)

Once again it required the selection of a law for vpq based on the physics

of the problem; in this case the model law for the relative velocity was used,

vpq = vrc (1− αp)a. The final expression of the αp equation is a non-linear

hyperbolic equation. The solution of this equation strongly depends on the

definition of the flux; in this case, it reads [Eqn. (3.53)]

F (αp) = vrc
(
αp − α2

p

)
(1− αp)a (3.53)

The existence of different kinds of waves in the solution leads to deal with

one or more Riemann problems and requires appropriate methods for solving

them (LeVeque, 2002; Toro, 2009). As is shown, the flux does not depends
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explicitly on the physical parameters. The physics is included in the definitions

of vrc and the exponent a.

Determination of the pressure

Finally, the pressure of the problem is obtained integrating the momentum

equation [second equation in Eqn. (3.40)], that after reordering reads as in

Eqn. (3.54)

∂

∂z
p = − ∂

∂t
(ρmvm)− ∂

∂z
(ρmvmvm)− ∂

∂z

[
ρmcp (1− cp) v2

pq

]
+ ρm g (3.54)

Determination of the front velocities

In addition to the semi-analytical solution obtained, two other valuable results

can be obtained by the application of the Rankine-Hugoniot conditions (jump

conditions) (LeVeque, 2002) in the system given by Eqn. (3.40). Therefore,

applying the jump condition at each front (see Figure 3.3) it gives which is

shown in Eqns. (3.55)-(3.56)



(ρ0
m − ρp) a′ = ρ0

mvm − ρpv+
m

(−ρpv+
m + ρmvm) a′ = ρ0

mv
2
m + [p]a − ρmcp (1− cp) v2

pq − ρp (v+
m)

2

(
α0
p − 1

)
a′ = αp

[
vm + (1− cp) v0

pq

]
− v+

m

(3.55)

where a′ is the velocity of the top front, and

(ρq − ρ0
m) b′ = −ρ0

mvm

−ρ0
mvm b

′ = −ρ0
mv

2
m + [p]b + ρmcp (1− cp) v2

pq

b′ = vm + (1− cp) v0
pq

(3.56)

where b′ is the velocity of the bottom front. Next, working with the first and
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third equations of (3.56) it is possible to isolate the velocity of the bottom

front, which is shown in Eqn. (3.57)

b′ =
(
1− α0

p

)
v0
pq (3.57)

In the same way, working with the first and third equation of Eqn. (3.55)

it is possible to isolate the value of a′, which is given in Eqn. (3.58).

a′ = −α0
p v

0
pq (3.58)

Finally, the complete solution procedure for the 1D sedimentation case is

sketched in Algorithm 3. This solution is complemented by the front velocities

given by Eqns. (3.57)-(3.58).

Algorithm 3 Steps for semi-analytical solution

1. Solve the hyperbolic partial differential equation for αp:

∂

∂t
(αp) +

∂

∂z

[
vrc
(
αp − αp2

)
(1− αp)a

]
= 0

2. Find the mixture velocity, vm using αp and the physical parameters

vm = αp

(
ρp
ρm
− 1

)
vpq

3. Finally, obtain the pressure integrating the momentum balance

∂

∂z
p = − ∂

∂t
(ρmvm)− ∂

∂z
(ρmvmvm)− ∂

∂z

[
ρmcp (1− cp) vpq2

]
+ ρm~g

Velocity solution in terms of center-of-volume velocity

The expression found for the center of mass velocity can be translated into

center of volume terms. Starting from Eqn. (3.49) and writing it in terms

of the primary phase void fraction, αq, and the primary to secondary phase

relative velocity, ~vqp it reads as in Eqn. (3.59)
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vm = αp

(
ρp
ρm
− 1

)
vpq = − (1− αq)

(
ρp
ρm
− 1

)
vqp (3.59)

Now, using the relationship between vm and u given by Eqn. (3.31), Eqn.

(3.60) is obtained

vm = − (1− αq)
(
ρp
ρm
− 1

)
vqp = u+ αq (1− αq)

ρq − ρp
ρm

vqp (3.60)

Finally, isolating u it results to have the value u = 0. Therefore, the

primary phase conservation equation [Eqn. (3.39)] now reads as in Eqn. (3.61)

∂αq
∂t

+ ~∇ · [αq (1− αq) ~vqp] = 0 (3.61)

This formulation resembles the theory of sedimentation of Kynch (Kynch,

1952; Bürger and Wendland, 2001) which is based on the solution of the Drift-

Flux Model in a quiescent pool with either bubbles or sediments and using

proper flux functions (Wallis, 1969; Nigam, 2003; Pilon and Viskanta, 2004).

3.3.2 One dimensional analytic solutions for the equa-

tion for αp

As was shown in Algorithm 3, the first step to find semi-analytic solutions

for 1D sedimentation is the solution of the mass conservation equation for the

secondary phase [Eqn. (3.52)]. Then, recalling this equation

∂

∂t
(αp) +

∂

∂z

[
vrc
(
αp − α2

p

)
(1− αp)a

]
= 0

it is necessary to revise some concepts on hyperbolic systems. As was stated in

Section 3.2.2, the kind of solution of these equations relies on the type of flux,

convex or non-convex, and the initial and boundary conditions. In the case

of a = 0, i.e. a constant relative velocity is used in the flux function, the flux

becomes which is shown in Eqn. (3.62)

F = vrc
(
αp − α2

p

)
= vrc (1− αp)αp (3.62)
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which is a convex flux function (see Figure 3.4, continue line). If a = 1 the flux

is non-convex with a flux function given by Eqn. (3.63)

F = vrc
(
αp − α2

p

)
(1− αp) (3.63)

which is shown in Figure 3.4 with a dashed line.

Figure 3.4: Shape of fluxes for αp equation. convex flux, non
convex flux.

The Riemann problem for αp equation

Many of the numerical methods for the solution of hyperbolic equations are

based on the Riemann problem given at the interface of two cells. In general

the Riemann problem for a model equation with convex flux reads as in Eqn.

(3.64)

PDE : ∂
∂t

(u) + ∂
∂z
v0 (1− u) u = 0

IC : u (z, 0) =

{
uL, z < 0

uR, z > 0

 (3.64)

where PDE indicates the partial differential equation which is being solved

and IC the particular initial conditions set for the case. In the solution of this
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problem, since its has only one curvature, the discontinuities present are single

waves in the form of shock waves, rarefaction waves and transonic rarefaction

waves. In the case of non-convex fluxes compound waves can be present like

the shock-rarefaction waves. The admissibility condition for shock waves in the

general case of a non-convex flux is given by an extension of the Lax Entropy

Condition given by Oleinik (LeVeque, 2002) and recalled in the definition 3.3.1.

Entropy condition (Oleinik) 3.3.1. A weak solution u(z, t), is the vanishing-

viscosity solution to a general scalar conservation law if all discontinuities have

the property that

F (u)− F (uL)

u− uL
> s >

F (u)− F (uR)

u− uR
(3.65)

for all u between uL and uR.

Therefore, the solution of the problem depends on the values of the initial

states uL and uR presenting the following cases:

1. If uL < uR, Figure 3.5.a) left, the entropy condition is fulfilled and the

the solution is a shock wave traveling to the right, see Figure 3.5.1. This

proposition can be checked graphically since the slope of the flux for the

left point is always bigger than s and the slope of the flux for the right

point. Then, the solution of the problem is: u (0, t) = uL.

2. If uL > uR, Figure 3.5.a) right, the solution is also a shock, but traveling

to the left, see Figure 3.5.2. Then, the solution of the problem is: u (0, t) =

uR.

3. If uR < uL < us, Figure 3.5.b) left, the entropy condition is not fulfilled

so a rarefaction wave is present. Since the speed of the right characteristic

is greater than the left characteristic, the rarefaction wave travels to the

right as in Figure 3.5.3. The solution of the problem is: u (0, t) = uL.

4. If us < uR < uL, Figure 3.5.b) right, the entropy condition is not fulfilled

so a rarefaction wave is present. Since the speed of the left characteristic

is greater than the right characteristic the rarefaction wave travels to the

left as in Figure 3.5.4. The solution of the problem is: u (0, t) = uR.
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5. If uR < us < uL, Figure 3.5.c), the entropy condition is not fulfilled so

a rarefaction wave is present in the form of a fan. Since the fan crosses

the stagnation point us the solution of the problem is: u (0, t) = us, as is

shown in 3.5.5.

The analysis for the opposite curvature is similar. In the case of non-convex

fluxes the waves present are a combination of the single waves shown. Now it

is possible to obtain the analytical solutions for different Riemann problems

involving the αp equation.

a) b) c)

1

2

3
4

1 432 5

5

Figure 3.5: Riemann problem solutions for a convex flux. 1, right going shock; 2,
left going shock; 3, right going rarefaction; 4, left going rarefaction; 5, transonic
rarefaction.

Convex flux

In the case of convex flux the flux function is the same of the model problem

(compare Figure 3.4 with 3.5), so the solutions follow directly the rules previously

presented. The equation to be solved reads [Eqn. (3.66)]:

∂
∂t

(αp) + ∂
∂z
{αp [vrc (1− αp)]} = 0 (3.66)

where F (αp) = αp [vrc (1− αp)].

Márquez Damián, Santiago     - 2013 -



3.3. 1D SIMPLIFIED FORMULATION 67

In order to explore some of the presented cases, two problems will be solved:

a) IC :αp (z, 0) =

{
αpL = 0.6, z < 0.5

αpR = 0.7, z > 0.5
with zero flux at boundaries. Since

the walls are impermeable the total quantity of αp must remain constant.

Due to this and that the advective velocity vrc (1− αp) is always positive,

αp is moved from left to right. Then αp reaches zero at the left and one at

the right forming two new Riemann problems being three in total. From left

to right they are, αpL = 0 αpR = 0.6, αpL = 0.6 αpR = 0.7 and αpL = 0.7

αpR = 1. Using the information given in the beginning of the section, the

expected waves are a right going shock, a left going rarefaction and a left

going shock, which can be observed in Figure 3.6.a).

b) IC :αp (z, 0) =

{
αpL = 0.7, z < 0.5

αpR = 0.5, z > 0.5
with zero flux at boundaries. In

this case there are four Riemann problems in total. From left to right they

are, αpL = 0 αpR = 0.7, αpL = 0.7 αpR = 0.5, αpL = 0.5 αpR = 0.5 and

αpL = 0.5 αpR = 1. Using the information given in the beginning of the

section the expected waves are a right going shock, a left going rarefaction

and a stationary zone due to αp = 0.5 matches the sonic point and a left

going shock, which can be observed in Figure 3.6.b).

Non convex flux

As was stated, when a non convex flux is present compound waves can be

formed. To this end it is necessary to analyze the flux more deeply taking

information from its first derivative. As is shown in Figure 3.7 the first

derivative of the flux has a minimum, therefore the convexity changes from a

concave flux to a convex flux. In this case taking the Riemann problem with

initial conditions given by:

IC :αp (z, 0) = 0.3

and the flux function resulting from a linear law for the relative velocity [see

Eqn. (3.63)] which recalled as follows
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Figure 3.6: Riemann problem solutions for a convex flux for given states, a)
uL = 0.6, uR = 0.7, b) uL = 0.7, uR = 0.5 along the time, 0.2,
0.4, 0.6, presenting different kind of waves, 1) right going shock, 2) left
going shock, 4) left going rarefaction and 5) stationary point due to sonic point
crossing. Right going rarefaction is not presented.
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F = vrc
(
αp − α2

p

)
(1− αp)a

which is similar to the test proposed by Nigam (Nigam, 2003). Again, due to

the convective velocity is always positive, αp is transported from left to right

giving place to two Riemann problems αp (z, t) =

{
αpL = 0, z < s1 t

αpR = 0.3, z > s1 t
and

αp (z, t) =

{
αpL = 0.3, z < 1− s2 t

αpR = αpFAN, z > 1− s2 t
. In Figure 3.7, the evolution goes

through αp = 0, αp = 0.3 and αp = 1 crossing the tangency point αp ∼= 0.87.

The first change (1) from αp = 0 to αp = 0.3 evolves as a right going shock,

the second change (6) has to be divided in two jumps, the first from αp = 0.3

to αp ∼= 0.87 and the second from αp ∼= 0.87 to αp = 1. The paths drawn

by straight lines corresponds to shocks and the paths that follow the flux

graph are rarefactions. Therefore, the second change is a shock and then a

rarefaction, or naming it in the direction of wave’s velocity a rarefaction-shock.

The shaded zone is the so-called upper convex hull. The analytical solution of

this problem is shown Figure 3.8 for two different times. There it is clearly seen

the structure of the waves, note that the fan at right evolves from αp ∼= 0.87

to αp = 1.

Then, having the solution for αp, and applying the remain steps of Algorithm

3 it is possible to find vm and p as well. For example, in the case of the non-

convex flux they are presented in Figures 3.9-3.10.
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Figure 3.7: Riemann problem solutions for a non convex flux. 1, Right going
shock; 6, left going rarefaction-shock. flux, flux derivative.

Figure 3.8: Riemann problem solutions for a non convex flux with initial
condition αp = 0.3 at time 0.5 and 1.
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Figure 3.9: Mean velocity, vm, profiles corresponding αp distributions in previ-
ous figure at time 0.5 and 1.

Figure 3.10: Pressure, p, profiles corresponding αp and vm distributions in
previous figures at time 0.5 and 1.
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Chapter 4

Numerical solutions for the

phase fraction equation

4.1 Introduction

As was stated in Section 3.2.2, the solution of the dynamics of the dispersed

phase has a principal role in the solution of the multiphase systems. Due to the

hyperbolicity of the secondary phase fraction equation, the numerical method

selected for its solution has to be capable to capture shocks, rarefactions and

compound waves. To this end two techniques has been selected. First, a

Riemann-free solver and second a TVD scheme, both with Flux Corrected

Transport limiting to avoid spurious unboundedness.

Thus, the purpose of this chapter is to develop a new Riemann-free solver

derived from the Kurganov and Tadmor (KT) (Kurganov and Tadmor, 2000)

scheme capable to use the face flux given at faces and obtained in the pressure-

velocity coupling loop (PISO). This face flux is a part of the total flux of the

phase fraction transport equation. In this way the KT scheme is adapted to a

cell-centered FVM discretization framework based on flux conservation. The

integration of the transport equation is done by means of a modified FCT

technique where no local extrema is taken into account. The same technique is

used for the limiting of the fluxes obtained by the TVD schemes. Both methods

73
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have multidimensional extension which is explained as well.

4.2 A Riemann-free solver with centered flux

4.2.1 First order Kurganov and Tadmor scheme

As an introduction for the presentation of the new central scheme, the derivation

of the fully discrete first order Kurganov and Tadmor (KT) scheme will be

recalled. This scheme relies on a stabilization for the advective terms based on

the local speeds of wave propagation, which for the most practical applications

can be defined as in Eqn. (4.1).

anj+1/2 := max

{
ρ

(
∂F

∂u

(
uj+1/2,l

))
, ρ

(
∂F

∂u

(
uj+1/2,r

))}
(4.1)

where ρ is the spectral radius of the ∂F
∂u

matrix at each side of a face. The

first step is to integrate over intervals placed around the cell interfaces; these

integration intervals are delimited by long-dashed lines in Figure 4.1. The

obtained value depends on the side faces’ values and the weighting factors are

given by the local speeds. If the local speeds indicate that the information

comes, for example, from the upwind cell then the integrating interval will be

biased in such direction; if the information comes from upwind and downwind

direction the interval will be extend along both sides of the interface. The

integration procedure gives the values of the wn+1 function from the original

solution values un. Here it is important to note that the wn+1 values are

placed at the interfaces and not in the original cell centers leading to a

staggered mesh; this idea is exploited by the Nessyahu and Tadmor (Nessyahu

and Tadmor, 1990) scheme. This staggered solution is not convenient since

requires working with two meshes and leads to a more dissipative solution

(Kurganov and Tadmor, 2000), therefore, a new integration is done through a

w̃n+1 function, defined over the j-th cell and its neighbors. The boundaries of

the cells of this intermediante mesh are defined by the influence zone of the

local speeds, as is shown with dash-dotted line in Figure 4.1. As a result of

this last integration the time updated values of un are found as un+1. The

Márquez Damián, Santiago     - 2013 -



4.2. A RIEMANN-FREE SOLVER WITH CENTERED FLUX 75

figure also includes a centered volumetric flux, vc, given at the interfaces; the

meaning of this flux will be explained later.

Thus, the first step for the construction of the KT scheme is to integrate

over the intervals [xnj+1/2,l, x
n
j+1/2,r] × [tn, tn+1] (See Figure 4.1), where the

extrema of the spatial interval are defined as: xnj+1/2,l := xj+1/2− anj+1/2∆t and

xnj+1/2,r := xj+1/2 + anj+1/2∆t. Then, if ∆xj+1/2 := xnj+1/2,r − xnj+1/2,l denotes

the width of the Riemann fan originated at xj+1/2; the average of u within this

interval is given by Eqn. (4.2):

Figure 4.1: Central differencing scheme using given centered flux at faces
[Adapted from (Kurganov and Tadmor, 2000)]
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wn+1
j+1/2 = 1

∆xj+1/2

xnj+1/2,r∫
xn
j+1/2,l

u
(
ξ, tn+1

)
dξ

=
unj +unj+1

2
+

∆x−anj+1/2∆t

4

[
(ux)

n
j − (ux)

n
j+1

]

− 1
2an
j+1/2

∆t

tn+1∫
tn

{
F
[
u
(
xnj+1/2,r, τ

)]
− F

[
u
(
xnj+1/2,l, τ

)]}
dτ

(4.2)

where ξ is the spatial coordinate within the spatial integration interval, τ

is the temporal variable within the temporal integration interval and F is

the flux through the boundaries of the integration interval. Similarly taking

∆xj := xnj+1/2,l − xnj−1/2,r = ∆x − ∆t(anj−1/2 + anj+1/2) which is the width of

the strip around xj where there is no influence of the Riemann fans from

neighbouring points, the average is given by Eqn. (4.3)

wn+1
j = 1

∆xj

xnj+1/2,l∫
xn
j−1/2,r

u
(
ξ, tn+1

)
dξ

= unj + ∆t
4

(
anj−1/2 − anj+1/2

)
(ux)

n
j

− 1
2a∆xj

tn+1∫
tn

[
F
(
u
(
xnj+1/2,l, τ

))
− F

(
u
(
xnj−1/2,r, τ

))]
dτ

(4.3)

Finally, using the midpoint rule it is possible to approximate the integrals

over the flux in Eqns. (4.2-4.3) giving the desired cell averages at t = tn+1 in

Eqn. (4.4)
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wn+1
j+1/2 =

unj +unj+1

2
+

∆x−anj+1/2∆t

4

[
(ux)

n
j − (ux)

n
j+1

]
− 1

2an
j+1/2

[F(u
n+1/2
j+1/2,r)− F(u

n+1/2
j+1/2,l)]

wn+1
j = unj + ∆t

2

(
anj−1/2 − anj+1/2

)
(ux)

n
j

− λ
1−λ(an

j−1/2
+an

j+1/2
)
[F(u

n+1/2
j+1/2,l)− F(u

n+1/2
j−1/2,r)]

(4.4)

where λ = ∆t/∆x. Now, it is necessary to evaluate u
n+1/2
j+1/2,l and u

n+1/2
j+1/2,r. This

goal is achieved by a Taylor expansion giving the results presented in Eqn.

(4.5)

u
n+1/2
j+1/2,l := unj+1/2,l −

∆t
2

F(unj+1/2,l)x

u
n+1/2
j+1/2,r := unj+1/2,r −

∆t
2

F(unj+1/2,r)x

(4.5)

where unj+1/2,l = unj + ∆x(ux)
n
j

(
1/2− λ anj+1/2

)
and unj+1/2,r = unj+1 −

∆x(ux)
n
j+1

(
1/2− λ anj+1/2

)
. At this point, the function u has evolved in time

to the approximate cell averages wn+1
j+1/2, wn+1

j which are located in a new stag-

gered mesh. In order to obtain a solution over the original mesh the solution is

newly averaged using a piecewise-linear reconstruction w̃(x, tn+1) based on the

w’s (See Figure 4.1, dash-dotted line). This reconstruction is defined by Eqn.

(4.6)

w̃(x, tn+1) :=
[
wn+1
j−1/2 + (ux)

n+1
j−1/2(x− xj−1/2)

]
1[xn

j−1/2,l
,xn
j−1/2,r

]+

wn+1
j 1[xn

j−1/2,r
,xn
j+1/2,l

]+

[
wn+1
j+1/2 + (ux)

n+1
j+1/2(x− xj+1/2)

]
1[xn

j+1/2,l
,xn
j+1/2,r

]

(4.6)

where 1[x1,x2] is the indicator function which has a value of 1 within the interval

given in the sub-index and zero otherwise and the required (ux)
n+1
j−1/2, (ux)

n+1
j+1/2
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slopes are given by a TVD limiter. The original KT scheme uses MinMod as

the limiter. Therefore, doing the average as shown in Eqn. (4.7)

un+1
j = 1

∆x

xj+1/2∫
xj−1/2

w̃(ξ, tn+1) dξ =
1

∆x

{
∆xj

[
wn+1
j

]
+ ∆xj+1/2

[
wn+1
j+1/2+

(ux)
n+1
j+1/2(x− xj+1/2)

]
+ ∆xj−1/2

[
wn+1
j−1/2 + (ux)

n+1
j−1/2(x− xj−1/2)

]}

(4.7)

and re-arranging it finally gives Eqn. (4.8)

un+1
j = λ anj−1/2w

n+1
j−1/2 +

[
1− λ(anj−1/2 + anj+1/2)

]
wn+1
j + λ anj+1/2w

n+1
j+1/2+

∆x
2

[
(λanj−1/2)2(ux)

n+1
j−1/2 − (λanj+1/2)2(ux)

n+1
j+1/2

]
(4.8)

This final expression is known as the Kurganov and Tadmor fully discrete

second order scheme. The piecewise reconstruction used ensures the obtained

second-order accuracy. If constant values are used by cell it reduces the order

of the scheme to first-order accuracy. This kind of scheme is obtained setting

(ux)
n
j , (ux)

n+1
j−1/2 and (ux)

n+1
j+1/2 as zero in Eqn. (4.7) and its form is given in Eqn.

