Tesis para la obtención del Grado Académico de Magister
en el campo de la Ecología Acuática Continental

FLUJO DE NUTRIENTES E IONES PRINCIPALES
EN LA CUENCA DEL LAGO PUELO (Arg.)

Autor:
Lino Arturo Pizzolon

Lugar donde se realizó:
Laboratorio de Ecología Acuática - F.C.N.
Universidad Nacional de la Patagonia
Esquel (Chubut) - Argentina
Universidad Nacional del Litoral
Facultad de Formación Docente en Ciencias
Santa Fé - Argentina

FLUJO DE NUTRIENTES E IONES PRINCIPALES EN LA
CUENCA DEL LAGO PUELO (Arg.)

Director:
Dr. Rosario Mosello
CNR-Istituto Italiano di Idrobiologia
Pallanza - Italia

Co-director:
Dr. Víctor Conzonno
Universidad Nacional de Buenos Aires
Facultad de Ciencias Químicas
Ciudad Universitaria – Nuñez

JURADO

Septiembre de 1998
AGRADECIMIENTOS

El mismo no se hubiera podido llevar a cabo sin la valiosa y gratuita colaboración del Lic. Miguel Harvey en la determinación de cationes por espectrofotometría de absorción atómica y sin la espontánea colaboración de la Bioq. Adriana Mangani, en las determinaciones de silice, sulfatos y cloruros; a ambos agradezco muy especialmente. Los análisis bacteriológicos se realizaron en colaboración con el Laboratorio de Medio Ambiente, SIPROSLALUD, Pcia. de Chubut; por los que agradezco al Lic. Rosendo Benedetti. El Lic. Luis Arias, colaborador en el proyecto, realizó los análisis de nutrientes. Agradezco a los Ings. Ruiz y Pongolini, de EVARSA Regional Patagonia, los datos meteorológicos y de caudal diarios de los ríos Azul y Quemquemtreu, durante el período de estudio.

Agradezco asimismo la imprescindible colaboración de la Administración y guardaparques del Parque Nacional Lago Puelo en la toma de muestras en el Lago, y en la toma de las muestras semanales en el río Azul; a la Lic. Laura Miserendino por la toma de las muestras bimensuales en el río Azul y Quemquemtreu; a la Lic. en Cs. Ftales. Tiziana Cerrutti, por la compilación de un mapa forestal de la cuenca del río Azul y el cálculo de las respectivas áreas de cobertura.

Agradezco además:

Al INTA-A.E.R. El Bolsón por la información agropecuaria.

A las autoridades municipales y respectivos Juzgados de Paz de la Comarca Andina por la información demográfica y ganadera.

Al Ing. Jorge Irizarri y al Ing. Carlos Lopez por sus valiosos comentarios sobre los suelos volcánicos de la región andino-patagónica. Al Ing. Carlos López también por su orientación bibliográfica sobre las publicaciones regionales. Al Dr. Planas por sus comentarios y facilitación de información de circulación restringida.

A la Geól. Cecilia Ubaldón por su orientación bibliográfica y su tiempo para discutir temas de geología y mineralogía regional, extensible también al Geól. Oscar Martínez.

Al Ing. Edmundo Getar, tabla de salvación ante los escollos informáticos.

Al Dr. Ricardo De Bernardi, director del CNR-Istituto Italiano di Idrobiologia (Pallanza) por las facilidades brindadas para la estadía de tres meses en mismo.

A todos los que de una u otra forma colaboraron en este estudio
DECLARACION FORMAL DE AUTORIA

Yo ..LINO ARTURO PIZZOLON..
declaro que soy autor del presente trabajo, que lo he realizado en su integridad y no lo he
publicado para obtener otros grados o títulos. Esta tesis ha sido desarrollada y
parcialmente financiada como parte del proyecto de investigación "MODIFICACIONES
TROFICAS EN ECOSISTEMAS ACUATICOS EN LA CUENCA DEL LAGO
PUELO", Dir. Lino Pizzolon, PI N° 156/93, del Consejo de Investigaciones de la
Declaro he contado con la colaboración de Lic. Miguel Harvey, Lic. Luis Arias y Bioq.
Adriana Mangani, de la empresa EVARSA y de otras personas, cuyas contribuciones
quedan claramente reconocidas en los agradecimientos y en el texto.
INDICE GENERAL

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de tablas</td>
<td>8</td>
</tr>
<tr>
<td>Indice de Figuras</td>
<td>10</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td></td>
</tr>
<tr>
<td>1.1. Antecedentes</td>
<td>14</td>
</tr>
<tr>
<td>1.2. Antecedentes en la región</td>
<td>18</td>
</tr>
<tr>
<td>1.3. Área de estudio</td>
<td>19</td>
</tr>
<tr>
<td>1.4. Objetivos</td>
<td>19</td>
</tr>
<tr>
<td>1.5. Hipótesis de trabajo</td>
<td>24</td>
</tr>
<tr>
<td>2. METODOLOGÍA</td>
<td></td>
</tr>
<tr>
<td>2.1. Definición de variables</td>
<td>26</td>
</tr>
<tr>
<td>2.2. Estaciones de muestreo</td>
<td>27</td>
</tr>
<tr>
<td>2.3. Trabajos de campo</td>
<td>28</td>
</tr>
<tr>
<td>2.4. Cronograma de muestreos realizados</td>
<td>29</td>
</tr>
<tr>
<td>2.5. Trabajos de Laboratorio</td>
<td>30</td>
</tr>
<tr>
<td>2.6. Técnicas analíticas</td>
<td>30</td>
</tr>
<tr>
<td>2.7. Validación de los resultados</td>
<td>31</td>
</tr>
<tr>
<td>2.8. Métodos de estimación de las cargas</td>
<td>33</td>
</tr>
<tr>
<td>2.9. Análisis estadísticos</td>
<td>34</td>
</tr>
<tr>
<td>2.10. Parámetros morfométricos</td>
<td>35</td>
</tr>
<tr>
<td>3. DESCRIPCIÓN DEL ÁREA DE ESTUDIO</td>
<td></td>
</tr>
<tr>
<td>3.1. Geología</td>
<td>37</td>
</tr>
<tr>
<td>3.2. Geomorfología</td>
<td>40</td>
</tr>
<tr>
<td>3.3. Clima</td>
<td>45</td>
</tr>
<tr>
<td>3.4. Suelos</td>
<td>48</td>
</tr>
<tr>
<td>3.5. Hidrología</td>
<td>53</td>
</tr>
<tr>
<td>3.6. Vegetación</td>
<td>53</td>
</tr>
<tr>
<td>3.7. Uso del suelo</td>
<td>55</td>
</tr>
<tr>
<td>Áreas naturales protegidas</td>
<td>56</td>
</tr>
<tr>
<td>4. RESULTADOS</td>
<td></td>
</tr>
<tr>
<td>4.1. Hidrología</td>
<td>58</td>
</tr>
<tr>
<td>4.2. Sistema Azul-Quemquemtreu</td>
<td>64</td>
</tr>
</tbody>
</table>
4.2.1. Espectro iónico y nutrientes
4.2.1.1. El río Quemquemtreu
4.2.1.2. El arroyo Golondrinas
4.2.1.3. El río Azul
4.2.2. Bacteriología
4.2.3. Análisis de agrupamiento entre variables