(4.9)

un+1
j = unj − λ

2

[
F(unj+1)− F(unj−1)

]
+

1
2

[
λanj+1/2(unj+1 − unj )− anj−1/2(unj − unj−1)

] (4.9)

This scheme was originally attributed to Rusanov. Even though it is a first

order accurate it has a simple form and is useful for implementation checks in

high order schemes.
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4.2.2 KT as a MUSCL based scheme

In order to give a multidimensional extension of the KT derived schemes

is worthy to write these kind of schemes as a Monotone Upstream-centered

Scheme for Conservation Laws (MUSCL) based scheme (van Leer, 1979)1.

The MUSCL schemes are based in the idea of flux balances, where the fluxes

at faces are calculated on the base of reconstructed values. Therefore, it is

then necessary to find the expression of these fluxes. Starting with a general

hyperbolic equation as in Eqn. (4.10)

∂u

∂t
+
∂F

∂x
= 0 (4.10)

the semi-discrete form can be written as in (4.11)

∂ui
∂t

= − 1

∆x

[
F
(
u∗i+1/2

)
− F

(
u∗i−1/2

)]
(4.11)

where F
(
u∗i±1/2

)
are the numerical inter-cell fluxes. These fluxes are calculated

using u∗ face values reconstructed from cell-centered values. Such a reconstruc-

tion is a non-linear combination of first and second reconstruction schemes

given by a TVD function. Recalling the semi-discrete form of the KT scheme

it reads (see Eqn. 4.12)

∂uj
∂t

= − 1
2∆x

{
F
[
u+
j+1/2(t)

]
+F
[
u−j+1/2(t)

]}
−
{

F
[
u+
j−1/2(t)

]
+F
[
u−j−1/2(t)

]}
+ 1

2∆x

{
aj+1/2(t)[u+

j+1/2(t)− u−j+1/2(t)]− aj−1/2(t)[u+
j−1/2(t)− u−j−1/2(t)]

}
(4.12)

where u± represent the values of u at each side of a cell face. This expression

reduces to Eqn. (4.9) if constant values by cell are used. Comparing Eqn.

(4.11) and Eqn. (4.12) it follows that the numerical fluxes F
(
u∗i±1/2

)
are given

by Eqn. (4.13)

1Some parts of the presentation follow the notation and concepts given in http://en.

wikipedia.org/wiki/MUSCL_scheme (Visited June 12th, 2012)
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F
(
u∗i±1/2

)
=

F(u+
j±1/2(t)) + F(u−j±1/2(t))

2
−
aj±1/2(t)

2

[
u+
j±1/2(t)− u−j±1/2(t)

]
(4.13)

where the reconstructed values at faces u±j+1/2 are given by Eqn. (4.14)

u+
j+1/2 := uj+1(t)− ∆x

2
(ux)j+1(t), u−j+1/2 := uj(t) +

∆x

2
(ux)j(t) (4.14)

Recalling the theory given in Section 2.5 and setting the owner cell P = j,

the neighbour cell N = j + 1 and second neighbour cell as j+2, Eqn. (4.14)

can be written in TVD form as in Eqn. (4.15)

u+
j+1/2 := uj+1 − 1

2
ψ(rj+1, t) (uj+2(t)− uj+1(t)),

u−j+1/2 := uj + 1
2
ψ(rj, t) (uj+1(t)− uj(t))

(4.15)

where ψ(rj, t) is the Sweby function for a given limiter. Again, the order of

this MUSCL based scheme is given by the kind of reconstruction used to find

the face values.

4.2.3 A Riemann-free solver with given centered flux at

faces

Having in mind the basic concepts about the KT scheme and its derivation it

is possible to propose a scheme for a slightly different flux. This new kind of

flux is presented in Eqn. (4.16)

F(u(x, t)) = F(u, t)R + vc(u(x, t))u(x, t) (4.16)

The part of the flux given by F(u, t)R is calculated as usual, it is, using

the flux function given in the hyperbolic equation. The other one is based

on a volumetric flux precomputed at faces, vc, and added as vc(u(x, t))u(x, t).

The necessity of this kind of fluxes is a key concept in the construction of

conservative incompressible solvers. In these solvers part of the flux is usually
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given at faces by the pressure-velocity coupling loop and not calculated explicitly

by the hyperbolic flux function. The flux at faces could be also reconstructed

from the cell-centered velocity, but this method is not conservative. Then, in

order to derive a scheme with this kind of flux included it is necessary to find

the averages over the staggered mesh as is done in Eqn. (4.17) in the same

way than the original method.

wn+1
j+1/2 =

unj +unj+1

2
+

∆x−anj+1/2∆t

4

(
(ux)

n
j − (ux)

n
j+1

)
− 1

2an
j+1/2

{
[FR(u

n+1/2
j+1/2,r)− FR(u

n+1/2
j+1/2,l)]+

[v
n+1/2
c,j+1/2,r u

n+1/2
j+1/2,r − v

n+1/2
c,j+1/2,l u

n+1/2
j+1/2,l]

}
wn+1
j = unj + ∆t

2

(
anj−1/2 − anj+1/2

)
(ux)

n
j

− λ
1−λ(an

j−1/2
+an

j+1/2
)

{
[FR(u

n+1/2
j+1/2,l)− FR(u

n+1/2
j−1/2,r)]+

[v
n+1/2
c,j+1/2,l u

n+1/2
j+1/2,l − v

n+1/2
c,j−1/2,r u

n+1/2
j−1/2,r]

}

(4.17)

Now, considering a linear variation of the flux along the cells (see Figure

4.1) it is possible to find the values of the centered flux at the end of local

speed influence zones as in Eqn. (4.18)

v
n+1/2
c,j+1/2,r := vnc,j+1/2 +

vnc,j+3/2−v
n
c,j+1/2

∆x
anj+1/2 ∆t

v
n+1/2
c,j+1/2,l := vnc,j+1/2 −

vnc,j+1/2−v
n
c,j−1/2

∆x
anj+1/2 ∆t

v
n+1/2
c,j−1/2,r := vnc,j−1/2 +

vnc,j+1/2−v
n
c,j−1/2

∆x
anj−1/2 ∆t

v
n+1/2
c,j−1/2,l := vnc,j−1/2 −

vnc,j−1/2−v
n
c,j−3/2

∆x
anj−1/2 ∆t

(4.18)

Using the expression in Eqn. (4.18) in Eqn. (4.17) and doing the recon-
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struction of face values with zero slope (first order scheme reduction) the final

average values at the staggered mesh are found [see Eqn. (4.19)]

wn+1
j+1/2 =

unj +unj+1

2
− 1

2 aj+1/2n
[FR(unj+1)− FR(unj )]− unj+1−unj

2 aj+1/2n
vnc,j+1/2

(1− λ aj+1/2)− λ
2
[vnc,j+3/2u

n
j+1 − vnc,j−1/2u

n
j ]

wn+1
j = unj − unj λ [vnc,j+1/2 − vnc,j−1/2]

wn+1
j−1/2 =

unj +unj−1

2
− 1

2 aj−1/2n
[FR(unj )− FR(unj−1)]− unj −unj−1

2 aj−1/2n
vnc,j−1/2

(1− λ aj−1/2)− λ
2
[vnc,j+1/2u

n
j − vnc,j−3/2u

n
j−1]

(4.19)

where the value of wn+1
j−1/2 has been also calculated. Finally using these ex-

pressions in Eqn. (4.8) and doing several algebraic steps, the form of the new

scheme is obtained in Eqn. (4.20)

un+1
j = unj − λ

2

[
FR(unj+1)− FR(unj−1)

]
+

1
2

[
λanj+1/2(unj+1 − unj+1)− anj−1/2(unj − unj−1)

]
−

λ
2
vnc,j+1/2 (unj+1 + unj ) + λ

2
vnc,j−1/2 (unj + unj−1)+

λ2

2

{
anj+1/2 [(vnc,j+1/2 − vnc,j−1/2)unj − (vnc,j+3/2 − vnc,j+1/2)unj+1+

anj−1/2 [(vnc,j+1/2 − vnc,j−1/2)unj − (vnc,j−1/2 − vnc,j−3/2)unj−1+
}

(4.20)

Checking the obtained expression it is clear that the first three terms

correspond to the Rusanov scheme [Eqn. (4.9)], the fourth one is the centered

flux balance in the j-th cell. The final term deserves a discussion. It is

proportional to λ2 = ∆t2/∆x2 and to a vc. Both a and vc have units of velocity,
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then, writing all together it reads ∆t2 v2/∆x2 ≡ Co2, where v is of the same

order that the advective velocity. Then, if due to stability reasons the Courant

number is such that Co � 1 this term is proportional to Co2 � 1, so it is

neglected.

4.2.4 Multidimensional extension

The multidimensional extension of the proposed Riemann-free solver with

centered flux is based on the work of Greenshields et al. (Greenshields et al.,

2010). Recalling the discretization of the convective term in the generalized

transport equation [Eqn. (2.18)] it reads as in Eqn. (4.21)∫
Γ

~v φ · ~dΓ =
∑
f

φf

(
~vf · ~Sf

)
=
∑
f

Ffφf =
∑
f

Ff (4.21)

where φf is the face interpolated value obtained, in general, by some TVD

method as was presented in Section 2.5 according to the direction given by the

advective field. The total flux at faces Ff has the same meaning that in the

MUSCL schemes; it is a total face flux calculated from reconstructed values

of u at faces. This flux has to be calculated in any faces of the polyhedral

cell. As was presented, the KT methods are based in face reconstructed values

at both sides of a face and the information given by the eigenvalues or local

speeds. In a polyhedral mesh this reconstruction is then done face-by-face in a

fully multi-dimensional framework. The interpolation procedure is split in two

directions according to the direction given by the face area vector ~Sf ; the f+

direction coincides with ~Sf and the opposite case with the f− direction as is

shown in Figure 4.2. Then, the KT methods can be written as in Eqn. (4.22)

∑
f

Ff =
∑
f

[
1

2
Ff+ +

1

2
Ff− +

1

2
af (φf+ − φf−)

]
(4.22)

where af are the local speeds at faces in the sense of KT [see Eqn. (4.1)]. These

local speeds are calculated as face fluxes in a multidimensional framework as

in Eqn. (4.23)
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af = max

{∣∣∣∣∣ρ
(
∂F

∂φ

)
f+

· ~Sf

∣∣∣∣∣ ,
∣∣∣∣∣ρ
(
∂F

∂φ

)
f−
· ~Sf

∣∣∣∣∣
}

(4.23)

Figure 4.2: Scheme of face values reconstruction in a multidimensional frame-
work

Finally, it is necessary to define the flux Ff in terms of the reconstructed

flux FR and the centered flux given at faces Fc = vc · ~Sf as in Eqn. (4.16),

which leads to Eqn. (4.24)

∑
f Ff =

∑
f

[
1
2

(
FR
f+ + Fc φf+

)
+ 1

2

(
FR
f− + Fc φf−

)
+ 1

2
af (φf+ − φf−)

]
=
∑

f

[
1
2

(
FR
f+ + FR

f−
)

+ 1
2
Fc (φf+ + φf−) + 1

2
af (φf+ − φf−)

]
(4.24)

This expression can be compared to the 1D dimensional zero slope form

given in Eqn. (4.20). Therefore, the explicit integration of the model hyperbolic

equation results to be which is shown in Eqn. (4.25)

φn+1 = φn − 1

2

∆t

V

∑
f

[(
FR,n
f+ + FR,n

f−

)
+ F n

c

(
φnf+ + φnf−

)
+ af

(
φnf+ − φnf−

)]
(4.25)
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4.3 TVD-FCT method

The integration of the hyperbolic model equation by means of the TVD-FCT

method relies on the concepts given in Section 2.6. Thus, starting from the

mass conservation for the q phase, Eqn. (4.26), it reads

∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

which reads in semi-discretized form as in Eqn. (4.26)

∂αq
∂t

+
∑
f

(αq~u)f · ~Sf +
∑
f

[αq (1− αq) ~vqp]f · ~Sf = 0 (4.26)

This equation can be re-written in terms of two face fluxes as in Eqn. (4.27)

∂αq
∂t

+
∑
f

(αq)
L
f Ff +

∑
f

(αq)
NL
f FNL

f = 0 (4.27)

where Ff = ~uf · ~Sf is the face flux of the linear term, and FNL
f the face flux

of the non-linear term with their respective values of the unknown at faces,

(αq)
L
f and (αq)

NL
f . The TVD-FCT method requires the construction of the FH ,

the high order flux; in the construction the user can choose the interpolation

method for (αq)
L
f and (αq)

NL
f meanwhile the faces fluxes are calculated by

means for linearly interpolated values. Once the flux is limited the unknown is

advanced in time by the usual explicit method.

Another important topic to address in the solution of this kind of equation

via FCT is the selection of the maxima. As was previously presented a

solution of the αq which starts having a constant value can evolve having new

minima and maxima (see Figure 3.8 for an example); this behavior violates

the hypothesis of classical FCT limiters since they inspect each cell neighbours

looking for local extrema (see Algorithm 1). In this case the obtained solutions

are wrong and have a wave steepening effect (Nigam, 2003). The solution is

simple and relies on taking into account only the global maxima as in Eqn.

(4.28)
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
αai = αmaxG

αbi = αminG
(4.28)

Thus, the FCT has been reduced to a way to avoid going beyond the global

extrema; the resolution necessary for shock waves is then achieved by the TVD

reconstruction used for the flux.
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Chapter 5

Volume of Fluid Method

5.1 Introduction

As was stated in Chapter 1, the Volume of Fluid method is the selected

technique for the treatment of the long scale interface. The VOF method

can be classified as a Surface Capturing technique which implies that the

free-surface is not exactly tracked by the mesh like in Surface Tracking

methods, but its position is approximated by a phase fraction function (Carrica

et al., 2006). In this sense the phase fraction function plays the same role as

in ASMM. This similarity can be exploited in view of the unified framework

needed for and extended mixture model.

Therefore, this chapter is devoted to show the derivation of the VOF method

from the ASMM which sets a difference respect to the original approach given

by Hirt & Nichols (Hirt and Nichols, 1981) in the presentation of the method.

This derivation allows to understand the similarities between both methods

and the potential for an unified framework and solver. Then, the algorithm for

the VOF solver included in OpenFOAMR© is explained and two academic cases

such as the Rayleigh-Taylor instability and the Dam Break problem are solved.

The solution of these problems allows to see how the numerical problem is set

in a multi-phase case, by means of the initial and boundary conditions, the

numerical settings and mesh details.

87
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5.2 Derivation of VOF from ASMM

The derivation of the VOF method starts recalling the center-of-volume formu-

lation of the ASMM as in Eqn. (3.39) and rewritten in Eqn. (5.1)



~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
+

ρm~g − ~∇ ·
[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(5.1)

A main difference between ASMM and the VOF method is that the VOF

method considers a continuous velocity field along all the interfaces which is

consistent with the interface boundary conditions given by the physics of fluids.

This is possible since all the interfaces are supposed to be resolved at DNS

scale. This hypothesis implies that the relative velocity between phases is null,

~vqp = 0. Thus, recalling the relationship between the center-of-mass velocity,

~vm and the center-of-volume velocity, ~u given by Eqn. (3.31) the result is given

by Eqn. (5.2)

~vm = ~u+ αq (1− αq)
ρq − ρp
ρm

~vqp = ~u+ αq (1− αq)
ρq − ρp
ρm

0 = ~u (5.2)

By inspection of the momentum equation given in the system of Eqn. (5.1)

it is clear that the drift tensor τD = αq (1− αq) ρq ρp
ρm

~vqp ⊗ ~vqp is also null. In

addition the possibility of capturing long-scale interfaces allows to model the

effects of the surface tension, which is achieved by the Continuum Surface

Model (CSF) (Brackbill et al., 1992) which adds the term given in Eqn. (5.3)

~Fσ = σκ~∇αq (5.3)
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where κ is the mean curvature of the free surface which is given by Eqn. (5.4)

κ = ~∇ ·

 ~∇αq∣∣∣~∇αq∣∣∣
 (5.4)

In order to give stability to the solution and to simplify the definition of

boundary conditions (Berberovic et al., 2009) the treatment of the pressure is

done using the modified pressure prgh defined in Eqn. (5.5)

prgh = p− ρm~g · ~x (5.5)

where ~x is the position vector. Thus, the pressure gradient is then expressed

as in Eqn. (5.6)

− ~∇p = −~∇prgh − ~g · ~x~∇ρm − ρm ~g (5.6)

regrouping terms the Eqn. (5.7) is obtained

− ~∇p+ ρm ~g = −~∇prgh − ~g · ~x~∇ρm (5.7)

which allows to replace the pressure gradient and gravity terms in the second

equation of Eqn. (5.1) by a function of the modified pressure. Finally it is

important to note that the third equation of Eqn. (5.1) can be also simplified

since the nonlinear term is zero due to the null relative velocity ~vqp. This term

is deliberately included in the formulation with the aim of compressing the

interface. It is worthy to note that since in VOF method αq is expected to

be always valued 0 or 1 except for the interfaces this term acts only on this

place (Berberovic et al., 2009; Rusche, 2002; OpenCFD, 2005; Weller, 2008)

and vanishes otherwise, then the original formulation for VOF is recalled in

general and the non-linear term is used only at interface zones. Thus, the

solved system reads as in Eqn. (5.8)
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

~∇ · ~u = 0

∂
∂t

(ρm~u) + ~∇ · (ρm~u⊗ ~u) = −~∇prgh + ~∇ ·
[
µm

(
~∇~u+ ~∇~uT

)]
−~g · ~x~∇ρm + σκ~∇αq

∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(5.8)

This formulation will hereinafter referred to as the Weller-VOF method.

5.3 Solver implementation

The solution of the system of equations given by Eqn. (5.8) relies on a pressure-

velocity coupling loop based on PISO, basically a derivation of the method

presented in section 2.7. In addition it is necessary to solve the αq equation

which is achieved by means of the MULES explicit solver based on the FCT

technique (Rudman, 1997). Here the original definition of the local maxima

and minima was retained since the αq doesn’t generate new maxima and minima.

The general method for the solution of αq equation was presented in section

4.3 and is based in its discretized form given in Eqn. (4.26) and recalled in

Eqn. (5.9)

∂αq
∂t

+
∑
f

(αq~u)f · ~Sf +
∑
f

[αq (1− αq) ~vqp]f · ~Sf = 0 (5.9)

This equation can be rewritten in terms of face fluxes and using an explicit

integration scheme as in Eqn. (5.10)

αn+ν+1
q − αnq

∆t
V +

∑
f

{(
αn+ν
q

)
f
FL,n+ν +

[
αn+ν
q

(
1− αn+ν

q

) ]
f
FNL,n+ν

}
= 0

(5.10)
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where ν is the number of the actual fixed-point iteration in order to cir-

cumvent the issue of the non-linearity of the fluxes. This loop is solved

nAlphaCorrectors times. FL,n is the flux due to the center-of-volume velocity

and FNL,n is the flux due to the artificial compressive velocity added at the

interfaces. This velocity is not calculated explicitly but through a flux as in

Eqn. (5.11)

FNL,n = nf min

Cα ∣∣ΦL,n
∣∣∣∣∣~Sf ∣∣∣ ,max

∣∣ΦL,n
∣∣∣∣∣~Sf ∣∣∣
 (5.11)

where Cα is an adjustment constant, nf =
(∇αq)f
|(∇αq)f+δn| •

~Sf is the face unit normal

flux with δn = ε(∑
N Vi
N

)1/3 as a stabilization factor to avoid division by zero,

with ε = 1× 10−8. The direction of the compressive velocity is given by the

gradient of αq and ensures to apply the compression in the right direction,

that is, perpendicular to the interface. The values of
(
αnq
)
f

are calculated by a

selectable High Resolution Scheme, particularly in the non-linear term they can

be discretized by the interfaceCompression scheme, which has been devised

specially for its use in equation (5.10). The blending factor λ for UD and CD

in Eqn. (2.37) is given by Eqn. (5.12)

λ = min
(
max

[
1−max

{
(1− 4αP (1− αP ))2 , (1− 4αN (1− αN))2} , 0] , 1)

(5.12)

where αP is the value of αq at the current cell and αN in the neighbour cell.

This scheme does not obey to an TVD/NVD analysis but was selected in order

to guarantee the use of UD when αq is near the extrema and CD otherwise

and is a good combination of boundedness and convergence (Peng Karrholm,

2008; Weller, 2008). See (Gastaldo et al., 2011) for an example of this kind of

method in ASMM solving under different solution methodology.

In addition, the solution method of the system given in Eqn. (5.8) includes

an adaptive time-step control and the sub-cycling in the solution of αq equation.

The adaptive time-step control is done calculating the time-step by means of
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Eqn. (5.13)

∆tn = min

{
Comax

Co
∆t0,

(
1 + λ1

Comax
Co

)
∆t0, λ2∆t0,∆tmax

}
(5.13)

where Co =
|~uf · ~Sf · |
~dPN · ~Sf ∆t is the face-computed Courant number, Comax, ∆tmax

are user-defined parameters and λ1 = 0.1 and λ2 = 1.2 are two hard-coded

factors in order to reduce immediately the time-step but to increase it gradually

to avoid unstable oscillations. Regarding to Comax Gopala and van Wachem

(Gopala and van Wachem, 2008) recommend a value of lesser than 0.3,

Berberovic et al. (Berberovic et al., 2009) a value of approximately 0.2. By the

author’s experience the last value results successful, but some runnings have

been done using Comax = 0.1 to reach the expected results. It is important

to note another observed behavior of the adaptive time-step method. Since

it is Courant number based, the time-step can go to excessive high values

at the beginning of the simulation if no high velocity values are present in

the simulated problem. It is mathematically correct but can play against

the physics of the phenomenon giving inaccurate values. This issue can be

circumvented using the ∆tmax parameter or using a fixed time-step for a while.

Similar conclusions were informed by Berberovic et al.

Respect to the sub-cycling it is performed in order to give stability to the

solution of the αq equation, then choosing a number of sub-cycles nsc the

sub-step is defined as in Eqn. (5.14)

∆tsc =
∆t

nsc
(5.14)

Once the αq is solved is then necessary to assemble and solve the discretized

version of the momentum equation which is shown in Eqn. (5.15)
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ρn+1
m ~̃u−ρnm~un

∆t
V +

∑
f F

n+1
ρm ~̃u · ~Sf =

∑
f (µn+1

m )f

(
~∇~̃u
)
f
· ~Sf +

(
~∇~un · ~∇µn+1

m

)
V+

R
{[

(σκ)f

(
~∇αn+1

q

)
f
− (~g · ~x)f

(
~∇ρn+1

m

)
f
−
(
~∇pnrgh

)
f

] ∣∣∣~Sf ∣∣∣}
(5.15)

where Fρm is the mass face flux given by Fρm = (ρm~vm)f · ~Sf and ~a = R
(
~a · ~Sf

)
is an operator to reconstruct cell-centered fields from fields given as fluxes

at faces. This mass flux has to be assembled carefully within each sub-cycle.

The basic assembling of this flux is given by the relationship between the

center-of-mass velocity and the center-of-volume velocity and is necessary since

the αq equation modifies the mass distribution, therefore recalling Eqn. (3.31)

and assembling a mass face flux it becomes which is shown in Eqn. (5.16)

Fρm = (ρm~vm)f · ~Sf = (ρm~u)f · ~Sf + [αq (1− αq) (ρq − ρp) ~vqp]f · ~Sf (5.16)

which can be re-written as in Eqn. (5.17)

Fρm = ρm F + αq (1− αq) (ρq − ρp) Fqp (5.17)

where Fqp is the face flux for ~vqp. On the other hand the discretization of αq

requires the assembling of the flux given in Eqn. (5.18) [see Eqn. (5.10)]

Fαq =
(
αn+ν
q

)
f
F n+ν +

[
αn+ν
q

(
1− αn+ν

q

) ]
f
FNL,n+ν (5.18)

Now, doing some simple algebraic manipulations is easy to show what is

shown in Eqn. (5.19)

Fαq (ρq − ρp) + F ρp = ρm F + αq (1− αq) (ρq − ρp) Fqp = Fρm (5.19)
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which is the desired relationship, shown more clearly in Eqn. (5.20)

Fρm = Fαq (ρq − ρp) + F ρp (5.20)

Therefore, in each subcycle a partial mass flux is assembled as Fρm,sc,i. The

mass flux for the complete time-step is obtained by the discrete integral form

of the mean value theorem as in Eqn. (5.21)

Fρm =
nsc∑
i=1

∆tsc
∆t

Fρm,sc,i (5.21)

The whole process of the numerical solution of the Weller-VOF method

as is implemented in the OpenFOAMR©’s solver interFoam is presented

in Algorithm 4. The algorithm includes two methods in the PISO

loop, ddtPhiCorr(1/aP , ρm, ~uν , F
ν) is a flux adjustment due to the time-

step needed by the Rhie-Chow interpolation (Choi, 1999), meanwhile

adjustPhi(F ν+1
u , H(~uν)/aP , p

ν
rgh) adjusts the flux in free boundaries to obey the

continuity equation for ~u.

5.4 Some classical examples

In order to set a background for more complex models, some classical examples

will be solved. The first one corresponds to the Rayleigh-Taylor instability

(Štrubelj and Tiselj, 2011), which consists on the evolution of two layers of flu-

ids. The top layer is more dense than the one is placed at the bottom. Due to a

little disturbance in the contact surface the more dense fluid goes down and the

less dense fluid does the opposite. In the intermediate state a mixture is created,

which is lately segregated. The final state reaches an stable equilibrium with

the more dense fluid at the bottom layer and the less dense fluid at the top layer.

The second example is the Dam Break problem, which is widely used as

test problem for multi-phase solvers (Martin and Moyce, 1952; Cruchaga et al.,

2007; Battaglia et al., 2010). In this case a cavity is filled by the less dense

fluid and a column of the more dense fluid is formed in a corner. This column
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Algorithm 4 Weller-VOF solver with FCT (MULES) and pressure-velocity
coupling via PISO (interFoam)

1. Solve the mass conservation equation for the primary phase, αqn+1, assemble the mass face flux
Fρmn+1 and get the new mixture density ρmn+1 by a loop of nAlphaSubCycles cycles where:

a) The compressive velocity at interfaces is calculated as a flux by Eqn. (5.11)

FNL,n = nf min

Cα ∣∣ΦL,n∣∣∣∣∣~Sf ∣∣∣ ,max

∣∣ΦL,n∣∣∣∣∣~Sf ∣∣∣


b) The αq equation [Eqn. (5.10)] is solved 0 < ν < nAlphaCorrectors times by the MULES
integrator which also returns the limited flux Fαq

αqn,ν+1 − αqn

∆t
V +

∑
f

{
(αq

n,ν)f F
n + [αq

n,ν (1− αqn,ν) ]f F
NL,n,ν

}
= 0

c) The new mass face flux for the present sub-cycle is calculated by Eqn. (5.20). At the end of the
loop the final mass face flux is calculated by Eqn. (5.21) and the density is updated

Fρm,sc,i = Fαq (ρq − ρp) + F ρp Fρm =
∑
i=1

nsc
∆tsc

∆t
Fρm,sc,i ρm

n+1 = αq ρq + (1− αq) ρp

2. Solve the momentum predictor [discretized version of the second equation in Eqn. (5.8)] for ~̃u if the
momentumPredictor flag is set to yes

ρm
n+1~̃u−ρmn~un

∆t
V +

∑
f Fρm

n+1 ~̃u · ~Sf =
∑
f

(
µmn+1

)
f

(
~∇~̃u
)
f
· ~Sf +

(
~∇~un · ~∇µmn+1

)
V+

R
{[

(σκ)f

(
~∇αqn+1

)
f
− (~g · ~x)f

(
~∇ρmn+1

)
f
−
(
~∇prghn

)
f

] ∣∣∣~Sf ∣∣∣}

3. Do the PISO loop 0 < ν < nCorrectors times, where:

a) A face flux is calculated using the H(~u) operator with ~̃u obtained in the momentum predictor.
This face flux does not take into account the effects of the gravity and the surface tension

Φu
ν+1

f =

H
(
~̃uν
)

aP


f

· ~Sf + ddtPhiCorr(1/aP , ρm, ~uν ,Φ
ν)

The flux is then adjusted to obey continuity, via adjustPhi(Φuν+1, H(~uν)/aP , prgh
ν) method

b) The final proposed flux is found adding the effects of of the gravity and the surface tension

Φν+1
f = Φu

ν+1 +

[
(σκ)f

(
~∇αqn+1

)
f
− (~g · ~x)f

(
~∇ρmn+1

)
f

] ∣∣∣~Sf ∣∣∣
(aP )f

c) The pressure equation is assembled and solved nNonOrthogonalCorrectors times for prgh
ν+1

∑
f

[(
1

aP

)
f

(
~∇prghν+1

)
f

]
· ~Sf =

∑
f

Φν+1
f

d) The proposed flux is then adjusted by the effect of the pressure and then the center-of-volume
velocity at the cell centers is adjusted as well

Φν+1
f = Φν+1

f −

[(
1

aP

)
f

(
~∇prgh

)
f

]
· ~Sf ~uν+1 = ~uν+1 1

aP
R
[(

Φν+1
f − Φu

ν+1
f

)
(aP )f

]

e) Finally, the static pressure is reconstructed p from the modified prgh as p = prgh + ρm ~g · ~x
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suddenly collapses evolving within the cavity with waves and splashing which

causes mixing between the fluids. In this case an obstacle has been added in

order to assure stronger agitation and mixing. The final state is logically a

quiescent pool with the more dense fluid at the bottom and the less dense fluid

at the top.

5.4.1 Rayleigh-Taylor instability

The Rayleigh-Taylor instability is numerically simulated in the domain [0, 0]×
[1, 5] with an hexahedral mesh of 128× 640 (81920) elements (see Figure 5.1),

which is created using the blockMesh utility. The physical parameters for the

fluids are ρq = 3, νq = 0.01 and ρp = 1, νp = 0.01, without surface tension.

The gravity is set as ~g = (0,−10, 0) and the expression for initial disturbance

in the free surface is given by the expression in Eqn. (5.22), with amplitude

δ0 = 0.001

δ = −δ0

[
cos

(
2πx

L
− π

)
+ 1

]
+ 4.5 (5.22)

The shape of the initial disturbance is followed by the mesh on the interface

zone since the size of the deformation is smaller to the mesh step. This small

size impedes to set the initial disturbance only by cell initialization. Respect to

the boundary conditions for αq, zeroGradient was set at bottom boundaries

of the domain and symmetry conditions at both sides. The same boundary

conditions were set for the modified pressure and a pressure reference point

was set at (0.4999, 0.00078125, 0) with p = 0 in order not to disturb the initial

steps of the running. Finally, the boundary conditions for the velocity were

set as no-slip for top and bottom boundaries and symmetry conditions at

both sides. Since the mesh has a dummy third dimension, z, front and back

boundaries were set as empty.

The solver was set with the following parameters: momentumPredictor=yes,

nCorrectors=3, nNonOrthogonalCorrectors=1, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=0.25. The value of cAlpha was selected in order not to

form spurious ripple in the free surface when the big structures of the flow
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are being stretched. The time-step was set as ∆t = 0.0001 which assured a

Courant number below 0.1 in all the run and was proper for the development

of the mushroom-like structure at the beginning of the simulation.

Figure 5.1: Evolution of the Rayleigh-Taylor instability.

The results are presented in Figure 5.1 for several times. The evolution

starts with the development of a mushroom-like structure, until approximately

t = 1.8. After this time the structure is stretched and filaments start to detach

forming isolated chunks (see figure at t = 2.7, t = 3.6). The detaching continues

keeping only chunks and filaments, some of these chunks are fragmentated in

a size not trackeable by the VOF method. At the end a sedimentation process

starts where the more dense chunks fall as ‘‘droplets’’ and the less dense fluid

trapped in the bottom layer scape by buoyancy as ‘‘bubbles’’. The final state

(not shown) is clearly a layered solution with the more dense fluid forming the

bottom layer. The obtained evolution of the problem is in general accordance

with the references setting a basis for comparisons with other methods.
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5.4.2 Dam Break

The Dam Break test is numerically simulated in the domain [0, 0]×[0.584, 0.584]

with an hexahedral mesh of approximately 720 × 688 (495360) elements,

meshed with blockMesh (the real geometry is not a rectangle but has an

obstacle, see Figure 5.2). The physical parameters for the fluids are ρq = 1000,

νq = 1 × 10−6 and ρp = 1, νp = 1.48 × 10−5 with a surface tension σ = 0.07.

The gravity is set as ~g = (0,−9.81, 0). The solution domain is filled with

the less dense fluid except for the area given by [0, 0] × [0.1461, 0.438]

where the more dense fluid is located. This rectangle gives the initial

condition of the water column. This column is obviously not in equilib-

rium, then, when the simulation starts it collapses like in the breaking of a dam.

Respect to the boundary conditions for αq, zeroGradient was set in all

walls except for the top where the inletOutlet boundary condition was used.

Respect to the boundary conditions for the modified pressure it were set as

buoyantPressure for all wall except for the top, where the totalPressure

boundary condition was set. Finally, for the center-of-volume velocity the

non-slip boundary condition was set for all walls except for the top wall where

the pressureInletOutletVelocity was used. Due to the mesh has a dummy

third dimension, z, front and back boundaries were set as empty.

The solver was set with the following parameters: momentumPredictor=no,

nCorrectors=3, nNonOrthogonalCorrectors=0, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=1. The maximum Courant number for this running was set

as 0.5 which is greater that the recommended, however it resulted to be stable.

The evolution of the Dam Break problem is shown in Figure 5.2. In

the beginning, the more dense fluid column collapses and passes over the

obstacle until reaching the right wall in a very ordered flow (up to t = 0.7,

approximately). Once the fluid reaches the right wall it splashes forming

chunks and droplets. The flow oscillates to the left wall (t = 2.8) and the

interface breaks in several other small interfaces trapping the less dense fluid.
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Figure 5.2: Evolution of the Dam Break test.
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The oscillation continues as a liquid pendulum which is damped by the wall

and internal friction due to the viscosity (t > 3.4). Finally, the system starts a

quiescent stage forming a pool with the more dense fluid at the bottom layer

and the less dense fluid trapped in ‘‘bubbles’’ which are removed by buoyancy

reaching a complete segregated and hydrostatic state (not shown). Again,

the evolution is in accordance with the references and sets a basis for further

comparisons.

Márquez Damián, Santiago     - 2013 -



Chapter 6

Numerical solvers for the

mixture model

6.1 Introduction

Having in mind the formulation and particular numerical issues of the ASMM

studied in Chapter 3 it is necessary to devise a solver capable to manage

them. In addition, the proposed solver has to have enough flexibility to include

the VOF model within it in the way that was done in Chapter 5. Therefore

this chapter presents an ASMM solver based on a PISO pressure-velocity

coupling and the solution of the phase fraction equation using the KT-MULES

and TVD-MULES techniques already studied. The use of these techniques

assures the assembling of a conservative flux and the bounded solution of the

phase fraction equation. The solver is validated by the 1D examples given

for sedimentation and calculated by the presented semi-analytic solution and

another 1D example taken from literature. Finally a bubble reactor is solved

and the results are compared to experiments.

6.2 Formulations for the ASMM

In the derivation of the ASMM explained in chapter 3 two main formulations

were obtained for the system of equations of the model. In the first one, the

101
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so called velocity of center-of-mass formulation, all the equations are written

in terms of the mass averaged velocity, which is presented in Eqn. (3.22) and

recalled in Eqn. (6.1)



∂
∂t

(ρm) + ~∇ · (ρm~vm) = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
+

ρm~g − ~∇ · [ρmcp (1− cp)~vpq ⊗ ~vpq]

∂
∂t

(αp) + ~∇ · (αp~vm) = −~∇ · [αp (1− cp)~vpq]

(6.1)

The solution of this system brings its own problems such as were mentioned

previously: the lack of an evolution equation for the pressure and the necessity

of the bounded solutions for αp. The discretization of the system by the

FVM leads to another particular issues. One of the most important details

is the assembling of a conservative flux, i.e. a flux which satisfies the mass

conservation equation for the mixture [first equation in the system of Eqn.

(6.1)] and the use of this flux in all other equations. Thus, the flux corresponds

to the mass face flux or the face flux of ρm vm. Note that this quantity is used

in the discretization of the mass conservation equation and the momentum

equation but not in the secondary phase conservation equation. This issue

can be circumvented using the method proposed by Brennan (Brennan, 2001)

which relies in re-write this equation as is shown in Eqn. (6.2)

∂

∂t
A ρm +

∂

∂z
{A [ρm vm + ρm (1− cp) vpq]} = 0 (6.2)

where A = αpρp
ρm

. However, the discretization of this new equation requires the

value of ρm at the new time-step. This is often obtained by a prediction based

in the mass conservation equation of the mixture as is proposed by Brennan.

This technique is also used by Gastaldo et al. (Gastaldo et al., 2011) in

conjunction with a time-shifting. By the author’s experience (Márquez Damián

and Nigro, 2011; Márquez Damián et al., 2012) and enforced by the conclusions
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of the cited literature the solution obtained with such a strategy lacks of mass

conservation.

The formulation and solver for the ASMM based on the center-of-mass

velocity is revisited by Bohorquez (Bohorquez R. de M., 2008) as a [

‘‘Compressible pressure-based solver’’ since it relies in the determination of a

non divergence free velocity by means of a pressure-based method as PISO.

As a counterpart for this approach a ‘‘Segregated pressure-based solver’’ is

derived (Bohorquez R. de M., 2008; Bohorquez, 2012) based on the velocity of

center-of-volume formulation. The principal advantage of this method is the

possibility to use a divergence free velocity in the mass conservation equation

for the primary phase. In addition, it is then possible to avoid the prediction

of ρm which is no more an unknown but a derived quantity from ρq, ρp and αq.

Thus, starting from the ASMM formulation written in velocity of center-of-

volume formulation [Eqn. (3.39)] and using the concept of modified pressure

the system reads as in Eqn. (6.3).



~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇prgh + ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
−~g · ~x~∇ρm − ~∇ ·

[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(6.3)

Comparing this system with the system of equations given for the VOF

method [Eqn. (5.8)] is clear that since the latter is derived from the former

they have much similarities. The differences are in the velocity formulation

in the momentum equation and the particular terms of each method (surface

tension for VOF and drift tensor for ASMM) and in the meaning of the relative

velocity definition in the primary phase mass conservation equation. These
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similarities can be exploited to devise an ASMM solver on the basis of the

Weller-VOF solver previously presented in Algorithm 4 (Section 5.3). To obtain

such a solver it is necessary to have a flux relationship between the velocity

of center-of-mass and the velocity of center-of-volume and a new pressure

equation. Therefore, starting from Eqn. (3.31), isolating ~u and multiplying by

the face area vector the desired flux relationship is obtained in Eqn. (6.4)

~uf · ~Sf = (~vm)f · ~Sf −
[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf (6.4)

This relationship allows to solve the phase fraction transport equation [third

equation in Eqn. (6.3)] using a conservative flux for ~u assembled from the flux

of ~vm given by the last PISO loop. In addition, from the derivation of the

pressure equation in section 2.7.1 [Eqn. (2.62)] the velocity of center-of-mass

can be expressed at faces (in terms of the modified pressure here) as in Eqn.

(6.5)

(~vm)f =

(
~H (~vm)

aP

)
f

−
(

1

aP

)
f

(
~∇prgh

)
f

(6.5)

Then, the flux relationship can be re-written as in Eqn. (6.6)

~uf · ~Sf =

[(
~H( ~vm)
aP

)
f
−
(

1
aP

)
f

(
~∇prgh

)
f

]
· ~Sf

−
[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf

(6.6)

Using this expression in the discretized version of the incompressibility

restriction for ~u,
∑

f ~uf · ~Sf = 0 and re-arranging, Eqn. (6.7) is obtained

∑
f

[(
1
aP

)
f

(
~∇pν+1

rgh

)
f

]
· ~Sf =

∑
f

(
~H( ~vm)
aP

)
f
· ~Sf

−
∑

f

[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf
(6.7)

Finally, adding the effect of the gravitational acceleration, the pressure

Márquez Damián, Santiago     - 2013 -



6.3. SOLVER IMPLEMENTATION 105

equation is obtained in Eqn. (6.8)

∑
f

[(
1
aP

)
f

(
~∇pν+1

rgh

)
f

]
· ~Sf =

∑
f

[(
~H( ~vm)
aP

)
f
− (~g · ~x)f

(
~∇ρn+1

m

)
f

]
· ~Sf

−
∑

f

[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf
(6.8)

6.3 Solver implementation

Given the formulation of the ASMM and the auxiliary equations needed for

the pressure-velocity coupling is now possible to describe the solver algorithm.

It is based in Algorithm 4 which is the implementation of the Weller-VOF

method and is presented in Algorithm 5 and follows its general structure. In

the first step the αq is solved. In this stage the MULES integrator is used in

order to guarantee the boundedness, in this case the flux Fαq needed for the

integrator can be assembled either using standard TVD methods or the flux for

a Riemann-free solver as was presented in chapter 5. The momentum predictor

is solved and the PISO loop is performed. Note the extra term in the r.h.s. of

the pressure equation which was studied in the previous section in Eqn. (6.8).

Finally the flux for the velocity of center-of-volume is recovered in order to be

used for the integration of αq in the next time-step. Thus the relationship

between the velocity of center-of-mass, ~vm, and the velocity of center-of-

volume, ~u, needed in the system given in Eqn. (6.3) is expressed in terms of

face fluxes. The correct calculation of the flux and its treatment along the

solving algorithm play a central role in the successful implementation of a solver.

Since the presented algorithm is not available in the OpenFOAMR© suite it

was programmed starting from the interFoam (Weller-VOF) solver and using

the gdbOF debugging tools [see Appendix A or (Márquez Damián et al., 2012)].