4.3. Río Azul
4.3.1. Iones principales y silice
4.3.2. Nutrientes
4.3.3. Análisis de agrupamiento y factorial
4.3.4. Fluctuaciones temporales
4.3.4. Flujos químicos en la desembocadura del río Azul

4.4. Lago Puelo
4.4.1. Temperatura y transparencia
4.4.2. Espectro iónico de las aguas lacustres e influencia de los afluentes
4.4.3. Oxígeno disuelto y nutrientes
4.4.4. Ensayos complementarios

5. DISCUSIÓN

5.1 Procesos de meteorización en el río Azul
5.1.1. Estimación de los aportes atmosféricos
5.1.2. Composición iónica resultante de los porocesos de meteorización
5.1.3. Importancia de la ceniza volcánica como material parental
5.1.4. Comparación del espectro iónico de los ríos Azul y Quemquemtreu
5.1.5. Origen de las sales disueltas en el sistema Azul-Quemquemtreu
5.1.5.1. Comparación con los datos de cuencas monolítolóicas
5.1.5.2. Relación Ca/(Mg+Na+K) en el río Azul
5.1.5.3. Espectro iónico esperado a partir de la litología dominante
5.1.6. Importancia del pH y de la cobertura forestal
5.1.7. Fluctuaciones estacionales en la hidroquímica del río Azul
5.1.8. Influencia de los factores ambientales
5.1.9. Coeficientes de exportación de iones en la cuenca del Azul
5.1.10. Ideas para una carcterización de sub-regiones hidroquímicas

5.2 Dinámica de nutrientes
5.2.1. Nutrientes en el sistema Azul-Quemquemtreu
5.2.2. Relaciones entre caudal y concentración
5.2.3. Cargas y coeficientes de exportación
5.2.4. El nitrógeno como principal nutriente limitante
5.2.5. En nitrógeno en la cuenca del Puelo
5.2.6. ¿Puede considerarse la N-limitación como un patrón regional?

5.3 El lago Puelo como ambiente integrador
 5.3.1 Heterogeneidad espacial en la cuenca
 5.3.2 Heterogeneidad horizontal en el Lago
 5.3.3 Nutrientes limitantes en el Lago
 5.3.4 Estado trófico del lago Puelo

5.4 Calidad del agua en la cuenca del Puelo
 5.4.1 Bacteriología sanitaria en el sistema Azul-Quemquemtreu
 5.4.2 Otros indicadores de calidad del agua

5.5 Perspectivas

6. CONCLUSIONES

7. RESUMEN

8. SUMMARY

9. BIBLIOGRAFÍA

10. ANEXOS
INDICE de TABLAS

Tab. 2.1 Enumeración de las variables primarias
Tab. 2.2 Ubicación geográfica y descripción de las estaciones de muestreo
Tab. 2.3 Límite de detección y de cuantificación de las técnicas analíticas
Tab. 2.4 Resultado de los ejercicios de intercalibración (Proyecto AQUACON-MEDBAS)

Tab. 3.1 Estratigrafía de la cordillera de los Andes en la región de la cuenca del Puelo
Tab. 3.2 Parámetros morfométricos de la cuenca del lago Puelo
Tab. 3.3 Valores comparativos del índice de continentalidad de Gorzynsky
Tab. 3.4 Temperaturas medias en cuencas binacionales argentino-chilenas
Tab. 3.5.a Módulo histórico de algunos ríos aforados en la cuenca del Puelo
Tab. 3.5.b Caudal medio mensual histórico de los ríos Azul y Quemquemtreu
Tab. 3.6 Cobertura forestal en la cuenca del río Azul
Tab. 3.7 Uso del suelo en las sub-cuencas de los ríos Azul, Epuyén y Turbio
Tab. 3.8 Áreas naturales protegidas en la cuenca del Puelo

Tab. 4.2.1 Medias y medianas de las variables bacteriológicas en siete estaciones de muestreo en el sistema Azul-Quemquemtreu

Tab. 4.3.1 Valores medios de los muestreos bimensuales y semanales realizados en la desembocadura del río Azul (μeq l⁻¹)
Tab. 4.3.2 Regresión lineal, R², y nivel de significación entre conductividad y cationes y aniones
Tab. 4.3.3 Estadística descriptiva de los datos de nutrientes en el río Azul
Tab. 4.3.4 Coeficiente de correlación entre las variables originales y los factores extraídos mediante componentes principales y rotación de ejes varimax, sobre datos estandarizados de la desembocadura del río Azul
Tab. 4.3.5 Coeficientes de correlación (r) log-lin y log-log entre caudal y variables químicas estimadas en la desembocadura del río Azul
Tab. 4.3.6 Coeficientes de correlación de Spearman entre el caudal del río Azul (qAd) y subconjuntos de muestreos establecidos según el porcentaje de participación del Azul en el caudal total (qAc/qQ)
Tab. 4.3.7 Cargas químicas y coeficientes de exportación areal para la cuenca del río Azul
Tab. 4.4.1 Valores de transparencia medidos estacionalmente con el disco de Secchi
Tab. 4.4.2 Medias y coeficientes de variación de las variables químicas estimadas en los tres tributarios principales del lago Puelo y en sus respectivas zonas de influencia hipotetizadas (PI, PII y PIII)
Tab. 5.1.1 Estimación del aporte atmosférico de iones a la cuenca del río Azul
Tab. 5.1.2 Mediana de aniones y cationes en el área de estudio, comparados con otros datos locales, regionales o mundiales
Tab. 5.1.3 Porcentaje de cobertura y permeabilidad relativa de las rocas basales de la cuenca del río Azul
Tab. 5.1.4 Litología dominante en las sub-cuencas de Azul Superior y del Quemquemtreu
Tab. 5.1.5 Velocidad de meteorización de las principales rocas cristalinas según su contenido en sílice
Tab. 5.1.6 Valores medios de variables químicas, corregidas por aportes atmosféricos, en ríos de cuencas de composición litológica uniforme
Tab. 5.1.7 Estimación de los minerales dominantes en suelos y rocas de la cuenca del río Azul
Tab. 5.1.8 Correlación no-paramétrica (Spearman) entre las variables ambientales
Tab. 5.1.9 Comparación de tasas netas de meteorización
Tab. 5.2.1 Valores medios de nutrientes en el área de estudio, comparados con diversas medias regionales o locales
Tab. 5.2.2 Coeficientes de exportación específicos
Tab. 5.2.3 Estimación de cargas en el río Azul mediante coeficientes de exportación específicos extraídos de la bibliografía
Tab. 5.2.4 Valores comparativos de los coeficientes de exportación de nutrientes
Tab. 5.2.5 Límites de referencia para estimar nutrientes limitantes en aguas dulces
Tab. 5.2.6 Estadíos de saturación de nitrógeno según Stoddard (1994)
Tab. 5.4.1 Bacteriología sanitaria en algunos arroyos y ríos Patagónicos
Tab. 5.4.2 Coeficientes de correlación por rangos (Spearman) entre las variables bacteriológicas y físicas y químicas en el sistema Azul-Quemquemtreu
INDICE de FIGURAS