Márquez Damián, Santiago     - 2013 -



106CHAPTER 6. NUMERICAL SOLVERS FOR THE MIXTURE MODEL

Algorithm 5 Pressure based ASMM solver with velocity of center-of-volume
formulation

1. Solve the mass conservation equation for the primary phase for αqn+1, assemble the mass face flux
Fρmn+1 and get the new mixture density ρmn+1 by a loop of nAlphaSubCycles cycles where:

a) The relative velocity at faces is calculated as a flux from Eqn. (3.25)

FNL,n = ~vqp
n · ~Sf = ~vrc (αq

n)a · ~Sf
b) The αq equation [Eqn. (5.10)] is solved 0 < ν < nAlphaCorrectors times by the MULES
integrator which also returns the limited flux Fαq . This flux can be computed using either TVD
reconstruction or a Riemann-free solver flux

αqn,ν+1 − αqn

∆t
V +

∑
f

{
(αq

n,ν)f F
L,n + [αq

n,ν (1− αqn,ν) ]f F
NL,n,ν

}
= 0

c) The new mass face flux for the present sub-cycle is calculated by Eqn. (5.20). At the end of the
loop the final mass face flux is calculated by Eqn. (5.21) and the density is updated

Fρm,sc,i = Fαq (ρq − ρp) + F ρp Fρm =
∑
i=1

nsc
∆tsc

∆t
Fρm,sc,i ρm

n+1 = αq ρq + (1− αq) ρp

2. Solve the momentum predictor [discretized version of the second equation in Eqn. (6.3)] for ~̃vm if
the momentumPredictor flag is set to yes

ρm
n+1~̃vm−ρmn~vm

n

∆t
V +

∑
f Fρm

n+1 ~̃vm · ~Sf =
∑
f

(
µmn+1

)
f

(
~∇~̃vm

)
f
· ~Sf

+
(
~∇~vmn · ~∇µmn+1

)
V −

∑
f

[
αqn+1

(
1− αqn+1

) ρq ρp
ρmn+1 ~vqp

n ⊗ ~vqpn
]
f
· ~Sf

−R
{[

(~g · ~x)f

(
~∇ρmn+1

)
f

+
(
~∇prghn

)
f

] ∣∣∣~Sf ∣∣∣}
3. Do the PISO loop 0 < ν < nCorrectors times, where:

a) A face flux is calculated using the H(~vm) operator with ~̃vm obtained in the momentum predictor.
This face flux doesn’t take into account the effects of the gravity

Fmu
ν+1

f =

H
(
~̃vνm

)
aP


f

· ~Sf + ddtPhiCorr(1/aP , ρm, ~vm
ν , Fm

ν)

The flux is then adjusted to obey continuity, via adjustPhi(Fmuν+1, H(~vmν)/aP , prgh
ν) method

b) The final proposed flux is found adding the effects of the gravity

Fm
ν+1

f = Fmu
ν+1 − (~g · ~x)f

(
~∇ρmn+1

)
f

∣∣∣~Sf ∣∣∣
(aP )f

c) The pressure equation is assembled and solved nNonOrthogonalCorrectors times for prgh
ν+1

∑
f

[(
1

aP

)
f

(
~∇prghν+1

)
f

]
· ~Sf =

∑
f

Fm
ν+1

f −
∑
f

[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf

d) The proposed flux is then adjusted by the effect of the pressure and then the center-of-volume
velocity at the cell centers is adjusted as well

Fm
ν+1

f = Fm
ν+1

f −

[(
1

aP

)
f

(
~∇prgh

)
f

]
· ~Sf

~vm
ν+1 = ~vm

ν+1 +
1

aP
R
[(
Fm

ν+1
f − Fmuν+1

f

)
(aP )f

]
e) Finally the static pressure is reconstructed p from the modified prgh as p = prgh + ρm ~g · ~x

4. The face flux for the velocity of center-of-volume is recovered from the flux using Eqn. (6.4)

FL,n+1 = Fm
n+1

f −
[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf
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6.4 Results

6.4.1 1D semi-analytic tests

The first examples to be solved are those presented in section 3.3.2, correspond-

ing to the semi-analytic solutions for sedimentation. The domain is meshed

in 3D as is usual in OpenFOAMR© giving an hexahedron with 400 elements

in z and one in the other directions. The boundary conditions are similar in

all examples. In the case of αq, zeroGradient was set in top and bottom

boundaries. The modified pressure prgh was set as bouyantPressure in top

and bottom boundaries, in addition the pressure reference was set as 0 in the

fourth cell from the bottom of the domain. Respect to the velocity it was set

as fixedValue with ~vm = (0, 0, 0) (no-slip) in top and bottom boundaries.

The boundary conditions for the sides were empty for all the magnitudes.

The solver was set with the following parameters: momentumPredictor=yes,

nCorrectors=3, nNonOrthogonalCorrectors=1, nAlphaCorr=1, nAlphaSub

Cycles=1. The time-step was set as ∆t = 0.001 and then the problem was

run using KT-MULES and TVD-MULES solvers. The results are shown in

Figures 6.1-6.2 (compare to Figure 3.6 and Figures 3.8-3.10) and show excellent

agreement between between KT-MULES and TVD-MULES solvers respect to

the analytical solution in the case of αp and p. The solution for the problem

with initialization in αp = 0.3 respect to vm (see Figure 6.2.b) give undershoots

for both methods. This is caused due to the solution for the jump in αp is not

given within two cells which guarantees to have a bounded solution for the

equation for vm. Note that this problem is particularly important in the most

important jump in densities.

The last 1D example corresponds to which was proposed by Gastaldo

et al. (Gastaldo et al., 2011) based on the work of Coquel et al. (Coquel

et al., 1997) as a test for FVM/FEM solver for the ASMM. It consists in a

sedimentation problem like the previous ones using a constant relative velocity,

vpq. This assumption is clearly non-physical but leads to a simple solution that
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Figure 6.1: Solutions of αp a) 0.6-0.7 initialization at t = 0.4, b) 0.7-0.5
initialization at t = 0.6. KT-MULES solver, TVD-MULES solver.
4 notable points of analytical solution.

Márquez Damián, Santiago     - 2013 -



6.4. RESULTS 109

Figure 6.2: Solutions of αp a) 0.3 initialization at t = 1. b) Pressure and
center-of-mass velocity for a). KT-MULES solver, TVD-MULES
solver. 4 notable points of analytical solution.
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qualitatively represents the original phenomenon. In this case the flow evolves

in stiff conditions setting a good test for the stability of the proposed schemes

(Evje and Fl̊atten, 2003).

The problem is set with h = 7.5, αp = 0.5, vm = 0 and p = 0. The physical

constants are g = 9.81, ρl = 1000 and ρg = 1.2, the viscosities are set to zero.

The relative velocity has the value vpq = 1. This selection for the relative

velocity implies that in Eqn. (3.12) the constants have the values vrc = 1 and

a = 0. Finally the flux for the αp results to be which as shown in Eqn. (6.9)

F (αp) = vrc
(
αp − α2

p

)
(6.9)

being the flux derivative given by Eqn. (6.10)

F′ (αp) = vrc (1− 2αp) (6.10)

allowing to determine the convexity or non-convexity of the flux and the

eigenvalues. The graphs for both functions are shown in Figure 6.3. The

shaded zone is the so-called convex hull which is used for wave analysis. From

the graph it is possible to show that the flux function is convex. This leads to

a solution having two shocks, one going from bottom to the top and the other

one in the opposite direction. The convex hull is formed by two straight lines

representing the two shocks. Using Eqns. (3.57)-(3.58) the front velocities

are a′ = −0.5 and b′ = 0.5. The solutions for two different times are shown

in Figure 6.4, where the triangles boxes correspond to the solution at time

t = 1 and the triangles to the solution for t = 5. In this solutions only the

characteristic points of the curves are given.

The numerical solutions for both KT-MULES and TVD-MULES where

obtained with the same settings of the previous 1D tests changing only the

domain extension and physical properties. The results are also shown in Figure

6.4. The thick lines correspond to the reference results and the thin lines to the

proposed methods. As is shown in the figure the agreement of the proposed

methods with the theoretical results is excellent improving the solution respect
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Figure 6.3: Riemann problem solutions for a convex flux. a. Right going shock,
b. left going shock. flux, flux derivative.

Figure 6.4: Riemann problem solutions for a convex flux with initial condition
αp = 0.5. � theoretical solution at t = 1, 4 theoretical solution at t = 5,
reference solution at t = 1 and reference solution at t = 5. Solutions for
KT-MULES and TVD-MULES methods are given in thin lines.
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to the reference. Here is important to note that one of the propositions for

future work in the work of Gastaldo et al. is to present a HRS version of their

ASMM solver. This objective is completely fulfilled here.

As a final remark from the 1D examples it is possible to assure from the

figures that the hypothesis of neglecting the viscosity in the 1D formulation for

the ASMM resulted to be correct. This is clear since the full 3D solvers resolve

the shocks for the velocity in few cells not showing a diffusive pattern.

6.4.2 Bubble column reactor

This case corresponds to a chemical reactor where the fluid dynamics is

controlled by the interaction of a bubble plume with the liquid within

a cylindrical tank. The test is based on the original measurements by

Computer Automated Radioactive Particle Tracking (CARPT) of Degaleesan

(Dagaleesan, 1997) and later reported by Sanyal et al. (Sanyal et al., 1999) and

Cartland Glover and Generalis (Cartland Glover and Generalis, 2004). The

working principle of the reactor is based in the recirculation flow generated

by the bubble plume [See Figure 6.5.a)]. The gas inlet is located at the

bottom of the reactor which works as a pool; once the gas crosses the pool

it is released by the top. During the gas is crossing the reactor it leads to a

volume expansion of the original liquid volume changing the position of the

free surface. The original dimensions of the reactor are: diameter D = 0.19,

height h ∼= 1.2. The gas inlet is fixed to vp = 0.02 and the bubble diameter is

d = 5× 10−3. With respect to the fluids properties, they are νq = 1.005× 10−6,

ρq = 998.2, νp = 1.460 × 10−5, ρq = 1.225. The gravitational acceleration is

~g = (0,−9.81, 0). Under these conditions the Schiller-Naumman correlation

can be fitted with a linear law for the relative velocity, ~vpq, with a = 1 and

~vrc = (0, 0.4422, 0).

Following the references the selected domain is a shorter (h = 1.045)

reactor in order to work without taking into account the free surface [see

Figure 6.5.b)]. To do so, the top of the domain is considered as a degassing
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Figure 6.5: Geometry and solutions for a cylindrical bubble reactor. a) sketch
of working principle, b) computational domain, c) gas hold-up, d) center of
mass velocity vector field.
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outlet. In addition, the considered entry area for the gas is selected as the 80%

of the diameter giving a gas inlet velocity of vp = 0.03125. The domain was

considered axi-symmetric, therefore the selected mesh is basically 2D. The

representation of such mesh in OpenFOAMR© is achieved by a wedge mesh

with only one element in the tangential direction. The final discretization had

44× 600 elements (radius and height).

The problem was run using the ASMM with the standard k− ε model. This

model allows a simple and effective turbulence closure and can be used without

additional terms in case of bubbly flows (Buscaglia et al., 2002). Since the

present solver was coded in the general viscous model of OpenFOAMR© the use

of turbulence models is transparent to the user giving the proper boundary and

initial conditions. The flow was initialized with a laminar run, the boundary

conditions were set as zeroGradient for αq in the walls and the outlet and

fixedValue with αq = 0 for the inlet. The velocity was set as fixedValue

with ~vm = (0, 0, 0) at the walls, fixedValue with ~vm = (0, 0.03125, 0) at

the inlet and inletOutlet at the outlet. This boundary condition implies

zeroGradient if the flux is going outwards and fixedValue otherwise, this

last value was set as ~vm = (0, 0, 0). This boundary condition guarantees the

possibility of volume expansion due to the gas inlet. The modified pressure

was set as zeroGradient in the bottom wall and as buoyantPressure in the

side wall and in the inlet. Finally, this pressure was set to zero at the outlet

via a fixedValue boundary condition. The front and back walls were set as

wedge in order to indicate the axi-symmetry.

The solver was set with the following parameters: momentumPredictor=yes,

nCorrectors=3, nNonOrthogonalCorrectors=1, nAlphaCorr=1, nAlphaSub

Cycles=2. The time-step was adjusted automatically with a condition of

Co = 0.5 showing good stability. Once the laminar flow was develop the

run continued using the k − ε model. The boundary conditions for k were

fixedValue of k = 9.3750× 10−6 at inlet and zeroGradient at the outlet, in

the case of ε the same boundary conditions were used with ε = 1.9424× 10−7

at the inlet. The initial value for νt was estimated in νt = 4.0723× 10−5. This
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turbulent parameters were calculated on the base of a intensity of turbulence

of 10% and internal velocity |~vm| = 0.1. The standard wall functions were

used for the wall treatment.

The general results for gas-hold up and velocity of center-of-mass vector

field are shown in Figures 6.5.b)-6.5.c). A detailed comparison is usually done

based on profiles, particularly for velocity of center-of-mass and gas hold-up.

The comparison is shown in Figure 6.6. From the figures it is clear that the

recirculation within the reactor is properly predicted with good agreement with

similar solvers respect to the velocity profile. The profile for αp (gas hold up)

has some differences with the reference solvers, resulting less diffusive; it can be

attributed at the lack of turbulent diffusion term in αq equation. It is worthy

to note that these results are only indicative of the magnitude of gas hold-up

since all the models have differences with the experimental results.
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Figure 6.6: Velocity of center-of-mass and gas hold-up solutions as a function
of the radius for the bubble column reactor (y = 0.475). ♦ CARPT, ◦ ASMM
(reference), � Two fluids (reference), × Present ASMM solver.
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Chapter 7

An Extended Mixture Model

7.1 Introduction

The study of coupled models for the treatment of short and long scale

interfaces has been in discussion in the last years motivated by the lack of

solutions using the known models and the limited solutions given by the

DNS. In order to give a basis for the present work is worthy to know the

state of the art in the matter. Doing a bibliographic research the first work

in the topic seems to be that was presented by Černe et al. (Černe et al.,

2001). In this work the authors gave a coupled method between VOF and

Two-Fluids. The switching parameter is given by an indicator function

related with the free-surface reconstruction method; thus, there is a threshold

value over which the interface is treated as having long scale and captured

by VOF and the opposite case with the Multi-fluid (Two Fluids) model.

Then, some test cases are solved comparing the convergence of a pure VOF

solution against the coupled solver. Since each base model is written in

its original formulation there is not an unified solution framework and it

is necessary to switch between models with different number of equations.

This issue has particular importance in the treatment of the velocities, since

the VOF model has only one velocity field meanwhile the Two-Fluids model

has one velocity per phase. The transition from two velocities to one is

managed by the definition of the velocity of center-of-volume, in the oppo-
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site case the same velocity is assigned to each phase, losing the interface friction.

The solution of multiple scale interface problems with an unified framework

was eventually presented some years later. Thus, Masuda and Nagaoka

(Masuda and Nagaoka, 2006) devised a coupled VOF/Multi-fluid method for

the application in nozzle flows. This method recognizes four fluids, the original

two fluids and two mixtures given by the first fluid as the dispersed phase and

viceversa. The transition between the models is governed by the dispersion

function proposed by Černe et al.. In the same line, Štrubelj and Tiselj

(Štrubelj and Tiselj, 2011), gave an unified framework for the Level-Set and the

Multi-fluid method. In this approach all the scales are solved by the Multi-fluid

method and an additional interface tracking term is implemented within it.

The detection of the scale interfaces is achieved by the cited dispersion function.

Another example of a model based on the unified VOF/Multi-fluid

approach is that was given by Yan and Che (Yan and Che, 2010). It relies in

a division of the phases by their physical state and the interface length scale

giving three new phases, the liquid (phase 1), the large-length-scale-interface

(LSI) with gas phase (phase 2) and the small-lengthscale-interface (SSI) with

gas phase (phase 3). Therefore, a shared momentum equation is solved for the

mixture of phase phase 1 and phase 2 and a second momentum equation is

solved for phase 3. This second momentum equation gives the dynamics of

the particulate phase. The geometry of the interfaces is captured by a VOF

method for phase 1 and 2, phase 3 is also governed by a mass conservation

equation but without interface capturing since it is considered a dispersed phase.

The concept of phase division by their physical state and length scale was

also developed by Bohorquez (Bohorquez R. de M., 2008) for the treatment

of air-water-sediments in hydraulics problems. Here, there are two principal

phases, the air (phase 1) and the water-sediments mixture (phase 2), the

third phase are the sediments which are dispersed within the water. Thus, a

VOF/ASMM model is devised in an unified framework were the LSI between

phase 1 and phase 2 is solved by the VOF model. The geometry of the
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dispersed phase (phase 3) is solved by an additional mass conservation equation

without interface capturing. Since the whole model is given in the ASMM

framework only one momentum equation is solved for the air-water-sediments

mixture.

From the study of the presented references is also noticeable that the field of

coupled models for different interface length scales is still in development. The

advances on the description of this kind of problems require the development

and improvement of the models and the possibility of validation. The validation

plays a crucial role requiring more experiments and getting analytical or semi-

analytical solutions. In this context the objective of this chapter is to present

a VOF/ASMM coupled model for two phase problems and its application for

academic and industrial problems. The derivation of the model is motivated

from the analysis of VOF solutions looking for a better treatment of the

unresolved interface scales. On the other hand, some problems usually solved

by the ASMM method can be also managed by the proposed extended model

improving the predictive capabilities.

7.2 Motivation

The numerical motivation for the use of coupled models rises from the careful

observation of the solutions obtained with the basic models. For the present

work, where a VOF/ASMM coupling is proposed, the analysis starts by the

VOF method which is able to capture of all the scales of the interface with

the appropriate mesh. The concept of different length-scale in the interfaces

was introduced in chapter 1 by the Figure 1.2. There, the mesh worked as a

‘‘filter’’ for the interface and the long and short scales can be determined. Now,

the results given in chapter 5 for the VOF method could be re-examined to

detect such interface scales and the behavior of this method. Thus, the result

for t = 5.4 in Figure 5.1 for the Rayleigh-Taylor problem is recalled in 7.1.a),

in addition the result for a mesh four times coarser is given in b) and then

the solution is zoomed in c). Figure 7.2 shows a similar comparison starting

from the solution for t = 1.6 in Figure 5.2 for the Dam Break problem, then a
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solution in a four times coarser mesh and a zoomed area for the last solution

are given.

Figure 7.1: Results for the Rayleigh-Taylor problem for t = 5.4. a) results in
fine mesh, b) results in coarse mesh, c) detail for the dashed line box en b)
with superimposed mesh (grayscale saturated to black at αq = 0.3). Selected
non-resolved chunks are indicated by the arrows.

The physics of these two problems for the selected times have particular

differences. In the Rayleigh-Taylor case the problem is dominated by the

falling of the more dense phase from top to bottom, once the initial structures

have been lost the flow continues as falling droplets which accumulates at the

bottom of the domain . In the case of the Dam Break problem after the initial

column has collapsed some droplets are ejected from the splashing waves but
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Figure 7.2: Results for the Dam Break problem for t = 1.6. a) results in
fine mesh, b) results in coarse mesh, c) detail for the dashed line box en b)
with superimposed mesh (grayscale saturated to black at αq = 0.3). Selected
non-resolved chunks are indicated by the arrows.

in general the more important particulate physics is given by the less dense

phase trapped in the mixing process. These particles behave as bubbles which

rise by buoyancy forces.

Since the interface is resolved in about two or three cells (Trontin et al.,

2008) by the VOF method, a chunk (small fluid structure, see the structures

marked by the arrows in the figures) should have around four to six cells

in width to be correctly resolved. In the case of bubbles and droplets they

should have about ten cells in diameter for a correct curvature calculation.

The practical effect is the wrong re-agrupation of these structures due to

the surface tension terms which act with a numerical surface tension (Rider

and Kothe, 1998). The development of unresolved interface scale chunks

has another important drawback. When the values of αq of these chunks

lay in intermediate values between 0 and 1 (grey zones in the figures) these

structures loose their physical meaning. The fluid present within them is then

treated as a new fluid with density and viscosity given by the value of the

mixture properties. These properties do not match the values of none of the

original two fluids and then the buoyancy forces and the drop falling will be

incorrectly calculated.
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The idea behind the model which will be presented is to treat the long scale

structures of the flux purely with the VOF method. When some structures fall

below the unresolved scale this zones have to be calculated using the ASMM

using appropriate closure laws.

7.3 Theoretical foundation

From previous chapters about VOF and ASMM it becomes clear that both

models can be written in a very close formulation, and even more, the VOF

model can be directly derived from the ASMM. The basic differences between

these approaches in the context of the mixture models are the terms related

to the different scales. Therefore, since the interfaces are supposed to be

completely captured, the VOF model has a term in the momentum equation

including the effects of the surface tension. On the other hand the ASMM does

not have this term but includes the effect of the drift stresses, or the effect of

the small scale interfaces. In addition, the relative velocity between phases has

physical meaning in ASMM and in VOF it is only a numerical tool in order

to compress the interface. Thus, using θ as a flag to activate or deactivate

certain terms according to the interface scale which is being resolved, VOF

(Weller-VOF) and ASMM can be coupled as in Eqn. (7.1)



~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇prgh + ~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
−~g · ~x~∇ρm + θ σκ~∇αq − (1− θ) ~∇ ·

[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · {αq (1− αq) [θ ~vqp,VOF + (1− θ)~vqp,ASMM]} = 0

(7.1)

where ~vqp,VOF and ~vqp,ASMM are the relative velocities calculated either numer-

ically or physically based. The value of θ coefficient is θ = 1 for VOF and
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θ = 0 for ASMM. Now it is necessary to devise a method to calculate this

coefficient; to do so two methodologies will be studied in order to select the

most appropriate for the needs.

7.3.1 Černe criterion

One of the available criteria for long and short scale models coupling, used

by several authors, was given by Černe (Černe et al., 2001). It is based on

the analysis of the frame obtained having into account a given cell and all

it neighbours by faces and edges as is shown in Figure 7.3. The switching

function γ is obtained by finding the minimum of the function G as is shown

in Eqns. (7.2-7.3)

Fluid 1

Fluid 2

Figure 7.3: Interface reconstruction using the Černe criterion [adapted from
(Černe et al., 2001)].

Gi,j (~n) =
1∑

l=−1

1∑
k=−1

(
αq,i+k,j+l − α′q,i+k,j+l (~n)

)2
(7.2)

γi,j = min (Gi,j (~n)) (7.3)
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where α′q represents the volume fraction of the hatched area. The minimum

value of γ is zero and corresponds to the exact matching of the interface with

boundary of the hatched zone. This value increases when the fluid is located in

the wrong side of the proposed interface, therefore this function is often called

the ’’dispersion function’’. Finally, it is necessary to set a threshold value for

γ = γ0 such that the θ criterion could be calculated as in Eqn. (7.4)

θ =


1, if γi,j < γ0 [VOF in cell (i, j)]

0, if γi,j > γ0 [Multi− fluid in cell (i, j)]

(7.4)

The threshold value is obtained by several cases study, the recommended

values is γ0
∼= 0.6. This methodology is attractive since it is based in the

reconstruction of the interface (Puckett et al., 1997), but requires the time

consuming solution of a minimization problem at each cell and time-step.

7.3.2 Face gradient criterion

Another criterion can be devised based in the gradient of the phase fraction

function αq. Recalling the gradient calculation from Eqn. (2.17) this operation

can be done as is shown in Eqn. (7.5)

~∇α =
1

V

∑
f

(αq)f · ~Sf (7.5)

as a next step this gradient is interpolated at faces obtaining ~∇αf . The gradient

at faces gives a general idea of the variation of the phase fraction along the

domain. Large gradients are associated to big changes in α and then a large

scale interface is inferred. This value is weighted with a measure of the mesh

in order to normalize the switching function. A clear local jump between

two phases requires not only a big gradient but also to be extended in few

cells. Therefore, the gradient is multiplied by the face’s neighbouring cells

center-to-center vector, ~dPN as is shown in Eqns. (7.6)-(7.7) (see Figure 7.4)

~dPN = ~xP − ~xN ; (7.6)
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γf = |~∇αf · ~dPN | (7.7)

Figure 7.4: Face gradient criterion.

Finally the criterion to switch between VOF and ASMM is given by the

rules expressed in Eqn. (7.8). It states that VOF will be used in high relative

gradient zones (large scale interfaces) and in zones with α near to α = 1 or

α = 0, indicating pure phases; in all other cases ASMM will be used. This

criterion requires the selection of γ0, the threshold for small gradients and ε

which is a magnitude that controls the maximum deviation from α = 1 or

α = 0 to be even considered as a pure phase.

θf =



1, if αf < 0 + ε o αf > 1− ε [VOF in face f ]

1, if γf > γ0 [VOF in face f ]

0, if γf < γ0 [ASMM in face f ]

(7.8)

The values for γ0 and ε have to be adjusted according to the problem.

Since in VOF the interface is resolved in about three cells a reference value

is γ0 = 0.33. Respect to ε, a typical value is ε = 5 × 10−3. The principal

advantages of this indicator function are its intrinsic 3D formulation and its

simplicity and low demanding calculation. This method will be then used for

model switching.
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7.4 Solver implementation

The implementation of the solver for the coupled model or extended mixture

model is derived from the solution algorithm of the ASMM solver (Algorithm

5). To this end, it is necessary to add the calculation of the θ indicator function

and the extra terms given in Eqn. (7.1). The solver is given in Algorithm 6.

Since the presented algorithm is not available in the OpenFOAMR© suite it was

programmed starting from ASMM solver and using the gdbOF debugging tools

[see Appendix A or (Márquez Damián et al., 2012)].

7.5 Examples

In order to validate the proposed method a series of examples will be solved.

The first example corresponds to a bubble plume in laboratory conditions and

the objective is to correctly predict the deformation of the free-surface due to

the plume and the dynamics of the dispersed phase. This kind of problems is

often solved using the Mixture Model but the prediction of the free-surface

dynamics is not possible since it would be completely smeared. The shape of

the free-surface is compared to laboratory experiments and the dynamics of

the dispersed phase is qualitatively analyzed. The second example corresponds

to the bubble column reactor presented in the ASMM chapter; here the gas

hold-up and axial velocity are compared again with the CARP experiments

but the dynamics of the free surface is also calculated. This allows to free

the top boundary condition needed to allow the volume expansion, since the

free surface is included within the domain. To help in the analysis a one

dimensional model is proposed able to predict the gas hold-up and the free

surface position. These are original examples which give a contribution to the

general discussion of the coupled models.

The last two examples have been presented in the literature in the past,

nevertheless a new insight of them is given proposing new ways to evaluate the

convergence to the DNS solution. Therefore, the Dam Break test is revisited,

comparing the overall behaviour of the solutions for both VOF and extended
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Algorithm 6 Pressure based extended mixture solver

1. Solve the mass conservation equation for the primary phase for αqn+1, assemble the mass face flux
Fρmn+1 and get the new mixture density ρmn+1 by a loop of nAlphaSubCycles cycles where:

a) The relative velocity at faces is calculated as a flux from a combination of Eqn. (3.25) and Eqn.
(5.11) controlled by the indicator function θf

FNL,n =
(
1− θf

)
~vrc (αq

n)a · ~Sf + θf nf min

Cα ∣∣ΦL,n∣∣∣∣∣~Sf ∣∣∣ ,max

∣∣ΦL,n∣∣∣∣∣~Sf ∣∣∣


b) The αq equation [Eqn. (5.10)] is solved 0 < ν < nAlphaCorrectors times by the MULES
integrator which also returns the limited flux Fαq . This flux is computed using TVD reconstruction.

αqn,ν+1 − αqn

∆t
V +

∑
f

{
(αq

n,ν)f F
L,n + [αq

n,ν (1− αqn,ν) ]f F
NL,n,ν

}
= 0

c) The new mass face flux for the present sub-cycle is calculated by Eqn. (5.20). At the end of the
loop the final mass face flux is calculated by Eqn. (5.21) and the density is updated

Fρm,sc,i = Fαq (ρq − ρp) + F ρp Fρm =
∑
i=1

nsc
∆tsc

∆t
Fρm,sc,i ρm

n+1 = αq ρq + (1− αq) ρp

2. Solve the momentum predictor [discretized version of the second equation in Eqn. (7.1)] for ~̃vm if
the momentumPredictor flag is set to yes

ρm
n+1~̃vm−ρmn~vm

n

∆t
V +

∑
f Fρm

n+1 ~̃vm · ~Sf =
∑
f

(
µmn+1

)
f

(
~∇~̃vm

)
f
· ~Sf

+
(
~∇~vmn · ~∇µmn+1

)
V −

∑
f

(
1− θf

) [
αqn+1

(
1− αqn+1

) ρq ρp
ρmn+1 ~vqp

n ⊗ ~vqpn
]
f
· ~Sf

+R
{
θf (σκ)f

(
~∇αqn+1

)
f
−
[
(~g · ~x)f

(
~∇ρmn+1

)
f
−
(
~∇prghn

)
f

] ∣∣∣~Sf ∣∣∣}
3. Do the PISO loop 0 < ν < nCorrectors times, where:

a) A face flux is calculated using the H(~vm) operator with ~̃vm obtained in the momentum predictor.
This face flux does not take into account the effects of the gravity

Fmu
ν+1

f =

H
(
~̃uν
)

aP


f

· ~Sf + ddtPhiCorr(1/aP , ρm, ~vm
ν , Fm

ν)

The flux is then adjusted to obey continuity, via adjustPhi(Fmuν+1, H(~vmν)/aP , prgh
ν) method

b) The final proposed flux is found adding the effects of of the gravity and the surface tension

Fm
ν+1

f = Fmu
ν+1 − (~g · ~x)f

(
~∇ρmn+1

)
f

∣∣∣~Sf ∣∣∣
(aP )f

c) The pressure equation is assembled and solved nNonOrthogonalCorrectors times for prgh
ν+1

∑
f

[(
1

aP

)
f

(
~∇prghν+1

)
f

]
· ~Sf =

∑
f

Fm
ν+1

f −
∑
f

[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf

d) The proposed flux is then adjusted by the effect of the pressure and then the center-of-volume
velocity at the cell centers is adjusted as well

Fm
ν+1

f = Fm
ν+1

f −

[(
1

aP

)
f

(
~∇prgh

)
f

]
· ~Sf

~vm
ν+1 = ~vm

ν+1 +
1

aP
R
[(
Fm

ν+1
f − Fmuν+1

f

)
(aP )f

]
e) Finally the static pressure is reconstructed p from the modified prgh as p = prgh + ρm ~g · ~x

4. The face flux for the velocity of center-of-volume is recovered from the flux using Eqn. (6.4)

FL,n+1 = Fm
n+1

f −
[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf
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methods. In addition, a measure of the correct dynamics of the dispersed phase

is given which allows to estimate an improvement factor of the extended model

respect to the VOF model. Finally, the Rayleigh-Taylor instability, which was

presented in the VOF chapter together with the Dam Break test, is newly

calculated using the extended model. A qualitative comparison of the solutions

is made and the dynamics of the dispersed phase in each case is compared

using an integrated measure.

7.5.1 Interaction of a bubble plume with the water sur-

face

The first example gives a semi-quantative validation from the phenomenon of

interaction of a bubble plume and the water surface. This phenomenon appears

in blowouts in offshore drilling, broken gas pipelines and natural undersea

gas releases forming big bubble plumes. In addition bubble plumes of small

extension are used for mixing process in reservoirs or waste water treatment,

chemical reactors and metallurgical processes [see (Friedl and Fanneløp, 2000)

and references, (Zanotti, 2007)].

The example is taken from the cited work of Friedl and Fanneløp and

consists on the generation of a bubble plume in laboratory conditions released

from the bottom of a water pool as is shown in Figure 7.5. The pool has a square

cross-section of 1 of side and 0.95 in height. The free surface is set at Hv = 0.66.

The air is released from the bottom of the tank through a square duct of area

Ai = 0.0005067 and length of hi = 0.04502 with a release velocity of vi = 2.6

which corresponds to the case a4 of the reference. The physical properties of

the fluids are ρq = 1000, νq = 1 × 10−6, ρp = 1, νq = 1.48e − 05 × 10−5 and

σ = 0.07. The gravitational acceleration is ~g = (0, 0,−9.81).

As is expected, when the bubble plume reaches the free surface it is disturbed

forming a fountain with different shapes but having in common a greater

disturbance near the center of the fountain and then decaying to the sides of
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Figure 7.5: Geometry for the a4 case of bubble plume in (Friedl and Fanneløp,
2000). Where Ai and hi are the transversal area and height of the inlet duct.
The shaded zone indicates the original free surface position and the bell-shaped
curve the mean free surface for the x− z plane.

Figure 7.6: Mean shape of the fountain presented in Figure 7.5 [adapted from
(Friedl and Fanneløp, 2000)].
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the pool, as is shown Figure 7.5. The results reported in the reference are a

mean of the experimental results which can be fitted by a bell-shaped function

as in Figure 7.6. The expression of the mean free surface shape on a given

vertical plane (x− z in the figure) is presented in Eqn. (7.9)

h(r) = hf e−r
2/b2f (7.9)

where h is the height of the mean free surface for a given radius r (the fountain

is considered to be circular), hf is the maximum height of the fountain and bf

is the semi-diameter of the fountain.

Thus, two series of simulations were done, the first one with the standard

VOF solver (interFoam) and the second one with the extended model. Each

series had three cases with similar settings but with different size hexahedral

meshes: a) meshed with blockMesh with 364,000 elements; b) meshed in

GambitR© with 574,975 elements but using more advanced local refining

techniques for a better capturing of the plume and the free surface; c) resulting

of the subdivision by two in the three directions of the previous mesh using

the tool refineMesh, giving a mesh with 4,599,800 elements and the same

refinement properties of the original mesh.

Respect to the boundary conditions for αq, zeroGradient was set in all

walls except for the top and the inlet. On the top the inletOutlet boundary

condition was set using a fixed value of zero if the flux is ingoing. At the inlet

the value of αq was fixed as αq = 0 (fixedValue). Respect to the boundary

conditions for the modified pressure it was set as buoyantPressure for all the

walls and the inlet. At the top the totalPressure boundary condition was

set with a value of zero. Finally, for the center-of-volume velocity the non-slip

boundary condition was set for all walls except for the top and the inlet. At

the top the pressureInletOutletVelocity was set. The inlet was set with

a fixedValue boundary condition with ~u = (0, 0, 2.6). The relative velocity

law needed by the zones solved with ASMM in the coupled model was set

with a = 0 giving a constant velocity. The value reported in the reference is
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vqp = 0.35. The parameters for model coupling were set as γ0 = 0.025 and

ε = 5× 10−3.

The solver was set with the following parameters: momentumPredictor=no,

nCorrectors=3, nNonOrthogonalCorrectors=0, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=1. The maximum Courant number for this running was set

as 0.5 which kept the stability even though is it greater than the recommended.

The first case (VOF with coarse mesh) was run until t = 10 in order to

reach the full development of the bubble plume, then it was run to t = 20.

The left runnings were done mapping the coarse mesh solution for t = 10 into

the finer meshes and then running to t = 20. The calculation of the mean

values reported for the experiments were done always with t = 10−20 runnings.

The general results are reported in Figure 7.7 for VOF and in Figure 7.8

for the extended model. From the first figure it is clear that the coarse mesh

captures few details of the surface mesh, in addition the pool has non-physical

chunks spread at the sides of the plume (the grayscale has been saturated to

white at αq = 0.8 in order to easily see the gas zones). The refinement of the

mesh in b) and c) improves the surface capturing and at the same time the

VOF method increases its ability to capture the break-up of the big bubbles.

The break-up gives small chunks and bubbles which are not correctly removed

by buoyancy and then stay in the pool advected by the lateral flow from the

plume to the sides. It is expected that successive mesh refinements could finally

capture the fine bubbles dynamics as will be presented later for the Dam Break

case. The observation of the pictures from the experimental work confirm

that the bubbles concentrate in the plume and there is not recirculation [see

Figure 3.3 in (Friedl, 1998)]. On the other hand the second figure represents

the solution for the three meshes with the extended model; the effect of the

mesh refinement is clear again. At the same time the fragmented chunks are

properly removed by the activation of the ASMM giving a clear plume and

keeping the pool free of zones without physical meaning.
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Figure 7.7: Solution for the bubble plume with VOF for three meshes, a) coarse,
b) fine, c) finest. The grayscale is saturated to white at αq = 0.8.

Figure 7.8: Solution for the bubble plume with the extended model for three
meshes, a) coarse, b) fine, c) finest. The grayscale is saturated to white at
αq = 0.8.

In addition to this qualitative analysis the shape of the free surface can be

compared to the expression given in Eqn. (7.9). To do so, the void fraction αq

is sampled in 200 points in 0.6 6 z 6 0.8 on 99 equi-spaced vertical lines in

−0.49 6 x 6 0.49 on the x−z plane. Then, the transition from zero to one (gas

to liquid) is detected giving the position of the free surface (strictly speaking it

could capture some droplets from wave splashing, this effect is supposed to be
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non-determinant). This sampling is done with ∆t = 0.05 and then the mean

for z values is obtained for each point in x; finally, the values are referred to

the experiments as r̃ = xf/bf and z̃f = (z̃f − hoffset) /hf , where hoffset allows

the adjustment of the offset of profiles with respect to the quiescent water level.

The same is done for the bell-shaped function as r̃ = r/bf and z̃f = h(r)/hf .

The values for hf and bf are, hf = 0.038 and bf = 0.101. The results are

presented in Figure 7.9 and show the positive effect of the refinement. The

reconstruction of the free surface is similar in both of the models showing that

the extended method retains the surface capturing capabilities of the VOF

model. In addition if the solutions are compared to the experimental fitted

curve it is clear that the fountain width is underestimated in both of the models.

This effect is attributable to the lack of turbulent dispersion modeling. Here is

important to note that the VOF model includes the effects of the turbulence

only in the momentum equation in order to model the non-resolved scales of

eddies. The scales of the interface are supposed to be captured by the mesh,

therefore no diffusion term is added in the conservation equation of the void

fraction. The extended model offers the possibility to add the turbulence term

in the momentum equation and also to include the effect of turbulent dispersion

in the non-resolved scales of the interface. It is clear that the diffusive terms for

the void fraction have to be activated only in regions where the scales cannot

be resolved by VOF (using the indicator function θ).

7.5.2 Bubble reactor with free surface capturing

The dynamic effects of a bubble plume can be used to obtain a better

interaction between reagents; this effect is used in the bubble reactors. This

kind of systems was studied in section 6.4 by means of the ASMM in a

fixed domain shorter than the real geometry. This simplification was done

since the real top boundary is movable due to the added volume given

by the inlet of gas. Thus, the domain is set with the unexpanded volume

and the fluid is freed to expand at the top by a inletOutlet boundary

for the velocity. In view of the results obtained for the bubble plume it

would be valuable to apply the extended model to the reactor case and
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Figure 7.9: Mean surfaces for the bubble plume with a) VOF, b) Extended
Model. free surface theoretical model; coarse mesh; fine
mesh; finest mesh.

check the solution, looking for a better treatment of the top boundary condition.

To start the analysis, a simplified model will be solved, given by a one

dimensional problem of a column reactor with bottom inlet. As follows from

Figure 7.10.a) the z coordinate corresponds to the axis of the reactor, h0 is

the original unexpanded height of the reactor filled with αq = 1 and hT the

total height of the domain. In addition vp,i and αp,i = 1 are the velocity and

the secondary phase fraction of the inlet and vp,a, αp,a vq,a and αq,a the same

magnitudes for the secondary and primary phase in an arbitrary point a. The
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entered volume of phase p crosses the volume of phase q due to the relative

velocity vpq until reaching the free surface. This transition is not instantaneous

(for a finite vpq), therefore a new volume is hold within the reactor added to

the original volume of phase q. In this scenario it is possible to find the final

free-surface position for a given inlet velocity and phase fraction. Then, the

analysis starts with the incompressibility restriction [first equation in Eqn.

(7.1)] in one dimension as is shown in Eqn. (7.10)

∂

∂z
u = 0 (7.10)

where u is the velocity of center-of-volume in one dimension. This restriction

implies that u is constant in all the domain. From the definition of this velocity

[Eqn. (3.26)] and using it at the inlet and at the point a the relation shown in

Eqn. (7.11) is found.

vp,i αp,i = vp,a αp,a + vq,a αq,a = vq,a + αp,a vpq,a (7.11)

On the other hand, if the mass conservation equation from the primary

phase [third equation in Eqn. (7.1)] is taken in the steady form as is shown in

Eqn. (7.12)

∂

∂z
uαq +

∂

∂z
αq (1− αq) vqp = 0 (7.12)

this implies that uαq + αq (1− αq) vqp is a constant in all the domain. Since

αp,i = 1 and αq,i = 0 this constant is zero. After some algebraic manipulations,

this expression reduces to vpαp + vq (1− αp) + αp vqp = 0, which in expanded

form reads as in Eqn. (7.13) for the point a.

vp,aαp,a − vq,aαq,a = vq,a + αp,a vpq,a (7.13)

Since the r.h.s. of Eqn. (7.11) and Eqn. (7.13) are equal the relationship

given in Eqn. (7.14) is obtained

αp,a vpq,a = αp,a vrc (1− αp,a)a = vp,iαp,i (7.14)
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Taking a = 1, as is usual for bubble relative velocity laws the obtained

expression is given by Eqn. (7.15)

α2
p,a vrc − αp,a vrc + vp,i αp,i = 0 (7.15)

solving this quadratic equation for αp,a it gives which is shown in Eqn. (7.16)

αp,a =
1

2

[
1±

√
1− 4 vp,i αp,i

vrc

]
(7.16)

with the condition of vrc > 4 vp,i αp,i. Now, it is possible to find the value αp

within the reactor for a pure p phase at the inlet with the inlet velocity vp,i and

vrc as the constant relative velocity. Here it is important to note that the valid

results of this equation are in the [0,1] interval. Then, recalling the complete

primary phase conservation equation for this case, as it is shown in Eqn. (7.17)

∂αq
∂t

+
∂

∂z
uiαq −

∂

∂z
αq (1− αq) vrc αq = 0 (7.17)

it is clear that this is an hyperbolic equation with flux F = uiαq −
αq (1− αq) vrc αq where ui is the velocity of center-of-volume at the inlet

and is equal to vp,i since αp,i = 1. The derivative of this flux is given by Eqn.

(7.18)

∂F/∂αq = F′ = ui − vrc αq (2− 3αq) (7.18)

The obtained expression can be used to predict the transitory solution

of the hyperbolic problem and the final state. Taking vp,i = 0.03125 and

vrc = 0.4422 it implies by Eqn. (7.16) that the immediate value of the phase

fraction will be αp,a = 0.07853 or, in terms of the primary phase, αq,a = 0.92147.

This value contrasts with the phase fraction which fills the thank, it is αq,a = 1

and a Riemann problem is given with αqL = 0.07853 and αqR = 1. The local

velocities given by the flux function derivative [(Eqn. (7.18)] are: F′L = 0.343

and F′R = 0.47345 [see Figure 7.10.b)], since the local velocities are diverging

and both are positive the predicted wave is a right-going rarefaction. On the

other hand the free surface presents the state αqL = 1 and αqR = 0, with local

velocities F′L = 0.47345 and F′R = 0.03125, since the left velocity is greater
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than right a right-going shock is formed. When the rarefaction wave reaches

the free surface the final state is developed and volume reaches its maximum

value. The solution for t = 1 and the steady state are shown in Figure 7.10.c).

The volume phase p which is hold constantly within the pool leads to an

expansion respect to the original volume of the reactor, changing the position

of the free surface. Taking an unitary cross section the final volume can be

calculated as in Eqn. (7.19)

hF =
h0

αq,a
(7.19)

In the present problem, where h0 = 1.045, it gives hF = 1.045/0.92147 ∼=
1.134. This value can be compared with the position of the free sur-

face in Figure 7.10.c) given by a mixture solver and good agreement is

found. The boundary and solver settings are similar to the 1D cases

presented in section 6.4.1 except for the velocity which was set as fixedValue

vm = (0, 0, 0.03125), since the inlet has a pure phase ~u = ~vm, at the bottom inlet

and zeroGradient at the outlet and for αq which was set as αq = 0 at the inlet.

From this example is possible to see clearly how the reactor changes its

volume due to the injection of volumetric flux by the inlet. In addition the

model used for the numerical solution was able to capture eventual rarefactions

and shocks, the rarefaction is associated to the plume front and the shock

represents the free-surface. At first glance using only the mixture model seems

to resolve the jumps properly, compressing the interface. This is true only for

interfaces which are perpendicular to the relative velocity, but not in general

cases. So, in these cases, the numerical compression proposed in section 5.3 is

preferred, since it is perpendicular to the interface whatever its direction.

Having these insights about how the reactor works when the free-surface

is modeled, the original reactor’s problem is run again using the complete

geometry height of h = 1.2 and initialized with the dense fluid (liquid)

until hL0 = 1.045, as is shown in Figures 7.11.a-c). The mesh has 44 × 690
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Figure 7.10: One dimensional reactor. a) sketch of geometry ; b) flux,
and flux derivative; c) initial condition, theoretical solution at �
t = 1, 4 steady state, numerical solution at t = 1, steady state.

elements and is also axi-symmetrical. The numerical parameters and boundary

conditions are similar except for the top where αq is set as inletOutlet

with αq = 0 for inflow. For the pressure the total pressure is fixed and the

velocity is set as pressureInletOutletVelocity. In order to allow for the

formation of the bubble-plume a diffusive zone was set with a extension of 0.25

from the bottom. This diffusive zone corresponds to a region where only the

ASMM is used, or in other words the indicator function is set as θ = 0. The

remaining parameters of the extended model are set as ε = 5×10−3 and γ0 = 0.1.
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Figure 7.11: Geometry and solutions for a cylindrical bubble reactor. a) sketch
of working principle, b) computational domain, c) gas hold-up, d) center of
mass velocity vector field.
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Once the model is run and after a transitory the free surface reaches a

stationary solution located h = 1.0986. The free surface has a slight slope

product of the bubble plume as is shown in Figure 7.11.d), the slope is a

function of the intensity of the bubble inlet. The velocity field is also obtained

and shown in Figure 7.11.e); as was expected, the main recirculation is formed

within the liquid zone below the free-surface. Over the free-surface the velocity

field corresponds to the gas phase which ends to escape by the top boundary.