Fig. 1.1 Vista Norte-Sur del tramo inferior del río Azul y su desembocadura en el lago Puelo. Al fondo desembocadura del río Turbio y Co. tres Picos. La margen izquierda del Lago y del tramo bajo del valle del Azul presenta los efectos del desvastador incendio de 1987. El poblado es villa Lago Puelo (Pcia. de Chubut).

Fig. 1.2 Límites de la cuenca binacional del Puelo-Manso (Argentina-Chile)

Fig. 1.3 Cuenca hidrográfica del lago Puelo (Argentina)

Fig. 1.4 Imagen satelital LANDSAT TM Escala 1:350.000 de la cuenca del río Azul

Fig. 2.1 Ubicación de las estaciones de muestreo

Fig. 3.1 Mapa geológico de la cuenca del lago Puelo

Fig. 3.2 Mapa orográfico de la cuenca del lago Puelo

Fig. 3.3 Orden lótico de los principales cursos de agua de la cuenca del Puelo según Strahler

Fig. 3.4 Sucuenca del río Azul. El área punteada corresponde a la cuenca del Azul superior (aguas arriba de la desembocadura del Quemquemtreu)

Fig. 3.5 Perfil topográfico generalizado de los Andes Patagónicos, indicando vientos dominantes, y los efectos de la barrera orográfica sobre las precipitaciones

Fig. 3.6 Isobietas en la cuenca del lago Puelo

Fig. 3.7 Abanicos de dispersión de las cenizas de volcanes chilenos en los Andes Patagónicos Centrales

Fig. 3.8 Perfil topográfico de la cordillera de Los Andes y de la antecordillera a la altura del paralelo 42°S, indicando el gradiente E-W de suelos y vegetación

Fig. 3.9 Diagrama correspondiente a una transecta E-W indicando la composición mineralógica de los suelos dominantes (42°S)

Fig. 4.1.1 Esquema topográfico del sistema hídrico Azul-Quemquemtreu, mostrando la ubicación de las estaciones de muestreo y centros urbanos

Fig. 4.1.2 Comparación de caudales medios mensuales históricos con los del período de muestreo

Fig. 4.1.3 Caudal diario de los ríos Azul y Quemquemtreu durante el periodo de estudio

Fig. 4.1.4 Contribución hídrica porcentual de los ríos Azul y Quemquemtreu durante el periodo de estudio

Fig. 4.1.5 Datos físicos para la cuenca del Azul durante los días de muestreo
Fig. 4.2.1 Sumatoria de aniones y cationes vs. conductividad en el sistema Azul-Quemquemtreu

Fig. 4.2.2.a Aniones vs. conductividad en el sistema Azul-Quemquemtreu
Fig. 4.2.2.b Cationes vs. conductividad en el sistema Azul-Quemquemtreu
Fig. 4.2.3 pH, conductividad y cationes divalentes vs. alcalinidad total (HCO₃) en el sistema Azul-Quemquemtreu

Fig. 4.2.4.a Cationes divalentes vs. monovalentes en el sistema Azul-Quemquemtreu
Fig. 4.2.4.b Sodio vs. cloruro en el sistema Azul-Quemquemtreu
Fig. 4.2.5 Temperatura, pH y conductividad en el sistema Azul-Quemquemtreu
Fig. 4.2.6 Espectro iónico a lo largo del sistema Azul-Quemquemtreu
Fig. 4.2.7 Nutrientes (NT y PT) en siete estaciones del sistema Azul-Quemquemtreu, medias y desvío estándar.

Fig. 4.2.8 Bacteriología en el sistema Azul-Quemquemtreu. Valores medios y desvío estándar de 5 muestras bimensuales durante el periodo 1995/96

Fig. 4.2.9 Análisis de agrupamiento entre variables en el sistema Azul-Quemquemtreu, método UPGMA, coeficientes r de Pearson, datos estandarizados.

Fig. 4.3.1 Espectro iónico medio del río Azul (desembocadura)
Fig. 4.3.2 Gráfico Box & Whiskers con valores medios, máximos, mínimos, percentiles 25 y 75 % de las variables estimadas en la desembocadura del río Azul

Fig. 4.3.3 Sumatoria de aniones y cationes vs. conductividad en el río Azul

Fig. 4.3.4 Aniones y cationes individuales en el río Azul

Fig. 4.3.5 Conductividad, pH y cationes divalentes vs. TA en el río Azul
Fig. 4.3.6.a Sumatoria de cationes vs. sílice reactiva en el río Azul (1995-96)
Fig. 4.3.6.b Cationes vs. sílice reactiva en el río Azul (1995-96)

Fig. 4.3.7 Dendrograma de agrupamiento entre variables por el método UPGMA, basado en el coeficiente r de Pearson, sobre datos previamente estandarizados de la desembocadura del río Azul (n = 33)

Fig. 4.3.8 Fluctuaciones de Ca, Na, Si y Q en el río Azul

Fig. 4.3.9 Fluctuaciones de DIN, N-NT, y de la relación DIN:PRS en la desembocadura del río Azul

Fig. 4.3.10 Dendrograma de agrupamiento entre fechas, método UPGMA, basado en el coeficiente r de Pearson, utilizando solamente las variables relacionadas con la
meteorización (grupo 1 del dendrograma de variables); datos previamente estandarizados de la desembocadura del río Azul (n = 33)

Fig. 4.3.11 Comparación de la distribución de frecuencias entre a) caudales de los días de muestreo (n=57) y b) caudales diarios abril/95 - 15/05/96 (n=412)

Fig. 4.4.1 Perfiles térmicos estacionales en el lago Puelo

Fig. 4.4.2 Vientos y patrón espacial de transparencia en el lago Puelo

Fig. 4.4.3 Valores medios de sílice y cationes en los tributarios del lago Puelo y sus respectivas zonas de influencia en el Lago (PI, PII y PIII)

Fig. 4.4.4 Perfiles verticales de saturación de oxígeno disuelto y de pH en la estación central del lago Puelo (PZ)

Fig. 4.4.5 Perfiles verticales de DIN y PRS en la estación central del lago Puelo (PZ)

Fig. 4.4.6 Estacionalidad en la concentración de nutrientes en los estratos superiores del lago Puelo

Fig. 5.1.1 Esquema conceptual de los principales procesos e interacciones que determinan la composición iónica de las aguas superficiales

Fig. 5.1.2 Concentración absoluta y relativa de aniones y cationes en los ríos Azul y Quemquemtreu, corregidas por aportes atmosféricos y ponderada por caudal

Fig. 5.1.3 Relación entre pH y conductividad a 25 °C en 200 pequeñas cuencas monolíticas de Francia

Fig. 5.1.4 Composición mineralógica de las rocas ígneas, s/el contenido de sílice.

Fig. 5.1.5 Fracción molar Na/Ca vs. fracción molar HCO₃/H₄SiO₄ en distintas estaciones del sistema Azul-Quemquemtreu

Fig. 5.1.6 Estacionalidad en los datos químicos en la desembocadura del río Azul

Fig. 5.1.7 Fluctuaciones en las cargas químicas diarias en el río Azul durante 1995/6

Fig. 5.1.8 Esquema de correlaciones entre las variables ambientales y meteorización, considerando el pH como mecanismo de acople entre ambos

Fig. 5.2.1 Perfiton en el río Azul inferior

Fig. 5.2.2 N/P en el sistema Azul Quemquemtreu

Fig. 5.2.3.a Medias estacionales de nutrientes en la desembocadura del río Azul

b. Medias estacionales del cociente DIN/PRS y NT/PT

Fig. 5.3.1 Desembocadura de los ríos Azul, Epuyén y Turbio

Fig. 5.3.2 Condiciones tróficas del lago Puelo según el modelo probabilístico de Vollenweider y Kerekes (1981)
"Es importante estar interesados en especies, ecosistemas, química y hábitats, pero en las relaciones ecológicas, predominan los vínculos y las interacciones. Los intereses focalizados estrechamente en uno de esos tópicos pueden ir en detrimento de una visión focalizada en las relaciones y en las interacciones. Una mira estrecha, puede además, actuar como un barrera imidiendo una comprensión más completa. Aunque puede ser más fácil, es ineficiente poner barreras a nuestros enfoques individuales en los estudios ecológicos. Los ecólogos, si estamos yendo hacia respuestas comprensivas y hacia un conocimiento ecológico más completo, debemos tratar de integrar información diversa, sacar afuera los blindajes y mirar tanto dentro como “más allá de la orilla” (Likens 1984)” (Likens 1992).
1. INTRODUCCION

1.1 Antecedentes

En este trabajo se relaciona con los flujos químicos en cuencas de montaña, en dos aspectos. El primero trata de los flujos de nutrientes, disueltos y totales, en relación principalmente con las hipótesis de impacto antrópico y el segundo con los flujos de iones principales disueltos, en relación con los procesos de meteorización. Ambos aspectos están vinculados y la división se debe más que nada a razones de claridad de exposición. De hecho, los iones principales, incluidos el silice, tienen muchas veces comportamientos no conservativos, siendo afectados por la actividad antrópica o por la biota natural de la cuenca. Esto ha hecho que la búsqueda de elementos estrictamente conservativos se haya desplazado muchas veces hacia las tierras raras, lantánidos (Negrel et al. 1993; Román Ross et al. 1997).

La traducción más aproximada del término inglés “weathering” es meteorización, el que puede prestarse a una interpretación confusa, porque indica tanto erosión física y mecánica de las rocas, como erosión química (Viers 1978). En este trabajo, excepto que se aclare lo contrario, utilizaré el término meteorización como sinónimo de meteorización química.

Las redes hidrológicas constituyen un verdadero sistema venoso de los ecosistemas terrestres y su estudio debe abordarse siempre en forma relacionada con estos. Los sistemas lacustres intercalados en su recorrido, pueden considerarse como ríos lentos, y por lo tanto, presentan una mayor estabilidad y resiliencia en relación con las variaciones ambientales y las perturbaciones de origen antrópico. Puede completarse la imagen diciendo que al ciclo espiralado de los nutrientes que caracteriza el flujo de los mismos en los ríos (Newbold et al. 1983) se le superpone un ciclo más o menos cerrado, vertical, en ambientes lacustres, más cerrado cuanto más oligotrófico es el lago (Margalef 1993; 1997). Los flujos químicos son entonces sólo uno de los tantos procesos que contribuyen a la modulación de las geoformas fluviales.

La concentración de sales minerales solubles refleja las características geológicas y geoquímicas, el tipo de suelo y clima y la extensión de la cuenca (Meybeck 1979; 1996; Coronato y Del Valle 1988) y puede verse como el resultado de un gran proceso de titulación de los materiales básicos de suelos y rocas por ácidos tanto de origen natural como antrópico (Stumm & Morgan 1981). Los aportes atmosféricos pueden ser más o
menos importantes según la distancia al mar y la cercanía de fuentes de contaminación antrópica de la atmósfera (fenómeno de las lluvias ácidas). La vegetación por su parte regula la circulación del agua y libera substancias orgánicas (Margalef 1997, p. 40).

La presencia humana afecta especialmente en los ciclos del carbono, nitrógeno y fósforo (Stumm y Baccini 1983), conduciendo generalmente a procesos de eutrofización, que pueden verse como una sobrealimentación del sistema (Margalef, 1983, 1997). Dicha sobrealimentación es evidenciable mediante indicadores químicos (TP, TN, DQO, DBO₅) y bióticos (cambios en la biomasa, densidad y estructura de las comunidades bióticas) (Margalef 1983). Las comunidades bióticas pueden considerarse como estructuras disipativas (Prigogine 1983), que se sustentan y dependen principalmente del flujo de C, N, y P. Pero la biota no solo se explica como adaptación pasiva a las condiciones del medio, sino que también lo modifica y estructuran en un proceso unidireccional. V.g. los procesos de meteorización serían muy diferentes en ausencia de la piel forestal de las cuencas (Boggiero 1993).