In addition the center-of-mass velocity and gas hold-up can be examined

on a transversal profile (at y = 0.475); which is shown in Figure 7.12, the

results are similar to the ASMM case. Here it is important to note that

the CARPT measures where done in real reactor (including the free surface)

therefore they are more applicable in the present case. Respect to the 1D

model proposed, two comparisons can be made; first, the predicted value of

the secondary phase fraction, αp ∼= 0.07853, which is surprisingly similar to the

value reported in the profile αp ∼= 0.073418 (see Figure 7.12, right). The second

comparison is the value of the free-surface raising. The 1D model predicts a

new position in hF = 1.134. From Figure 7.10.d) it is clear that this value

is not reached; this is attributable to the fact that not all the liquid in the

reactor has trapped the predicted gas phase fraction. Then, adjusting the

effective bubble zone to 0.076 in the radius (see Figure 7.12), the transversal

area relationship is 0.0762/0.0952 = 0.64, then the new free-surface position

results to be hF = 1.045/(1− 0.078530× 0.64) = 1.1003 which is very close to

the calculated position for the free surface. These results clearly confirm the

validity of the 1D approximation in order to give a first assessment of the full

model results.

7.5.3 Dam Break test with degassing

The Dam Break test was presented in section 5.4.2 as a part of the examples

for the Volume of Fluid method. There, it became clear that after a first stage

of mixing the more dense fluid traps bubbles of the less dense fluid which are

lately removed by buoyancy. At the same time, droplets are formed from

the splashing of the waves which fall by the gravity. The capacity of the
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Figure 7.12: Velocity of center-of-mass and gas hold-up solutions as a function
of the radius for the bubble column reactor with free surface at top (y = 0.475).
♦ CARPT, ◦ ASMM (reference), � Two fluids (reference), × Present extended
solver.
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VOF model to capture the physics of the these particulate phases is directly

related with the mesh refinement. This effect becomes clear in Figure 7.13.

In this figure the solution for the Dam Break problem at t = 4 is shown for

six different meshes. The first picture (1×) shows the base mesh and then

it is successively refined dividing the mesh by two in both dimensions (the

example presented in the VOF chapter corresponds to the 1/16× mesh).

The expected effect is observed, as the mesh is refined the reconstruction of

the trapped bubbles is improved and the buoyancy is consequently better

modeled, therefore, the final state as a clean pool is reached more quickly. The

improvement in the surface capturing accuracy is also represented. The idea

behind the mesh refinement is also to obtain a reference mesh (whenever is

possible) which could be considered as a DNS solution of the problem. Since

the characteristic size of the bubble population is related to the surface tension

this allows to estimate a mean bubble size in order to give a relative velocity

law to the ASMM. In addition this size allows to determine from which mesh

size it is possible to capture the bubbles individually. If the diameter of the

bubbles for the Dam Break test is estimated in 1 × 10−3, the first mesh to

start capturing them would be between the 1/32× and 1/64× meshes.

The same analysis can be done for the extended model. It requires the

selection of a relative velocity law for the particulate phase. As was stated the

Dam Break test presents two particulate phases, droplets of the more dense

phase and bubbles of the less dense phase. The selection of the dispersed phase

model depends on the detection of which phase is continue and which phase is

dispersed. This is not a trivial problem and is not treated in the available

methods. The dispersed phase model is then selected based on a prescribed

behaviour either as bubbles or droplets. Another option is to use a symmetric

law for the dispersed phase model (Černe et al., 2001; Štrubelj and Tiselj,

2011), this approach has validity for αq ∼ 0.5 since the drag laws have similar

values, although is not completely correct reaching pure phases. From the

figures it is clear that is necessary to give the proper physics to the trapped

phase, then, a bubble model is selected for the relative velocity law with a = 1

and ~vrc = (0, 0.4422, 0). Then, the extended model is run with γ0 = 0.1 and
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ε = 5× 10−3 as the parameters for model coupling. The results are shown in

Figure 7.14 where the effect of the ASMM applied to the dispersed phase is

clear, the bubbles are removed giving a clear pool. The mesh refinement effect

is also noted in the improvement of the free surface capturing.

The solution for the Dam Break test is also presented as a validation for

the coupled model of Masuda and Nagaoka (Masuda and Nagaoka, 2006)

(classic Dam Break, without obstacle). The authors also note the lack of

capacity of VOF model to capture the bubbles and droplets and use the

Two-Fluid method to give the dynamics for the particulate phase, although

no quantitative validation is given respect to this effect. A possible measure

of the bubble removal is to track the inventory of the trapped phase along

time. To this end the solution for each time-step is filtered by prgh selecting

only the cells with prgh > 500. This threshold was selected in order to capture

big extensions of the more dense fluid containing either mesh captured or non

captured short scale interfaces with the less dense fluid. This subset of the

whole domain is denoted C. Therefore, the inventory of the less dense fluid is

given by Vp =
∑
C (1− α1). The results are shown in Figure 7.15 in linear and

semilogarithmic scale. The semilogarithmic scale in subfigure b) is given in

order to have a better insight of the degassing period from t ∼ 1.

From the figure is possible to assure that the extended model has better

convergence than VOF model reaching excellent degassing without increasing

the refinement. It becomes clear comparing the 1/4× solution for extended

model against the 1/32× solution for VOF model. They show similar evolution

and close level of degassing at the end of the run, giving an improvement factor

of 8. Here it is important to note that the VOF mesh is 82 = 64 times larger.

Following the logic the 1/8× solution presented for the extended model could

only be compared to a 1/256× VOF solution. It implies to go from a problem

of 2,008,352 cells to another one with 128,534,528 cells, which is only affordable

today by large HPC facilities.
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Figure 7.13: VOF solution for the Dam Break test at t = 4 for different meshes.
The grayscale is saturated to white at αq = 0.8.
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Figure 7.14: Extended model solution for the Dam Break test at t = 4 for
different meshes. The grayscale is saturated to white at αq = 0.8.

1E-5

1E-6

Figure 7.15: Evolution of the trapped phase volume, Vp, along the time for
different meshes and models. a) linear scale, b) semilogarithmic scale.
1× VOF; 1/16× VOF; 1/32× VOF; 1× extended;
1/4× extended; 1/8× extended.
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7.5.4 Rayleigh-Taylor instability

The final example corresponds to the Rayleigh-Taylor instability which was

also presented for the VOF method (see section 5.4.1). As was analyzed earlier,

after a first stage when the solution evolves with a mushroom-like structure

the problem turns into the stretching of these structures and eventually the

formation of droplets. The dynamics of this particulate phase can be correctly

modeled by the VOF method with greater or lesser detail depending on the

mesh size. Then, the main idea behind the use of an extended model is to give

the proper physics to the particulate phase in order to have a better prediction,

using the same meshes.

In order to evaluate the behavior of the extended model with respect to

VOF the Rayleigh-Taylor model was run with VOF in a reference mesh of 256

× 1280 (327,680) elements. This mesh is a refined version of the base mesh

presented as the VOF example, dividing each cell by two in both in x and y

directions. Therefore, the base is called 1×, and the reference is called 1/2×.

The series is completed with coarser meshes respect to the base mesh, which

are called 2× and 4×.

The problem is then run for VOF and extended models for all the meshes

using the boundary conditions selected for the original VOF example. In the

extended model the parameters for the indicator function are γ0 = 0.1 and

ε = 5× 10−3. The relative velocity law needed for the ASMM module in the

extended model is adjusted to ~vrc = (0,−0.1, 0) and a = 1 from the results in

the reference mesh. The results are shown in Figure 7.16 for three different

times t = 1.8, t = 3.6 and t = 9. In each time row the results for all meshes

are shown comparing each VOF solution with this extended model pair. The

first row corresponds to the end of the linear period, the second shows the

stretching of the original structures and the presence of fluid chunks, finally

the third row shows the falling droplets stage and the formation of the bottom

pool. From the figure is clear that the linear period is well represented by

both methods in all of the meshes since the mushroom-like structure is formed
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by long-scale interfaces. The stretching of the original structures shows the

deficiencies of the coarser meshes where non-physical fluid chunks starts to

appear. Finally in droplets/pool stage it is clear that the VOF method try

to agglomerate the chunks meanwhile the extended model, which is working

in ASMM regime treats the chunks without taking into account the mesh

resolution.

In order to compare the solution quantitatively the quadratic mean error is

calculated for the 4×, 2× and 1× respect to the 1/2× reference mesh for both

methods. In order to do so, all the results are mapped to the coarsest mesh.

The error is calculated as is shown in Eqn. (7.20) (Černe et al., 2001)

δcell(t) =
1

V1

n∑
i=1

[αq(t)− αq,REF (t)]2i (7.20)

where i is the index for the cells, n is the total number of cells in the mesh

and V1 =
∑n

i=1 αq,REF (t). The results are presented in Figure 7.17 and show

that the effects of the mesh refinement are clear until t ∼ 4.5. In this period as

the meshes are finer the solution is more accurate, this behavior is similar for

both VOF and extended models. In addition, each VOF solution is followed

by its extended model pair showing the capacity of extended model to capture

the long-scale interfaces while the mesh remains fine respect to the interface

scale. Once the big structures are stretched and the droplets are formed the

convergence in not completely clear.

Another quantitative validation is given by the accumulation of the more

dense phase in the bottom of the domain. It gives a measure of the correct

capturing of the falling droplets physics. Therefore, the integral of αq is

calculated in a box with its upper boundary located at y = 0.5 for all of the

times. The results shown in 7.18 allow to conclude again that the VOF and

extended model behave similarly, nevertheless the extended model seems to

converge better in a factor of 2, since the results for 2× in the extended model
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Figure 7.16: Extended model and VOF solutions for the Rayleigh-Taylor
problem at t = 1.8, t = 3.6 and t = 9 for different meshes. The grayscale is
saturated to black at αq = 0.16.
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Figure 7.17: Quadratic mean error for VOF and extended model solutions
respect to VOF reference for the Rayleigh-Taylor problem. 1× VOF
, 2× VOF, 4× VOF, 1× extended , 2× extended,

4× extended.

are comparable to the results for 1× in VOF. The same conclusion is obtained

comparing the results in 1× in the extended model and the results for 1/2× in

VOF.
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Figure 7.18: Accumulation of the more dense phase at the bottom of the domain
for the Rayleigh-Taylor problem. ◦ 1/2× VOF, × 1× VOF, � 2× VOF, 4 4×
VOF, 1/2× extended, 1× extended, 2× extended,
4× extended.
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Chapter 8

Conclusion

8.1 Conclusions of the work

At the end of this work it is possible to summarize the conclusions given in

each chapter completing an unified view of the results.

• A brief introduction to Finite Volume Method discretization was given in-

cluding a description of the High Resolution Schemes framework based on

Total Variation Diminishing schemes and the Flux Corrected Transport

(MULES) method as are implemented in OpenFOAMR©. The importance

of the description of this two methods is superlative since the correct

solution of the wave phenomena lately presented strongly relies in these

concepts. In addition, this description is a documentary contribution to

the user’s community.

• The Algebraic Slip Mixture Model was revisited giving emphasis in its

strengths respect to the Multi-fluid method and the main numerical

issues related to its implementation. These issues are related to the lack

of evolution equation for the pressure, due to a low-mach regime, and

the necessity of keeping the fraction bounded as a result of the whole

system of equation and not only due to the correct solution of the phase

fraction equation. The presence of different kind of waves was clearly

demonstrated by the study of the flux function of the phase fraction

151
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equation and by examples. To this end, a semi-analytic solution was

proposed based on the velocity of center-of-mass formulation. The results

of this solution served as a validation for the numerical solvers proposed

in later chapters. The relationship of these methods and the theory of

sedimentation of Kynch is also addressed.

• The solution of hyperbolic equations being able to capture the different

kind of waves led to explore the numerical methods capable to manage this

phenomena, therefore the KT method was recalled in order to present

a new Riemann-free solver based on a centered phase flux at faces.

The necessity of this kind of schemes was based on the structure of

FVM solvers. In these solvers a key concept is the conservation of

the transported quantities which requires the assembling and use of a

conservative flux which is the face version of the velocity. The theory

of Riemann-free solvers is generally associated to compressible problems

where a complete set of hyperbolic equations is available, including

an evolution equation for the pressure. Then, the whole problem is

given at cell centers. When the problem is related to low-mach cases

which leads to an incompressible formulation no evolution equation is

given for the pressure and the numerical solutions rely on Fractional

Step/SIMPLE/PISO methods. These methods require a spatial separation

of pressure and velocity variables which is usually achieved by staggered

grids or pseudo-staggered grids where the pressure is given at cell-centers

and the velocity is treated as a flux at cell faces. Thus, in the case of the

proposed method the velocity is given at cell faces by the pressure-velocity

coupling loop (PISO), this face flux is introduced to assemble the final

flux which is stabilized by using the information given by the local speeds

of the problem. In addition a modification to FCT methods was proposed

to allow the use of global maxima instead of the local ones.

• In order to set a base for the extended model the formulation of the VOF

model was recalled showing it as a derivation of the ASMM. In this way

the role of the relative velocity was presented giving place to the Weller-

VOF method. The algorithm of the interFoam solver was described

Márquez Damián, Santiago     - 2013 -



8.1. CONCLUSIONS OF THE WORK 153

and then used to solve two well known problems as the Rayleigh-Taylor

instability and the Dam Break test. These solutions give a basis for

further comparison with the methods which are the main objective of

this work.

• After giving all the basic construction blocks, an ASMM solver based on

Riemann-free and TVD methods was presented assuring the boundedness

via FCT methods. The solver was implemented and tested using the

examples devised in the third chapter and a sedimentation case from the

literature. In addition a laboratory case was solved related to bubble

column reactors.

• As the principal contribution of this thesis an extended mixture model

was presented and a high performance solver was implemented and tested

based on the ASMM and VOF solvers previously presented. This model

required the development of an indicator function to allow the correct

coupling of both ASMM and VOF methods. Then, a discussion of the

state of the art was given in order to have a better understanding of

the scope and limitations of the known coupled solvers, this discussion

includes the development of new theoretical and experimental solutions

which allow the validation of the models. Therefore the model was applied

in four examples. The first one was an experimental bubble plume taken

from the literature giving place to a new test case. The solution of this

case allowed to a semi-quantitative validation based on the inspection of

the solution and the comparison of the shape of the free-surface. This

last comparison was done against fitting curves based on experimental

results. The second case was given by the solution of the bubble column

reactor presented in chapter six. Here the presented technique allowed

to remove the restriction given by the top boundary condition. The

original problem included there an expansion boundary condition which

was no more necessary since the whole domain was solved allowing the

volume expansion within the reactor. This example includes a simple

and powerful 1D model which allows to predict the gas hold-up and free

surface position. Both examples are presented as contributions to the

Márquez Damián, Santiago     - 2013 -



154 CHAPTER 8. CONCLUSION

set of available validation problems. The third example relied on the

Dam Break problem, solved with the extended method and a comparison

was done against the VOF model which is the typical method used to

solve it. Therefore an improvement of eight times was found related to

mesh requirements based on a novel quantitative comparison. The final

example was the Rayleigh-Taylor instability where the extended model

was compared to VOF again showing the capacity of correctly capture

the big structures giving the same performance that VOF. In a second

stage where the problem evolves as particulate phases the extended model

gave an improvement factor of two. As a measure of the improvement

the accumulation of the primary phase at the bottom of the domain was

tracked.

• The implementation of the solvers required a process of coding, debugging,

and case testing. To this end, a debugging tool was presented in the

Appendix A, called gdbOF. This tool allowed to extend the capabilities

of the GNU Debugger to the OpenFOAMR© data structures showing them

by the text console and graphically by means of ParaviewR©.

8.2 Future work

The development of the models and tools related to the present thesis give

some answers, however, mainly leave a lot of open questions and much work

to be done. Part of the future work includes:

• To exploit more deeply the potentialities of the proposed ASMM solver

based on Riemann-free methods;

• Adding turbulent diffusion in the ASMM scale of the extended model in

order to improve the prediction of turbulent dispersion. The importance

of this matter was inspected in the bubble plume problem presented in

Chapter 7;

• It is necessary to explore the transitions from SSI to LSI and check the

correct capturing of the last. This case is presented in sedimentation cases,
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boiling, etc. In addition it is necessary to run tests checking whether is

necessary to have a definite LSI at the beginning of the time;

• The influence of the degassing velocity at the free surface needs to be

explored, this value is related to the compressive velocity used in VOF

zones and is now calculated only based on numeric considerations;

• An open question which deserves much attention and which has not been

discussed by the community is related with the interaction of the SSI and

the LSI. From the given examples it is clear that the dynamics of the SSI

is improved, now is necessary to know how the LSI simulation is improved

due to the better calculation of the SSI. This question is not so trivial

to answer since requires very accurate examples either theoretical or

experimental. A first assessment of this kind of dynamics could be given,

for example, solving the bubble plume case using turbulent dispersion for

the particulate phase. Therefore, the under-predicted width of the plume

given by VOF could be adjusted by the dynamics of the unresolved scale

given by the turbulent ASMM;

• Much of this work is inspired in the solution of sedimentation problems

and bubble plumes applied to the oil and gas and siderurgy industries. It

would be valuable to apply the developed methods to skimmer tanks and

bubble plumes in furnaces and other industrial real problems.
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Appendix A

A note in OpenFOAM R©

programming

A.1 Introduction

OpenFOAMR© is a CFD library that allows users to program solvers and tools

(for pre-processing or post-processing) in a high-level specific language. This

high-level language refers to the fact of writing in a notation closer to the

mathematical description of the problem, releasing the user from the internal

affairs of the code.

This programming approach contrasts with procedural languages approach,

such as Fortran, that are widely used in academic and scientific environments

but oriented to the low-level problem resolution, i.e., the manipulation of

individual floating-points values. Thus, in order to achieve the abstraction

from the low-level coding it is necessary to follow another way, therefore the

Object-Oriented Programming (OOP) paradigm is selected. This methodology

produces code which is easier to write, to validate and to maintain compared

with purely procedural techniques. Respect to OpenFOAMR© it is completely

written is C++. This language is less rigorously object-oriented than the

others languages (such as Java, SmallTalk or Eiffel), due to the inclusion of

some characteristics that are not strictly object-based. The main add-on is
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operator overloading, which is essential to working with tensor, vector and

scalar fields objects concepts as in the mathematical notation. On the other

hand, it is a multiplatform language and, due to that it is based on C, is as

fast as any other procedural languages (Cary et al., 1997).

There are five fundamental concepts in OOP, whereby OpenFOAMR©

achieves its objectives: modularization, abstraction, encapsulation, inheritance

and polimorphism(Weller et al., 1998). All of them are widely used in the code.

Polymorphism is a key concept in OpenFOAMR©, which is clearly demonstrated

by the proliferation of virtual methods (methods that must be implemented

in child classes). Examples of this include the implementation of boundary

conditions, which inherit from a base class patchField, so they have the same

interface but different implementations. Another example is the representation

of tensor fields: in this case geometricField is the parent class and various

tensor fields inherit from it: scalarField (rank 0), vectorField (rank 1) and

tensorField (rank 2), each one implementing the interface provided by the

parent class in different ways.

In addition to these OOP features, there are other tools of the C++ lan-

guage which are not strictly object-based and those are used in OpenFOAMR©.

They are the aforementioned operator overloading and the use of preprocessor

macros. Macros allow to insert code directly in the program, avoiding the

overhead of invoking a function (passing parameters to the stack, do a jump,

take parameters), without losing the code readability (Eckel, 2000).

As it was mentioned, using these techniques a library oriented to high-level

development is generated, ensuring that the user only has to take care about

the model to solve and not other details of coding (Mangani et al., 2007).

On the other hand, some problems could arise in the application creation

stage yielding to undesired results. There begins the code debugging work,

and this includes monitoring values corresponding to variables involved in

the resolution, such as, tensors, vectors and/or scalar fields defined at cell

or face centers, coefficients in the system matrix, and many other examples.
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In addition, debugging is not ever motivated by problems, but simply for

exploratory or control purposes (Ewer et al., 1995).

From the side of debugging tools in GNU-Linux platforms, gdb (GNU-

debugger) is the defacto standard. It includes a variety of tools for code

analysis and data inspection at run-time (Matloff and Salzman, 2008) which

gives a successful environment for OpenFOAMR© debugging. gdb offers a

powerful print command likely to inspect arrays in memory, nevertheless it

can be used directly only in simple data structures like lists or Fields. Data

examination gets hard when viewing the desired data involves polymorphism

and inheritance connected with the virtual methods used by the library. This

work requires to walk through the general class tree looking for the attributes

which are wanted to be inspected. Moreover, once desired attributes are

found, these maybe do not directly represent the information required by

the developer. In the case of the matrices generated by fvm methods, they

store the coefficients using the LDU Addressing technique (See gdbOF User’s

Manual, Appendix A1), therefore it is necessary to apply a decoding algorithm

to transform it into the traditional format (full or sparse), and to control and

operate with their values.

The main objective of the gdbOF tool is to solve problems like those

explained in the previous paragraph. This tool is implemented by gdb macros

and it is based on an implementation of gdb macros for STL (Standard

Library for C++) debugging (Marinescu, 2008). These macros simplify the

task of debugging the OpenFOAMR© libraries, performing the work actions

transparently to the user: the simple call of a gdb macro from console triggers

a sequence of actions that include: navigate the OpenFOAMR© class tree,

collect information and reorder it for representation in an user readable format.

Moreover, gdbOF includes the option of writing the output into a file on

disk and to view it graphically. This output is formatted appropriately to

be imported in numerical computation software such as Octave or MatlabR©,

thus allowing the developer to expand the possibilities of data inspection at

1http://openfoamwiki.net/index.php/Contrib_gdbOF
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debugging time.

In this appendix the design concept of the tools will be presented and several

cases will be solved as examples of use. These problems not only emerge in

an academic context but also occur in real application environments: the first

consists in a scalar advective-diffusive problem in which the emphasis will be

placed on the assembling and storage of matrices; the second consists in a

non-orthogonal correction method in purely diffusive tests; and the third is

an analysis of multiphase solvers based on Volume of Fluid Method. The last

examples are focused in volumetric and surface data inspection both in array

and graphical format.

A.2 Basic debugging

One of the most common tasks in the debugging process is to look at the values

stored in an array, that is possible in gdb with the command of Example 1,

where v is the array to analyze.

Example 1 View array.

$(gdb) p *v@v_size

Nevertheless, as it was pointed out in the previous section, data inspection

in OpenFOAMR© requires often more complex sentences. A typical example is

to verify at debugging time that a certain boundary condition is being satisfied

(typically when the boundary condition is coded directly in the solver and the

next field information is obtained after solving the first time-step). Boundary

conditions in OpenFOAMR© are given for each patch in a GeometricField,

then, assuming that the inspected patch is indexed as 0 (the attribute

BoundaryField has information of all the patches), sentence presented in Exam-

ple 2 is needed to observe the values on this patch, where vSF is a volScalarField.

Note that the statement in Example 2 doesn’t include any call to inline

functions, which could generate some problems in gdb, giving even more
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Example 2 View Boundary Field values.

$(gdb) p *(vSF.boundaryField_.ptrs_.v_[0].v_)

@(vSF.boundaryField_.ptrs_.v_[0].size_)

complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place and using

long statements. Using gdbOF commands, as it is shown in Example 3, the

same results are obtained. Note the simplification of the statement, this is the

gdbOF spirit, reducing the work needed to debug and perform the same tasks

more simply and transparently.

Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

There are many examples in OpenFOAMR© like the previous one in which

the necessity of a tool that simplifies the access to the complex class diagram

can be useful. Note that in the last example it wasn’t mentioned how the index

of the desired patch was known. Usually OpenFOAMR© user knows only the

string that represents the patch, but not the index by which it is ordered in the

list of patches. Here gdbOF simplifies the task again, providing the ppatchlist

command which displays the list of patches with the corresponding indexes.

Regarding to other basic gdfOF tools please refer to the gdbOF User’s Manual,

Chapter 2.

A.3 Advanced Debugging

A.3.1 System matrix

Increasing the complexity of debugging, there can be found cases involving not

only the search and dereference of some plain variables. A typical case is the

dumping of the linear system, Ax = b, generated by the discretization of a

set of differential equations which are being solved. This is stored using the
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LDUAddressing technique which takes advantage of the sparse matrix format

and saves the coefficients in an unusual way. This storing format and the

necessity of accessing to individual matrix coefficients lead to trace the values

one by one and to apply a decoding algorithm. There are two commands to do

this task, one to dump the data as full matrices and the other to dump the

data as sparse matrices.

In order to implement the necessary loops over the matrix elements,

gdb provides a C-like syntax to use iterative (while, do-while) and control

structures (if, else). These commands have a very low performance, so the

iteration over large blocks of data must be done externally. gdbOF becomes

independent of gdb for the assembly of matrices using another platform: the

lduAddressing vectors are exported to auxiliary files and the calculation is

performed in another language through calls to the shell. Thus, python is

chosen due to its ability to run scripts from console and having a simple

file management, both to load and to save data. This is performed by the

pfvmatrixfull/pfvmatrixsparse commands whose structure is presented in

Pseudo-code 1

Pseudo-code 1 Structure of gdbOF Command pfvmatrixfull/

pfvmatrixsparse.

1. Get parameters

2. Get upper and lower arrays with gdb

3. Redirect data to an auxiliary file

4. Format the auxiliary files: gdb format → python format

5. Call python script to assemble the matrix

(a) Read auxiliary files

(b) Set limits

(c) Do lduAddressing

(d) Complete with zeros

6. Format auxiliary files: python format → gdb format

7. Show output or/and save file in octave format. Add header (sparse case)
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A.3.2 Mesh Search

Another group of macros are those which search in the mesh. The afore-

mentioned inability of gdb to perform loops on large blocks of data extends

to the case of meshes, forcing thus to do the searching tasks using external

tools. In order to circumvent this issue OpenFOAMR©’s mesh methods are

used to accomplish these tasks. Thus gdbOF includes ad hoc stand-alone

applications to which call at debugging time to search in the mesh. Even

though this way means creating a new instance of the mesh in memory, the

cost in time and development is lower than that required to accomplish the

search on the mesh in gdb, implementing the loops in the gdb C-like syntax, or

in another language such as python. These OpenFOAMR© applications are in-

cluded in gdbOF package and they are compiled when the gdbOF installer is run.

Cases of searching on the mesh typically covered by gdbOF are those which

start with a point defined by [x, y, z], returning a cell index or values in some

field, either in the center of cell (volFields) or at each of its faces (surfaceFields).

Regarding to obtaining the value of a field at some point there is no more

inconvenient than finding the index of the cell or index of the cell containing

the point (via pfindcell command), whose centroid is nearest to it. The

corresponding volFields command returns two indexes: the index of the

cell that contains the point, and the index of the cell which has the nearest

centroid. Afterwards, the user put one of these indexes in the command

pinternalvalueslimits to extract the field value in the cell centroid, or to

observe the equation assembled for that cell with the command pfvmatrix.

The algorithm of this tool is presented in Pseudo-code 2, where it may

be noted that it does not exist any communication between gdb and other

platforms more that the shell call. The return of the results is through

temporal files, which must be generated in a particular format to be readable

by gdbOF. This particular technique is used since it is not possible to access

from a given process to the data of a second process which is being debugged.
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Pseudo-code 2 Structure of gdbOF Command pfindcell.

1. Get parameters

2. Call FOAM app. to make the search

(a) Start new case

(b) Do search

(c) Save results in a temporal file

3. Read temporal file using a shell script

4. Show the indexes by standard output

Another kind of searching through the mesh is to find a list of indexes

of faces belonging to a cell. This task operates in a similar way. The user

invokes a gdbOF command and this uses a back-end application. Despite

the simplicity of using the commands, the code is more intricate because the

storage of faces in a cell is not correlated, and the faces are subdivided in

internal or boundary faces (this requires walking through the list of faces

in the mesh). It is also needed to identify whether these faces are in the

internalField or in one of the patches in the boundaryField: the last option

requires seeking the patch which the face belongs to and the local index of the

face within this patch. With this information it is possible to obtain the field’s

value at that face. For more information see gdbOF User’s Manual Appendix C.

The gdbOF command psurfacevalues performs this search: given a cell,

find the indexes of the faces that make up it and the value of the chosen field

in each of these faces.

In pfindcell, the result stored on disk was only necessary to parse and

display it on console, but in this case, the indexes that returns the application

should be used to access to an array containing the values of the field. To do

that, this implementation requires to generate a temporal gdb macro (using a

shell script) because it is not possible in gdb to assign the result of extracted

data from a file to a variable. The Pseudo-code 3 presents this implementation.
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Pseudo-code 3 Structure of gdbOF Command psurfacevalues.

1. Get parameters and check if it is a surfaceField

2. Call FOAM application to make the search

(a) Start new case

(b) Do search

(c) Save results in a temporal file

3. Read temporal file using a shell script

4. Through each index:

(a) Generate temporal macro

(b) Call macro (this macro prints the results)

Note that the temporal gdb macro is generated on the fly and it is only

functional for the parameters generated in the temporal code of the macro

(field name and location of the desired value), then the loop in all faces of the

cell is transparent to the user and it is not a problem for debugging.

A.3.3 Graphical debugging

Having in mind that the aim of these tools is the debugging of field

manipulation software, the most powerful tool is finally presented. It consists

on the spatial visualization of fields in a graphical way.

This is a widely spread concept which reminds the first efforts in

graphical debugging (Dewar and Cleary, 1986). An usual application of

graphical debugging are general data structures (Waddle, 2001; Korn and

of Computer Science, 1999), and particularly linked-lists (Shimomura and

Isoda, 1991) and graphs (Parker et al., 1998). Data Display Debugger (Zeller

and Lutkehaus, 1996; Cruz et al., 2008) can be cited as an useful and general

tool for these purposes. Respect to the field manipulation software debugging,

it requires mesh manipulation and more sophisticated data analysis tools which
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drives to specific implementations (Grimm, 2002; Abramson et al., 1996).

In the gdbOF particular case, this objective summarizes previously presented

tools, and it is particularly tailored for volField debugging. Basically it consists

in an OpenFOAMR© format data dump tool callable from any debugging point

with optional .vtk file format for exporting (via foamToVtk tool) and ParaviewR©

(Squillacote and Ahrens, 2006) on the fly running. The algorithm to achieve

this goal is presented in Pseudo-code 4.

Pseudo-code 4 Structure of gdbOF Command pexportfoamformat.

1. Get parameters and check if it is a volField

2. OS environment setting (first run)

(a) Creation of data dump directories

(b) Symbolic linkage of constant/ and system/ to avoid data duplication

3. Get actual time-step and last data written name

4. Write OpenFOAMR© file format header and set field dimensions

5. Write internalField

6. Identification of boundary patches via ppatchlist calling.

7. For each patch, write boundaries’ surfaceFields.

8. Close file.

9. Call optional parameters (.vtk exporting and ParaviewR© running)

A.4 Tests

A.4.1 Scalar Transport Test

The first test consists of the unsteady advective-diffusive equation, in a two

dimensional geometry with a mesh of 3 × 3 cells, which is shown in Figure A.1.

The partial differential equation solved is presented in Eqn. (A.1).

∂ρφ

∂t
+ ~∇ · (ρ~vφ)− ~∇ · (ρν ~∇φ) = S(φ) (A.1)
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4 TESTS

4.1 Scalar Transport Test

The first study case consists of the unsteady advective-diffusive equation, in a bidimensional
mesh with 3 × 3 cells, which is shown in Figure ??.

0 1 2

3 4 5

6 7 8

insulated2

fixed2

insulated1

fixed1

Figure 1: Geometry and patches in scalar transport test (numbers idenfies cells

Partial differential equation is presented in Equation (??).

∂ρφ

∂t
+ ∇ · (ρUφ) −∇ · (ρΓφ∇φ) = Sφ(φ) (1)

with the boundary conditions shown in Equations (??), (??) and (??).

∇φ · n|insulated = 0 (2)

φfixed1 = 373[K] (3)

φfixed2 = 273[K] (4)

To solve this problem, the following parameters are selected: U = [1, 0][m
s
], Δt = 0.005[s],

ρ = 1[ kg
m3 ], Γφ = 0.4[m

2

s
], Sφ(φ) = 0 and φ0 = 273[K] ∀ Ω as initial solution.

In the Finite Volume Method, each cell is discretized as is shown in equation (??). (?)

φn
p − φ0

p

Δt
Vp +

�

f

Fφn
f −

�

f

ΓφSf (∇φ)n
f = 0 (5)

It is known that the assembly of a problem that includes convection using the upwind method,
results in a non-symmetric matrix, in addition, increasing the diffusive term and decreasing the
time step, this matrix will tend to be diagonal dominant.

Assembling the equation (??) in each cell for the initial time (t = 0.005), the system of
equations presented in (??) is obtained.

Figure A.1: Geometry and patches in scalar transport test (numbers identify
cells, figure credits to Juan M. Giménez).

with the boundary conditions shown in Eqns. (A.2-A.4).

~∇φ ·~n|insulated = 0 (A.2)

φfixed1 = 373[K] (A.3)

φfixed2 = 273[K] (A.4)

where ~n =
~Sf

|~Sf |
. To solve this problem, the following parameters are selected:

~v = [1, 0], ∆t = 0.005, ρ = 1, ν = 0.4, S(φ) = 0 and φ0 = 273 uniform along

the whole domain as initial solution.

In the Finite Volume Method, each cell is discretized as it is shown in

Eqn. (A.5)(Jasak, 1996).

φnP − φ0
P

∆t
VP +

∑
f

Fφnf −
∑
f

ν ~Sf (~∇φ)
n

f = 0 (A.5)

where φ is the unknown field, Vp the cell volume, ∆t the time-step, F the

flux of the advective field at the faces ~Sf . Finally the superscripts n and 0
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represent different time-steps and f subscript indicates a face value.

It is known that the assembly of a problem that includes convection using

the upwind method results in a non-symmetric matrix, in addition, increasing

the diffusive term and decreasing the time step, this matrix will tend to be

diagonal dominant.

Assembling the Eqn. (A.5) in each cell for the initial time (t = 0.005), the

system of equations presented in Eqn. (A.6) is obtained.

202.6φ0 − 0.4φ1 − 0.4φ3 = 55271.4

−1.4φ0 + 202.2φ1 − 0.4φ4 = 54600

−1.4φ1 + 201.6φ2 − 0.4φ5 = 54545.4

−0.4φ0 + 203φ3 − 0.4φ4 − 0.4φ6 = 55271.4

−0.4φ1 − 1.4φ3 + 202.6φ4 − 0.4φ5 − 0.4φ7 = 54600 (A.6)

−0.4φ2 − 0.14φ4 + 202φ5 − 0.4φ8 = 54545.4

−0.4φ3 + 202.6φ6 − 0.4φ7 = 55271.4

−0.4φ4 − 1.4φ6 + 202.2φ7 − 0.4φ8 = 54600

−0.04φ5 − 1.4φ7 + 201.6φ8 = 54545.4

OpenFOAM R© Assembly

The above system, which was assembled manually, can be compared with the

system obtained by running the OpenFOAMR© solver scalarTransportFoam.

Establishing a breakpoint in the proper code line, and calling the gdbOF

pfvmatrixfull command, the system matrix A is printed on the console. This

matches the manually generated system, showing the right performance of the

tool.

An additional feature of this command and others, is the ability to
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Example 4 View system matrix with gdbOF

$(gdb) b fvScalarMatrix.C:144

$(gdb) run

$(gdb) pfvmatrixfull this fileName.txt

$(gdb) shell cat fileName.txt

202.60 -0.40 0.00 -0.40 ...

-1.40 202.20 -0.40 0.00 ...

0.00 -1.40 201.60 0.00 ...

-0.40 0.00 0.00 203.00 ...

... ... ... ... ...

(gdb) p *totalSource.v_@9

{55271.4, 54600, 54545.4, 55271.4 ...

export data in a file format compatible with the calculation software

Octave and MatlabR©. To do this only one more parameter is needed in the

command invocation, indicating the file name. Thus, gdbOF is responsible for

exporting the values in the correct format, using rows, columns and values in

[row,col,coeff] format. pfvmatrixsparse exports the matrix of the system in

this format which has a header that identifies the file as a sparse matrix. This

method greatly reduces the size needed to store the matrices in the case of

medium or large meshes.

Regarding to patch commands this example is also useful to show their

potentiality. Suppose that checking a boundary condition is wanted, for

example the value φ = 3732 in the fixed1 patch. First of all, it is necessary to

know the index of this patch. Once the patch index is known, it is possible

to see its values (See Example 5). The output is an array with three values

corresponding to the boundary condition on each one of the three faces that

make up this patch.

Appendix B of the gdbOF User’s Manual shows how the internal and

boundary values (in volFields and in surfaceFields) are stored in OpenFOAMR©.

2In the case, T is used to represent the scalarField instead of φ because OpenFOAMR©

preserves φ for a surfaceScalarField which represents the flux through each face (φ =
Sf ·Uf )
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Example 5 View patches list with gdbOF

(gdb) ppatchlist T

PatchName --> Index to Use

FIXED1 --> 0

FIXED2 --> 1

INSULATED2 --> 2

INSULATED1 --> 3

FRONT_AND_BACK --> 4

(gdb)

(gdb) ppatchvalues T 0

(gdb) $1 = {373,373,373}

A.4.2 Laplacian Test

In this problem, gdbOF is used to monitor the field values and the resulting

equations system, in order to realize how the correction method for non-

orthogonal mesh used in OpenFOAMR© works3 (Jasak, 1996; Versteeg and

Malalasekera, 2007).

The problem to solve is defined in the Eqn. (A.7), with the boundary

conditions shown in Eqns. (A.8-A.10), and the non-orthogonal mesh presented

in Figure A.2.

~∇ · (ρν ~∇φ) = 0 (A.7)

~∇φ ·~n|insulated = 0 (A.8)

φfixed1 = 273 (A.9)

φfixed2 = φfixed1 (A.10)

Constants and initial conditions are: ρ = 1, ν = 1 and φ0 = 0 in the whole

domain.

3The diffusive term in a non-orthogonal mesh is discretized in the following way:
~Sf · (~∇φ)f = ~∆f · (~∇φ)f + ~kf · (~∇φ)f , where ~Sf = ~∆f + ~kf . The correction methods propose

different forms to find ~∆f .
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0

1

fixed1

insulated1

fixed2

insulated2

Figure 2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω.

Example ?? allows to verify the proper initialization of the internal field. The list shown
presents the values of the field.

Example 10 View internalField values with gdbOF

(gdb) pinternalvalues T
(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear function φ(x) =
ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution is constant, doing unnecessary the
second term in non-orthogonal correction ( kf · (∇φ)f = 0), but allows to compare the systems
generated by the different approaches in comparison with the generated in OpenFOAM R�, and
to determine which one is the used method.

Using minimum-correction approach (Δf = d·S
|d|

d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 + −3.29φ1 = −409.5

Using orthogonal-correction approach (Δf = d
|d|
|S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 + −4.5φ1 = −409.5

Using over-relaxed approach (Δf = d
d·S
|S|2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 + −5.25φ1 = −409.5

Example ?? shows how gdbOF extracts the equations system was shown. Here, the reader
can verify that the over-relaxed approach is implemented in OpenFOAM R�.

Figure A.2: Geometry and patches in Laplacian test (numbers identifies cells,
figure credits to Juan M. Giménez).

Example 6 allows to verify the proper initialization of the internal field.

The list shown presents the values of the field.

Example 6 View internalField values with gdbOF
(gdb) pinternalvalues T

(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear

function φ(x) = ax + b. If φfixed2 = φfixed1 then a = 0 and the solution is

constant, doing unnecessary the second term in non-orthogonal correction

[ ~kf · (~∇φ)f = 0]. It allows to compare the systems generated by the different

approaches in respect to the obtained in OpenFOAMR©, and to determine

which one is used as default.

Using minimum-correction approach ( ~∆f =
~dPN · ~Sf
|~dPN |

~dPN):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 +−3.29φ1 = −409.5
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Using orthogonal-correction approach ( ~∆f =
~d

|~d|
|~S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 +−4.5φ1 = −409.5

Using over-relaxed approach ( ~∆f =
~d

~d · ~S |
~S|

2
):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 +−5.25φ1 = −409.5

Example 7 shows how gdbOF extracts the equation system. Here, the

reader can verify that the over-relaxed approach is implemented as default in

OpenFOAMR©.

Example 7 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144

Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144

$(gdb) run

...

$(gdb) pfvmatrixfull this this.txt

Saved correctly

$(gdb) shell cat this.txt

-5.25 3.75

3.75 -5.25

(gdb) p *totalSource.v_@2

{-409.5, -409.5}

A.4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing

gdbOF functionality. In this case a 2D reference problem is solved, which

has analytical solution. Let be a rectangular domain with a Couette velocity

profile (see Figure A.3), and filled with a light fluid as initial condition

and the domain inlet with a heavy fluid in all its extension. The problem

to solve is the evolution of the heaviest phase through the domain along the time.
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Example 11 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144
Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144
$(gdb) run
...
$(gdb) pfvmatrixfull this this.txt
Saved correctly!
$(gdb) shell cat this.txt
-5.25 3.75
3.75 -5.25

(gdb) p *totalSource.v_@2
{-409.5, -409.5}

4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing gdbOF func-
tionality. In this case a 2D reference problem is solved, which has analytical solution. Let be a
rectangular domain with a Couette velocity profile (see Figure ??), and filled with a light fluid
as initial condition and a domain inlet with a heavy fluid in all extension. The problem to solve
is the evolution of the heavy phase thought the domain along the time.
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Interface

V = 1 (Moving wall)

V = 0 (Stationary wall)
∂α
∂n = 0

∂α
∂n = 0

α = 1

Inlet
∂α
∂n = 0

L = 10

h = 1

x

y

Heavier phase α = 1

Less dense phase α = 0

Figure 3: Geometry in interFoam test

This two phase system is solved by means of a momentum equation (See Equation ??) and
an advection equation for the void fraction function α (See Equation ??) (?)

∂ρU

∂t
+ ∇• (ρUU) −∇• (µ∇U) − (∇U) •∇α = −∇pd − g•x∇ρ + σκ∇α (11)

∂α

∂t
+ ∇• (Uα) + ∇• [Urα (1 − α)] = 0 (12)

In this case, g = 0, ρ = 1 and it can be shown that ∇pd and κ = 0 (no pressure gradient
is needed in a velocity driven flow and curvature vanishes due a linear interface). Taking this
in account, initial linear velocity profile is an spatial solution of Equation ?? so it reduces to
Equation ??.

∂U

∂t
= 0 (13)

Figure A.3: Geometry in interFoam test.

This two phase system is solved by means of a momentum equation [see

Eqn. (A.11)] and an advection equation for the void fraction function α [see

Eqn. A.12)] (Berberovic et al., 2009)

∂ρ~u

∂t
+ ~∇ · (ρ~u~u)− ~∇ ·

(
µ~∇~u

)
−
(
~∇~u
)
· ~∇αq = −~∇prgh − ~g · ~x~∇ρ+ σκ~∇αq

(A.11)

∂αq
∂t

+ ~∇ · (~uαq) + ~∇ · [~vqpαq (1− αq)] = 0 (A.12)

In this case, ~g = 0 and it can be shown that ~∇prgh and κ are both null (no

pressure gradient is needed in a velocity driven flow and curvature vanishes

due to a linear interface). Taking this in mind, an initial linear velocity profile

is an spatial solution of Eqn. (A.11) so it reduces to Eqn. (A.13).