El ciclo del nitrógeno está afectado doblemente por la acción del hombre. Además de los procesos de eutrofización mencionados, el incremento de sus óxidos en la atmósfera ha provocado procesos de acidificación con gran impacto sobre la hidroquímica de las aguas superficiales (Mosello et al. 1993). Se ha determinado la capacidad de absorción de nitrógeno a nivel de cuencas hídricas, clasificándolas en cuencas nitrógeno-saturadas, nitrógeno-limitadas, nitrógeno-agotadas (Tamm 1991). El ciclo del nitrógeno se encuentra afectado especialmente en las áreas desarrolladas tanto por los problemas de eutrofización como por los de acidificación (Psenner 1994).

La estimación de los flujos y cargas es una información insoslayable para conocer el funcionamiento de una cuenca hídrica y el grado de impacto antrópico. Los flujos dependen en gran medida de la hidrología y en especial de los eventos de precipitaciones excepcionales, vg., lluvias torrenciales. Las entradas ocasionales pueden ser tanto o más importantes cuantitativamente que las del resto del año. De allí la importancia de disponer de modelos de estimación de cargas ajustados a cada tipo de río (Preston et. al 1989; Caussade y Prat 1990).

El problema de la composición iónica de las aguas dulces se ha considerado desde dos aproximaciones complementarias. Una empírica o estadística, como la propuesta por Gibbs (1970) y otra de tipo mecanicista, basada en estudios en pequeñas cuencas experimentales como los realizados por Likens (v.g., Likens y Borman 1975).
Gibbs (1970) propuso tres procesos básicos como factores determinantes de la composición química de sales principales en las aguas del planeta. En un análisis de más de 400 datos de aguas de lluvia, oceánicas, de lagos y ríos, observó dos pares de opuestos, las aguas cálcicas en ambientes de agua dulce y las sódicas en ambientes hipersalinos. El segundo par se refiere a las aguas cloruradas y a las bicarbonatadas. Graficando los datos de Na/(Na+Ca) o de Cl/(Cl+HCO₃) vs. salinidad (expresada como total de sólidos disueltos) en escala logarítmica, la totalidad de datos pueden circunscribirse en un área con forma de boomerang. Los tres procesos básicos involucrados son la precipitación, la evaporación-cristalización y la disolución de sales de las rocas. Con predominio de las precipitaciones, se producen aguas clorurado-sódicas y de baja salinidad. Si predominan los procesos de disolución de rocas se tienen aguas bicarbonatadas cálcicas de salinidad intermedia, y cuando predominan los procesos de evaporación-cristalización se tienen las aguas de más elevada salinidad y como las sales bivalentes precipitan mucho antes que las monovalentes, nuevamente predomina el tipo clorurado-sódico.

Si bien se le reconoce el mérito de haber estimulado mucha discusión al respecto, el modelo de Gibbs tuvo críticas importantes. Feth (1971) señala ciertas deficiencias en la base de datos elegida, y la influencia de dos procesos que pueden ser importantes en algunas regiones para determinación la composición iónica: el ingreso de aguas subterráneas y el regreso de aguas utilizadas en irrigación, normalmente más salinas. En último término estos dos procesos pueden asignarse a la disolución de rocas (aumento del tiempo de residencia en las aguas subterráneas) y aumento de los procesos de evaporación-cristalización por riego.

Wetzel (1983) propuso el modelo de la retorta, en el cuál el modelo de Gibbs se expande con el agregado los datos de Stallard (1980), en modo tal de tener en cuenta aguas de < 100 mg l⁻¹ de TDS. Kilham (1990) demostró que el modelo de la retorta está muy lejos de ser aplicable en las aguas africanas. Además de los procesos mencionados por Gibbs y Wetzel, funcionan otros, entre ellos la retro-disolución (formación de arcillas), que disminuye la alcalinidad y por lo tanto el contenido de HCO₃. En cuanto a la composición de la lluvia, la influencia de las sales ciclicas solo puede ser importante en las cercanías del mar o a lo largo de corredores de rocas muy resistentes a la erosión. En el interior de los continentes hay otros procesos que determinan la composición del agua de lluvia, tales como el polvo levantado del suelo (Negrel et al. 1993) y las cenizas de los
incendios. Por otra parte el sodio puede provenir no solo de la lluvia sino de ciertos feldespatos volcánicos, y de los mielbas.

Eilers, Brakke y Henriksen (1992) señalaron la inaplicabilidad del modelo de Gibbs en los lagos diluidos, indicando la importancia del sustrato. Algunos suelos pueden agregar tanto o más sodio que las lluvias, a la vez que muchas lluvias no aportan casi nada de sodio, porque no tienen influencia marina. El modelo de Gibbs no se basó en una selección de ambientes realmente al azar, sino que está basado sobre todo en cuencas grandes.

En el campo de los modelos mecanicísticos sobre el origen de las sales disueltas también se han producido avances importantes, entre los que cabe mencionar el reconocimiento de la función de los ácidos orgánicos del suelo en la erosión de las rocas. Estos ácidos se producen en los suelos independientemente de cualquier factor de contaminación, pudiendo ser más importantes aún que los ácidos fuertes (lluvias ácidas) como factor de meteorización (Psenner y Catalán 1994). En este sentido el porcentaje de cobertura forestal de una cuenca es factor determinante de la intensidad de los procesos de meteorización (Boggero et al. 1993).

Los estudios geoquímicos, hidrogeológicos e hidroquímicos tendiente a relacionar el espectro iónico del agua con la composición química predominante en el material parental son cuantiosos tal como se presentan en diversas síntesis (Meybeck 1979; Peters 1984 (citado en Blut y Kump 1994); Drewer 1988; Bluth y Kump 1994 y otros). Las cuencas silícas están siendo objeto particular de investigación en los últimos años porque son las más susceptibles al problema de la acidificación (Psenner y Catalán 1994; Mosello et al. 1994). El instrumento básico de estudio de los procesos y tasas de meteorización ha sido el balance de masas (Velbel 1985). La composición resultante del agua superficial de una cuenca bien conocida mineralógicamente han sido predicha estequiométricamente, en muchos casos con buena concordancia (Velbel 1992, 1995).

Por último cabe señalar la importancia del espacio en la organización de los ecosistemas, pocas veces reconocido (Margalef 1979; 1993). La percepción de la heterogeneidad horizontal es la percepción de límites o fronteras más o menos marcados y de fuerzas que generan y mantienen diferencias (heterogeneidad) a ambos lados de dichas fronteras. En este sentido la cuenca del lago Puelo presenta características muy especiales tanto en el lago como en las respectivas subcuencas que la componen. V.g. la cuenca del río Turbio, debido a su inaccesibilidad por tierra, se encuentra en estado casi
primigenio, prácticamente despoblada, mientras que la cuenca del río Azul es objeto de un acelerado proceso de antropización. Obviamente, dada la forma de este lago y la entrada de sus afluentes por extremos opuestos, es esperable que dicha heterogeneidad en la cuenca se refleje también el lago, generando sub-ambientes en el mismo, con mayor o menor permanencia según los patrones de circulación imperantes.

1.2. Antecedentes en la región

Ferrario (1974) estudió la diatomoflora del lago Puelo con un enfoque netamente taxonómico, siendo ésta la información más remota sobre dicho lago y la única existente sobre su fitoplancton. El fitoplancton de otros lagos andinos ha sido estudiado con frecuencia en la última década. La bacteriología, con variables de interés sanitario, fue estudiada previamente en los ríos Limay y Neuquén (Prio et al. 1991) y en forma intensiva en el sistema lítico Esquel-Percy (Pizzolon et al. 1992).

Quirós (1988a) proporciona la primera información sobre nutrientes y pigmentos fotosintéticos del lago Puelo y otros lagos de la cuenca, en base a un solo muestreo de verano. En cuanto a los nutrientes, Quirós et al. (1985) establecieron la existencia de un gradiente este-oeste en Patagonia, que en general se puede observar aún a escala menor, v.g. en una cuenca cordillerana (Pizzolon 1993). Una controversia importante se planteó respecto del/los nutriente/s limitante/s de la productividad primaria, en condiciones de ausencia de impacto antropico, sin que los datos publicados (Pedrozo et al. 1993; Pizzolon et al 1995; Díaz y Pedrozo 1996) autorizen a una única generalización para toda la región andino-patagónica.

Pedrozo et al (1993) proporcionaron una descripción completa del espectro iónico y nutrientes de las aguas ubicadas al norte de la cuenca del Puelo entre los 39.5° y los 41.5°S (cuencas de los ríos Manso y Limay). Con excepción de algunas pequeñas sub-cuencas con glaciares, el espectro iónico dominante fue bicarbonato cálcico, con magnesio o sodio en segundo lugar. Realizaron los primeros análisis de precipitaciones, demostrando que se trata de soluciones muy diluidas y que los iones cíclicos, por efectos de la orografía, son retenidos mayormente en el lado oriental de la cordillera.

Consecuente con ello, observaron que la concentración de Na, K y Cl es mayor en los ríos y lagos chilenos situados a la misma latitud.

Pizzolon et al. (1994) describieron la composición iónica de los ríos de la cuenca alta del Futaleufú, llamando la atención sobre el reemplazo del magnesio por el sodio.
como segundo catión en importancia, en aquellos cursos que drenan áreas con
proporción importante de suelos anegadizos y mallines extensos. Llamaron así mismo la
atención sobre la heterogeneidad espacial en varios lagos de la cuenca, debida a su
 morfología articulada en brazos y a los patrones de circulación dominandes.

Chilrud et al (1994) discutieron procesos específicos de erosión química sub-
glacial, en las nacientes del río Manso Superior. Sus aguas se caracterizan por una
concentración de sulfatos un orden de magnitud superior que otras de la región andino-
patagónica, siendo el mecanismo implicado en ello, la oxidación de la piritita.

Drago y Quiro (1996), en una revisión de la hidroquímica de Argentina, para la
región andino-patagónica señalaban la presencia de aguas diluidas y muy diluidas, de tipo
bicarbonato cálcico, relacionadas con la dominancia de dioritas y granodioritas entre los
39 y los 44° y extensivos afloramientos de rocas cristalinas.

La inferencia de la composición litológica a partir del material transportado por
los ríos ha recibido un novedoso aporte con el trabajo de Román Ross et al. (1997) en la
cuenca del río Manso, quien utilizó el análisis de activación neutrónica para la
determinación de tierras raras.

1.3 Area de estudio

El área de estudio forma parte de la cuenca binacional del Puelo-Manso, de
aproximadamente 8800 km² de superficie y de vertiente al océano Pacífico (Fig. 1.2). En
territorio argentino se divide en una porción norte, que desagua los lagos Mascardi,
Guillelmo, Steffen a través del río Manso, y una porción sur que incluye los lagos
Epuyén y Puelo, que desagua a través del río Puelo superior. Este trabajo se circunscribe
cuenca del lago Puelo (Fig. 1.3), y en particular a la subcuenca del río Azul (Fig. 1.4).
La cuenca del Puelo se encuentra a los 71 ° 30' W y 42° S, tiene de 3040 km², de los
cuales 2056 se encuentran en la provincia de Chubut y el resto en la provincia de Río
Negro (Coronato y Del Valle 1988). Las características generales de la misma se
describen en la sección 3 de este trabajo.

1.4. Objetivos

¿Es posible discriminar aún desde temprano los procesos (tendencias) de
contaminación hídrica sin esperar a que dichos procesos cobren magnitudes de difícil
reversión?. Este objetivo se encuentra entre los de primera prioridad en la investigación
Fig. 1.2. Ubicación del la cuenca del lago Puelo en la cuenca binacional del Puelo-Manso. En punteado fino, parte chilena de la cuenca del Puelo-Manso. Escala aproximada 1:1,000,000.
Fig. 1.3. Cuenca hidrográfica del lago Puelo.
Fig. 1.4 Imagen satelital Landsat TM, Escala 1:350,000, con una vista del territorio de la cuenca del río Azul. Hacia el norte se observa el lago Escondido (cuenca del río Manso). Datum: Clarke 1866. Proyección UTM. Gentileza de la Dirección de Catastro e Información Territorial. Pcia. de Chubut.
ecológica moderna (Lubchenco et al. 1991) y ha sido el punto de partida de este trabajo. El mismo se realizó con los siguientes propósitos:

> Describir la climatología y la hidrología de la cuenca del lago Puelo durante el período de muestreo, con especial hincapié en la subcuenca del río Azul.
> En el mismo sistema, describir la composición iónica y su fluctuaciones temporales.
> Relacionar los datos resultantes con las características geológicas, edáficas, climáticas y vegetación en el área de la cuenca.
> Caracterizar los nutrientes en el sistema Azul-Quemquemtreu, sus fluctuaciones temporales y factores (antrópicos y otros) que los controlan.
> Seleccionar los modelos más adecuados para estimar las cargas de nutrientes e iones principales en el río Azul; estimar dichas cargas y los coeficientes de exportación respectivos.
> Estimar el estado trófico del Lago Puelo en relación con sus características limnológicas y los aportes de sus tres tributarios principales.