∂~u

∂t
= 0 (A.13)

From this conclusion it is clear that streamlines are horizontal, and the

heaviest phase advances more quickly as streamlines are closer to the top

region, giving a linear interface front (See Figure A.3). This advancement is

governed by an advective equation for the indicator function which includes
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an extra term, suitable to compress the interface (OpenCFD, 2005).

Using Finite Volume Method Eqn. A.12 can be discretized as in Eqn. A.14

(Bohorquez R. de M., 2008)

αn+1
q − αnq

∆t
V +

∑
f

{
(αq)

n
f F

n + (αq)
n
f

[
1− (αq)

n
f

]
Fqp

n
}

= 0 (A.14)

where F n = ~un · ~Sf , F n
qp = ~vnqp · ~Sf and superindex n implies the time-

step. The compressive velocity, ~ur, and is computed directly as a flux:

Fqp = nf min

[
Cα

|φ|
|~Sf | ,max

(
|φ|
|~Sf |

)]
. Cα is an adjustment constant and

nf =
(~∇α)

f∣∣∣(~∇α)
f

+δn

∣∣∣ · ~Sf is the face unit normal flux with δn as a stabilization

factor (Berberovic et al., 2009). Fqp values are variable only vertically in this

example and will be checked at debugging time against those calculated from

theory, using gdbOF tools. In this case, because of how the advective terms

are calculated, it is necessary to show values at faces.

The domain was meshed as a 3D geometry due to OpenFOAMR© require-

ments (OpenCFD, 2012) with a 100 × 10 × 1 elements in the grid, so each

hexahedron has edges of 0.1 units in size. Since its definition and taking

Cα = 1, |~vqp| = |~u|, therefore Fqp = ~uqp · ~Sf = 0.01 |~vqp|
(
~̌vqp · ~̌Sf

)
. So taking

three distances from the bottom edge of the domain, y = 0.05, y = 0.45 and

y = 0.95, values for Fqp in faces with ~Sf aligned with x direction must be

|Fqp| = 0.005, |Fqp| = 0.045 and |Fqp| = 0.095 respectively.

Again, it is necessary to find the indexes of three cells with such y

coordinates, taking for example x = 0.05, and using pFindCell tool the results

shown in Example 8 can be obtained.

As it was explained in Section A.3.2 using only the index of the cell is not

enough to address the values in a surfaceField of a given field. Each cell has
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Example 8 View cell index in multiphase problem.

(gdb) pfindcell 0.05 0.45 0.05

RESULTS:

Nearest cell centroid cell number: 400

Containing point cell number (-1=out) : 400

as many surface values as faces in the cell, therefore it is necessary to show

all these values, extracting the information from faces whose indexes are not

necessarily correlative. The psurfacevalues gdbOF command simplifies this

task. Knowing the index of the cell to analyze, it returns the information on

each face about the field indicated in the command line parameters: boundary

face or internal face (categorized according to whether it has a neighbour or

not) and field value. If it is working with a 2D mesh, information is also

returned as in a 3D mesh, but it indicates which of these faces has an empty

boundary condition (see gdbOF User’s Manual, Appendix C or the Subsection

A.3.2).

Example 9 Example of usage of psurfacevalues for face defined field.

(gdb) psurfacevalues phir 400

internal Face:

$5 = 0

internal Face:

$6 = -0.0045

internal Face:

$7 = 0

empty Face

empty Face

boundary Face:

$8 = 0.0045

Therefore, applying this command to the cell previously found, makes it

possible to show φrf in all faces of that cell (See Example 9). Results are

consistent with the original problem. Two faces are marked as empty because

the mesh has only one cell in depth. This boundary condition is used by

OpenFOAMR© to represent no variability in direction perpendicular to the

face, allowing a 2D calculation. Faces 5 and 7 corresponds to top and bottom
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faces of the cell where flux is null. Finally, faces 6 and 8 have faces with

normals aligned with the velocity and the flux values are those predicted theo-

retically for y = 0.45. Values have different sign due to the normals orientation.

Regarding graphical debugging presented in Section A.3.3 pexportfoamformat

is a useful tool to inspect the α field as in Figure A.3. To do so, command is

invoked as in Example 10 and results are shown in Figure A.4.

Example 10 Field exporting to .vtk by means of pexportfoamformat.
ParaviewR© is invoked as well

(gdb) pexportfoamformat alpha1 VTK Paraview

Including internal field...

Including boundary field(s)

fixedWall

movingWall

inlet

outlet

frontAndBackPlanes

--------------------------------

Field saved to gdbOF_dump/alpha1.0.dump

--------------------------------

Exporting to VTK...

Launching Paraview...
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Figure A.4: α field representation in ParaviewR© using pexportfoamformat (with
VTK option).
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Appendix B

Resumen extendido en

castellano

B.1 Un modelo de mezcla extendido para el

tratamiento simultáneo de interfases de

pequeña y larga escala

B.1.1 Antecedentes

El estudio de los sistemas multifluido y multifásicos es de gran interés en el

ambiente cient́ıfico y tecnológico. La representación de este tipo de sistemas es

clave en la industria automotriz, enerǵıa atómica, petroqúımica, hidráulica, etc.

Para el abordaje de simulación de estos fenómenos se recurre generalmente

a diversos modelos, entre los más utilizados se encuentran: la Simulación

Numérica Directa (DNS), el Método de Volumen de Fluido (VOF) (Hirt

and Nichols, 1981), el Modelo Multifluido (Drew, 1983) y el Modelo de

Mezcla (Manninen et al., 1996). En la Simulación Numérica Directa aplicada

a flujos multifásicos el modelo es capaz de representar todas las escalas

geométricas de las distintas fases aśı como también las de la turbulencia.

Para ello, las ecuaciones completas de momento y conservación de masa

se resuelven en cada fase, imponiendo en las interfases y fronteras las

179
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condiciones de borde correspondientes. Es fácil ver que la aplicabilidad de esta

técnica queda circunscripta a casos simples o bien a problemas de laboratorio,

dado los grandes recursos computaciones que requiere, al menos en la actualidad.

En el caso del método del Volumen de Fluido el enfoque geométrico es

similar al DNS, siendo el tamaño de la malla el parámetro que determina qué

escalas serán representadas. Respecto de la turbulencia, por lo general esta es

tratada utilizando el filtrado, ya sea temporal (RANS) o espacial (LES).

Figure B.1: Relación entre los diferentes tipos de modelos utilizados en flujo
multifásico.

El Modelo Multifluido representa un grado de simplificación mayor que los

dos casos anteriores. Este se utiliza, por lo general, cuando ya no es posible

capturar mediante la malla las estructuras geométricas del flujo, considerando

que las distintas fases, sólidas, ĺıquidas y gaseosas se interpenetran. A tal fin se

resuelven ecuaciones de momento y conservación de masa para cada fase, en las

que, desde ya, aparecen términos que representan el intercambio de momento

entre fases (no considerando el cambio de fase ni el intercambio de enerǵıa).
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Finalmente el Modelo de Mezcla se vale de una simplificación adicional,

esta es que las distintas fases interpenetradas pueden considerarse directamente

una mezcla, para la cual se resuelve una sola ecuación de momento, y una

ecuación de conservación de masa por fase. Las propiedades f́ısicas utilizadas

en las ecuaciones son las de la mezcla (caracterizada por las distintas fracciones

de volumen).

Cabe destacar que si bien el Modelo de Mezcla representa una simplificación

respecto del Modelo Multifluido, el grado de aplicación de cada uno y la calidad

de los resultados depende, en gran medida, del problema. Una gran debilidad

del Modelo Multifluido reside en su mala postura matemática (Zanotti et al.,

2007) y en la falta de ecuaciones de cierre para los términos de transferencia de

momento entre fases (Manninen et al., 1996).

Aśı pues el modelo VOF es utilizado en problemas donde la captura de

interfase es crucial, manifestándose con importancia los fenómenos de tensión

superficial y adhesión (formación de gotas, fenómenos de capilaridad, break-up

de jets, etc.) o bien en casos donde la predicción de la posición de la superficie

libre es de interés primordial (toberas, problemas de hidráulica de superficies

libres, industria naval, reservorios, etc.). En estos casos las interfases se

consideran como de gran escala, tomando como referencia alguna medida del

tamaño de la malla (véase Figura B.2.a).

En el caso de los modelos Multifluido y de Mezcla su interés radica en su

capacidad de predecir el comportamiento de flujos con interfases de pequeña

escala –‘‘interfases dispersas’’–(véase Figura B.2.b) cuando no es posible o

deseable un modelado completo. Este tipo de interfases se presenta por lo

general en problemas de tanques de sedimentación, separación por ciclones,

flujo anular en refineŕıas, flujos con burbujas finas en intercambiadores de

calor, etc.

Tal como se han presentado, la Simulación Numérica Directa representa
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el único modelo con el que es posible abordar problemas de fluidos en

general (Scardovelli and Zaleski, 1999; Tryggvason et al., 2006), sin embargo,

las limitaciones actuales en recursos computacionales no hacen posible su

aplicación directa. Por otra parte, dado su falta de generalidad, el resto de los

modelos funciona normalmente en compartimentos estancos, atendiendo al

cumplimiento de las hipótesis asumidas en su formulación.

En esta situación queda abierta la discusión respecto del desarrollo de

nuevos modelos que permitan abordar fenómenos donde las escalas de las

interfases son variadas, o bien donde se producen transiciones entre unas y

otras (véase Figura B.2.c). Se plantean aśı casos como el flujo anular con

niebla (annular mist flow ó droplet annular flow ), la transición de flujo tapón

a flujo con burbujas (churn flow to bubbly flow) (Ishii and Hibiki, 2010) y

la evolución del fluido en un jet antes y después del break-up (Masuda and

Nagaoka, 2006), etc.

a) b) c)

Continuum liquid

Continuum gas Dispersed bubbles

Mesh

Figure B.2: Representación de interfases de pequeña y gran escala en un flujo
con burbujas. a) Interfases de gran escala, b) interfases de pequeña escala, c)
presencia de interfases de ambas escalas en simultáneo.

Respecto a estos casos, el estado del arte arroja aún pocas respuestas.

Uno de los primeros trabajos en el tema corresponde a Cerne et. al. (Černe

et al., 2001). En el se plantea el acoplamiento del modelo VOF con el

Multifluido (Dos Fluidos en este caso) a los efectos de resolver el problema de

la inestabilidad de Rayleigh-Taylor. Ambos modelos son tratados por separado,
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tomando un criterio de selección para uno u otro mediante la detección de

interfases de pequeña o gran escala. Más adelante Strubelj y Tiselj (Štrubelj

and Tiselj, 2011) continúan la ĺınea de trabajo anterior utilizando para la

captura de interfase el Método de Conjunto de Niveles (Level Set) y escri-

biendo el modelo obtenido completamente en términos del modelo de dos fluidos.

Otros autores como Yan y Che (Yan and Che, 2010) y Masuda y Nagaoka

(Masuda and Nagaoka, 2006) avanzan sobre la escritura de las ecuaciones para

VOF y Dos Fluidos en forma acoplada, cerrando el modelo por medio de los

términos de transferencia de momento y masa. Esta metodoloǵıa es utilizada

para resolver flujos con burbujas de pequeña y gran escala y break-up de jets.

Un aporte de interés es el propuesto por Bohorquez (Bohorquez R. de

M., 2008). En él, el Modelo de Mezcla es acoplado a VOF para la resolución

de flujos a superficie libre con sedimentos en suspensión en la fase ĺıquida.

Se plantean aśı interfases de larga escala (liquido-gas) y de pequeña escala

(sedimento-liquido). El sistema se resuelve utilizando una formulación de

mezcla general donde la clave reside en la definición de las velocidades relativas

entre fases.

Teniendo en cuanta entonces el estado actual del arte se propone la

formulación de un Modelo de Mezcla Extendido, tal que sea capaz de capturar

las interfases de larga escala (mediante una metodoloǵıa similar a VOF) y

aquellas de pequeña escala para las cuales el modelo se reduce al Modelo de

Mezcla clásico. Estas estrategias se desarrollan en un entorno de trabajo dado

por la libreŕıa OpenFOAMR©, la cual es una herramienta de computación

paralela orientada a objetos, capaz de manejar mallas estructuradas y no

estructuradas en dos y tres dimensiones y atendiendo a la modelización de la

turbulencia. En el contexto actual presentado estas estrategias se consideran

innovadoras y originales, realizando un aporte significativo al estado del

arte. Este tipo de estrategias se encuentra actualmente en discusión y,

particularmente en el caso del VOF combinado con el Modelo de Mezcla, no se

encuentran publicaciones salvo la citada.
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Aśı pues, la formulación en el continuo gas-ĺıquido resulta ser (Bohorquez

R. de M., 2008; Manninen et al., 1996):



∂ρ
∂t

+∇ · (ρm~vm) = 0

∂α
∂t

+∇ (~vmαq) +∇ · [αq (1− αq)~vqp] = 0

∂ρm~vm
∂t

+∇ · (ρm~vm ⊗ ~vm) = −∇prgh +∇ ·
(
τ
)
− σκ∇α− ~g · ~x∇ρm

(B.1)

donde la primera de las ecuaciones representa la conservación de masa, la

segunda el transporte de la fracción de volumen para la fase ĺıquida y la

tercera la conservación de cantidad de movimiento, ρm ≡ αq ρq + (1− αq) ρq
la densidad de la mezcla, ~vm ≡ [αqρq~vq + (1− αq) ρp~vp] /ρm la velocidad de

la mezcla o velocidad del centro de masa, αq es la fracción de volumen de

la fase primaria, ~u ≡ αq ~vq + (1− αq) ~vq es el flujo volumétrico de la mezcla,

~uqp ≡ ~vq − ~vp la velocidad relativa entre fases (resultante de una ley de cierre

relacionada con el fenómeno f́ısico en estudio), prgh ≡ p− ρ~g · ~x es la presión

reducida, σ la tensión superficial actuante en las interfases de larga escala, κ la

curvatura de dichas interfases, ~g la gravedad y ~x el vector posición.

La relación entre la velocidad del centro de masa ~vm y el flujo volumétrico

~u está dada por:

~vm = ~u+ αq (1− αq)
ρq − ρp
ρm

~vqp (B.2)

Respecto al tensor de tensiones τ , éste puede definirse como:

τ = τ
′
+ τ

′′
+ τ

′′′
(B.3)

donde τ
′

representa el tensor viscoso, τ
′′

el tensor de esfuerzos debidos a la

turbulencia y τ
′′′

el tensor de difusión de momento debido al movimiento

relativo del gas respecto del ĺıquido. Este último se define como:
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τ
′′′ ≡ αq (1− αq)

ρqρp
ρm

~vqp ⊗ ~vqp (B.4)

Si en el planteo de las ecuaciones (B.1--B.4) tal como se han presentado se

consideran las interfases de larga escala solamente y el ancho de estas como

infinitésimo, con continuidad en velocidades (~vqp ≡ 0), el sistema se reduce al

método VOF clásico. Si la velocidad relativa se considera nula solamente en

las ecuaciones de momento, pero se retiene el término no lineal de la ecuación

transporte de la fracción de volumen se tiene el método VOF tal como se

implementa en OpenFOAMR© (Berberovic et al., 2009) (Weller-VOF). Este

término no lineal artificial permite la compresión de la interfase más allá de los

esquemas de advección utilizados para tratar el término lineal de divergencia.

En esta formulación el valor de la velocidad relativa ~uqp queda como parámetro

libre seleccionándose tal que comprima la interfase de manera adecuada.

A los fines de plantear una formulación extendida se retienen entonces

las ecuaciones completas, sin embargo, dependiendo se trate de interfases

de pequeña o gran escala, se utiliza la definición f́ısica de ~vqp o la numérica

respectivamente (para el caso del Figura B.2, refiere a aquellas burbujas más

pequeñas o más grandes al tamaño caracteŕıstico de la malla). El mismo

criterio de selección se utiliza para aplicar el modelo de mezcla completo o la

implementación de Weller-VOF. Se hace necesario entonces adoptar o diseñar

un criterio de selección de modelos basado en las caracteŕısticas geométricas

del flujo. Uno de los disponibles es el criterio de Cerne (Černe et al., 2001),

basado en el análisis de un cuadro compuesto por una celda y todas su vecinas

por caras y aristas.

B.1.2 Desarrollo

La implementación y validación del modelo de mezcla extendido propuesto

requiere de varios bloques constructivos, muchos de los cuales se encuentran

disponibles actualmente, sin embargo es necesario también diseñar o adaptar

algunos de ellos. El marco de desarrollo mediante el Método de Volúmenes
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Finitos en entornos de alto rendimiento se encuentra dado por la herramienta

OpenFOAMR©. Si bien se trata de una herramienta de código abierto, las

bases numéricas y su implementación no se encuentran completamente

documentadas, con lo cual se hace necesario la revisión de algunos conceptos

que se presentan en el caṕıtulo 2. El desarrollo de aplicaciones requiere la

posibilidad de depuración para lo cual se implementó un entorno utilizable

dentro de la herramienta gdb la cual es presentada en el apéndice A.

Dado que se plantea la implementación de un modelo de mezcla extendido

basado en el modelo de mezcla clásico, se hace necesario entonces una revisión

profunda de éste método, desde su derivación desde el método de Dos Fluidos

hasta su solución en forma semi-anaĺıtica. Es aqúı donde se realiza un aporte en

la conceptualización del método y en la generación de soluciones semi-anaĺıticas

que permitan la posterior validación de los métodos numéricos propuestos.

Vale aclarar que la correcta solución del sistema dado por el Método de Mezcla

está fuertemente ligada al tratamiento de la ecuaciones de conservación de

masa de las fases dispersas. Estas ecuaciones son de carácter hiperbólico

presentando en su solución ondas de choque y rarefacción y ondas compuestas.

Es necesario pues abordar la solución de este tipo de ecuaciones, conocer su

estructura de autovalores y los métodos necesarios para capturar las ondas que

se presentan. Esta discusión se presenta en el caṕıtulo 3.

Siendo que las ecuaciones de conservación de masa para las fases dispersas

se resuelven en un contexto dado por un solver conservativo, donde el correcto

manejo del flujo en las caras es vital para lograr soluciones acotadas, se hace

necesario entonces adaptar los métodos conocidos al uso de flujos previamente

calculados en caras. La solución de este tipo de problemas es conocida en el

campo de los limitadores tipo Flux Corrected Transport (FCT), pero no en el

caso de los solvers tipo Riemann-free. Aśı pues en el caṕıtulo 4 se propone

un nuevo método Riemann-free basado en la reconstrucción de valores en

caras utilizando métodos de alta resolución y el uso de un flujo previamente

calculado en las caras, dado por el módulo de acoplamiento entre presión y

velocidad. Este método se extiende además al caso multidimensional. Por otra
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parte, dado que en algunas soluciones se permite la acumulación de una fase

más allá de los máximos y mı́nimos de la condición inicial, se hace necesario

ajustar el método FCT para trabajar con extremos globales.

La unificación del método VOF con el modelo de mezcla requiere

primeramente la escritura de ambos métodos en un entorno unificado. Se

procede entonces en el caṕıtulo 5 a derivar el método VOF a partir del modelo

mezcla, escribiendo éste último en una formulación combinada entre velocidad

de centro de masa y velocidad de centro de volumen (flujo volumétrico)

[véase Eqn. (B.1)]. Una vez que se ha encontrado la formulación de VOF se

presenta el algoritmo implementado en el solver interFoam de OpenFOAMR©

tal como se encuentra en la distribución original del software. Este solver es

utilizado para resolver dos casos paradigmáticos en la problemática multifásica

como son la inestabilidad de Rayleigh-Taylor y la rotura de presa (Dam-Break).

En el caṕıtulo 6 se presenta la implementación de un solver de mezcla

basado en esquemas Riemann-free y en métodos de alta resolución. Esta

herramienta es capaz de resolver con precisión problemas académicos centrados

en la presencia de ondas de diferente tipo, como aśı también problemas de tipo

industrial, lo cual es validado en los ejemplos presentados.

Habiendo revisado y comprendido los conceptos de base y desarrollado

las herramientas faltantes se aborda finalmente la solución de problemas

multifásicos atendiendo las diferentes escalas de la interfase. Para ello se hace

una revisión del estado del arte actual, resaltando las fortalezas y deficiencias

de cada método. La motivación para el desarrollo de métodos extendidos surge

de la falta de resolución que presentan los métodos de captura o seguimiento

de interfase, esta fenomenoloǵıa resulta evidente del análisis pormenorizado de

los problemas resueltos mediante el método VOF en el caṕıtulo 5. Se concluye

entonces que una vez que las estructuras de fluido caen por debajo de la

resolución de la malla comienzan a presentarse problemas de tensión superficial

numérica y errores en el cálculo de las fuerzas de flotación. Esto último se

debe a que no es posible mantener los valores de la fracción de volumen en los
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extremos de 0 y 1 (indicando un fluido u otro), apareciendo entonces nuevos

fluidos con densidades y viscosidades dadas por las propiedades de la mezcla.

Se presenta entonces un modelo de mezcla extendido capaz de capturar las

interfases de larga escala mediante el uso de la técnica VOF, mientras que

la dinámica de las escalas no resueltas por la malla es dada por el método

de mezcla. Para ello es necesario determinar que zona del dominio deben

ser resueltas con un modelo u otro, lo cual se logra mediante una función

indicadora basada en el gradiente de la fracción de volumen.

El modelo extendido es entonces aplicado a cuatro casos de prueba: una

pluma de burbujas en un tanque, un reactor de burbujas, el caso de la rotura de

presa y finalmente la inestabilidad de Rayleigh-Taylor. En el caso del reactor

de burbujas se propone además un modelo unidimensional que permite tener

un acercamiento al problema completo tanto en la fracción de volumen como

en la posición de la superficie libre. Los resultados demuestran que el modelo

extendido brinda una respuesta satisfactoria a los problemas de interfases de

múltiple escala logrando un reducción en los requerimientos del tamaño de

malla y mayor libertad en las condiciones de borde.
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