1.5 Hipótesis de trabajo:

H1. El principal proceso involucrado en la hidroquímica de la cuenca del Puelo es la erosión química de las rocas y suelos. Esta hipótesis se fundamenta en los valores muy bajos de conductividad de las precipitaciones, medidos ocasionalmente. El nitrógeno y en parte el cloruro, escaparían a esta regla, porque provienen principalmente de los aportes atmosféricos y de la fijación biológica, el primero.

H1.1: la conductividad y el contenido total de sales, a semejanza de sustrato rocoso y suelos, dependen del tiempo de residencia del agua en la cuenca: Se verificará un gradiente este-oeste, siendo mayor el contenido de sales en los cursos de agua provenientes del este.

H1.2: el contenido total de sales disminuye durante las crecientes.

H2. Los nutrientes, y la bacteriología, reflejan especialmente el impacto antrópico, tanto espacial como temporalmente (estacionalidad del impacto, turismo)

H2.1: la cantidad de nutrientes se incrementa hacia fines de verano-otoño como consecuencia del flujo turístico.
H2.2. la cantidad de nutrientes y bacterias aumenta en E3 por efectos de aportes difusos y puntuales de la población de El Bolsón; y disminuye en E4 por procesos de autodepuración.

H3. La heterogeneidad horizontal natural (geología, suelos, clima, superficie glacializada) en las tres subcuencas principales del lago Puelo (contenido salino: Epuyén>Azul>Turbio; harina glacial: T>A>E), induce una heterogeneidad horizontal en turbidez, conductividad e iones principales.

H4. La heterogeneidad horizontal con que se verifica el impacto antropológico en las subcuencas principales (Azul> Epuyén>Turbio), induce una heterogeneidad horizontal trófica, identificable como diferencias significativas en la concentración de nutrientes en los extremos del lago Puelo.

H5. El nitrógeno es el principal nutriente limitante de la productividad primaria del fitoplancton y probablemente también de la cubierta forestal de toda la cuenca.
2. METODOLOGÍA

2.1 Definición de Variables

Se definen tres tipos de variables. Primarias, son aquellas a producir como resultado directo del presente trabajo (Tab. 2.1). Secundarias, son aquellas determinadas regularmente por otras instituciones, y cuya disponibilidad para las mismas

Tabla 2.1. Enumeración y descripción sumaria de las variables estimadas

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sigla</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>físicas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Temp. del aire</td>
<td>(T°C)</td>
<td>Termómetro de Hg</td>
</tr>
<tr>
<td>2. Temp. del agua</td>
<td>(Temp)</td>
<td>Termómetro de Hg</td>
</tr>
<tr>
<td>3. Transparencia</td>
<td>(DS)</td>
<td>disco Secchi blanco 25 cm diámetro</td>
</tr>
<tr>
<td>4. perfil térmico</td>
<td>(PAR)</td>
<td>termómetro electrónico</td>
</tr>
<tr>
<td>5. perfil lumínico</td>
<td></td>
<td>radiómetro</td>
</tr>
<tr>
<td>químicas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. oxígeno disuelto</td>
<td>(DO)</td>
<td>Winkler, modificac. azida sódica</td>
</tr>
<tr>
<td>7. *pH</td>
<td>(pH)</td>
<td>potenciometría</td>
</tr>
<tr>
<td>8. *alcalinidad total</td>
<td>(TA)</td>
<td>potenciométrico d p.f.</td>
</tr>
<tr>
<td>9. *conductividad</td>
<td>(K20)</td>
<td>celda Pt, termostatizado 20°C</td>
</tr>
<tr>
<td>iones mayores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10* calcio</td>
<td>(Ca)</td>
<td>Espectrofot. Absorc. Atómica</td>
</tr>
<tr>
<td>11* magnesio</td>
<td>(Mg)</td>
<td>Espectrofot. Absorc. Atómica</td>
</tr>
<tr>
<td>12* sodio</td>
<td>(Na)</td>
<td>Espectrofot. Emisión Atómica</td>
</tr>
<tr>
<td>13* potasio</td>
<td>(K)</td>
<td>Espectrofot. Emisión Atómica</td>
</tr>
<tr>
<td>14* sulfato</td>
<td>(SO₄)</td>
<td>Turbidimétrico</td>
</tr>
<tr>
<td>15* cloruro</td>
<td>(Cl)</td>
<td>Hg tiocianato con ión férrico</td>
</tr>
<tr>
<td>16* silice reactiva (Si-SiO₂)</td>
<td>(SiR)</td>
<td>espectrofotom., c/reducción c/SnCl₂</td>
</tr>
<tr>
<td>nutrientes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17* fósforo reactivo soluble</td>
<td>(PRS)</td>
<td>espectrofotom. c/reducc. c/ácido ascórbico</td>
</tr>
<tr>
<td>18* N-(nitratos+nitritos)</td>
<td>(DIN)</td>
<td>reducción en columna de Cd</td>
</tr>
<tr>
<td>19* N total</td>
<td>(TN)</td>
<td>Oxidac. en caliente y red. en columna Cd.</td>
</tr>
<tr>
<td>20* P total</td>
<td>(PT)</td>
<td>Oxid. con persulf. K y reduc. ác. ascórbico</td>
</tr>
<tr>
<td>Variables biológicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. clorofila a</td>
<td>(chlα)</td>
<td>acetona; espectrofotom.</td>
</tr>
<tr>
<td>31. Bact. aerobias mesófilas</td>
<td>(BAM)</td>
<td>recuento total estándard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u.f.c./ml</td>
</tr>
<tr>
<td>32. Coliformes totales</td>
<td>(CT)</td>
<td>método de Wilson,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.m.p./100 ml</td>
</tr>
<tr>
<td>33. Coliformes féceales</td>
<td>(CF)</td>
<td>método de Wilson,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.m.p./100 ml</td>
</tr>
<tr>
<td>34. Intermediae, Aerógenes y Cloaceae (IAC)</td>
<td>método de Wilson</td>
<td>n.m.p./100 ml</td>
</tr>
</tbody>
</table>

* Los caudales diarios fueron proporcionados por la empresa EVARSA, regional Patagonia.
* Los datos meteorológicos fueron proporcionados por EVARSA y por la administración del Parque Nacional Lago Puelo.
fechas de realización de los muestreos era imprescindible para los objetivos de este trabajo (hidrológicas, meteorológicas). Las estaciones de aforo de EVARSA están ubicadas en el río Quemquemtreu (Escuela Nro. 176, frente al Automóvil Club Argentino, El Bolsón) y en el río Azul (300 m aguas debajo de la desembocadura del Aº Raquel).

Las variables terciarias, corresponden a la información y estadísticas sobre el uso del suelo en la cuenca, en lo posible discriminado para el período 1994-1996. El número de habitantes y la carga animal para cada una de las subcuenas integrantes se obtuvo por comunicación personal con los Juzgados de Paz de los municipios respectivos, sobre la base del censo ganadero de 1997. Para agricultura (superficie cultivada; uso de fertilizantes; uso de pesticidas, etc), no existen censos actualizados. Solamente se pudo obtener información aproximativa en el INTA, AER El Bolsón.

2.2. Estaciones de muestreo

Las estaciones muestreadas rutinariamente se muestran en la Fig. 2.1. Otras estaciones ubicadas en el Arroyo del Medio, arroyo Los Terneros, arroyo Los Repollos, arroyo Negro, y río Epuyén superior se muestrearon ocasionalmente. La estación A1 (también denominada E7) fue muestreada semanalmente entre marzo de 1995 y mayo de 1996.

<table>
<thead>
<tr>
<th>Tabla 2.2.a. Identificación y ubicación geográfica de las estaciones de muestreo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTACIONES DE MUESTREO</td>
</tr>
<tr>
<td>1:</td>
</tr>
<tr>
<td>2:</td>
</tr>
<tr>
<td>3:</td>
</tr>
<tr>
<td>4:</td>
</tr>
<tr>
<td>5:</td>
</tr>
<tr>
<td>6:</td>
</tr>
<tr>
<td>7:</td>
</tr>
<tr>
<td>A1:</td>
</tr>
<tr>
<td>E1:</td>
</tr>
<tr>
<td>T1:</td>
</tr>
<tr>
<td>P1:</td>
</tr>
<tr>
<td>P1I:</td>
</tr>
<tr>
<td>P1II:</td>
</tr>
<tr>
<td>PZ:</td>
</tr>
</tbody>
</table>

27
Fig. 2.1 Ubicación de las estaciones de muestreo. 1 a 7:Sistema Azul-Quemquemtreu; A1, E1, T1: afluentes del lago Puelo (Azul, Turbio, Epuyén); P1, PII y PIII, sub-ambientes hipotetizados PZ: estación de muestreo en la zona de máxima profundidad.
Tab. 2.2.b Descripción de las estaciones de muestreo en el sistema Azul Quemquemtreu.

1. R. Quemquemtreu, 200 metros aguas abajo de su origen, en la unión del arroyo Los Repollos con el Arroyo Los Terneros. Es una estación con mucha pendiente, flujo turbulento y cauce con grandes cantos rodados, vegetación arbórea (*Notophagus antarctica*, fiere) de pequeña altura. No presenta salicáceas.

3. R. Quemquemtreu, en las inmediaciones del límite interprovincial. La descarga de la planta de tratamiento de líquidos cloacaless parece perderse en los campos de cultivo de forraje, sin llegada al Río. Pendiente menor. Guijarros en el centro y arena en las orillas. Totalmente cubierto por un bosque en galería de *Salix* sp. Gran cantidad de hojas.

4. R. Quemquemtreu, 500 metros aguas arriba de su desembocadura en el R. Azul. Cauce rectificado para protección contra inundaciones y socavación de terraplenes. Especialmente la ribera sur se encuentran muy modificada, con terraplenes de contención de crecientes, de arenas y gravas. La vegetación ribereña también había sido removida, quedando el cauce asoleado.

5. R. Azul, antes de la desembocadura del R. Quemquemtreu. Cauce de rocas graníticas en las zonas encajonadas, o de guijarros chicos y medianos. Poca vegetación inmediata a la orilla.

2.3 Trabajos de campo

Se tomaron muestras bimensuales en siete estaciones ubicadas en el sistema Azul-Quemquemtreu (Fig. 2.1) para las variables 1,2,7 a 16, 19 y 20, 31 a 34 (Tab. 2.1). En la
desembocadura del río Azul, se monitorearon las variables 7 a 20 (Tab. 1.1), con una frecuencia aproximadamente semanal. Durante algunos eventos de crecientes por precipitaciones torrenciales, se tomaron una-dos muestras diarias. La temperatura se midió con un termómetro de mercurio de -10/+60 °C, con precisión +/- 0.5 °C. Las muestras para determinaciones de nutrientes se enviaron a laboratorio en el lapso de 24 hs, se filtraron con filtro GF/F.

Los datos hidrológicos de los ríos Azul y Quemquemtreu fueron gentilmente proporcionados por la empresa EVARSA. Estos datos fueron obtenidos en estaciones ubicadas en ambos ríos en las proximidades del paralelo 42, a partir de lecturas diarias de la escala hidrométrica y de aforos mensuales. Los datos climáticos durante el período de muestreo fueron proporcionados por EVARSA.

En el Lago Puelo se extrajeron muestras integradas en la zona fótica para nutrientes y clorofila, utilizando una botella tipo Van Dorn, y mezclando submuestras de 4-5 profundidades discretas. En la estación PZ se tomaron muestras estratificadas cada 50 metros para análisis químicos y de oxígeno disuelto. Se tomaron muestras de red para fitoplancton (25 µm) y para zooplancton (55µm), mediante barrido vertical entre desde 50 metros. Estos resultados no forman parte de esta tesis. Los perfiles de temperatura se obtuvieron mediante un termómetro electrónico hasta 60 metros, y mediante un termómetro de inversión, cada 50 metros hasta el fondo. Los perfiles de absorción lumínica se obtuvieron con un radiómetro Li-Cor DataLogger 1000, provisto de un sensor esférico cuántico subacuático, y de un sensor plano terrestre. Se utilizó la lectura del sensor terrestre para rectificar perfiles en caso de nubosidad.

2.4 Cronograma de muestreos realizados

<table>
<thead>
<tr>
<th>Fecha</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>A1</th>
<th>E1</th>
<th>T1</th>
<th>P1</th>
<th>PII</th>
<th>PIII</th>
<th>PZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/4/94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6/9/94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11/10/94</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3/11/94</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19/12/94</td>
<td>x</td>
</tr>
<tr>
<td>28/12/94</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>9/3/95</td>
<td>x</td>
</tr>
<tr>
<td>5/5/95</td>
<td>x</td>
</tr>
<tr>
<td>3/7/95</td>
<td>x</td>
</tr>
<tr>
<td>8/9/95</td>
<td>x</td>
</tr>
<tr>
<td>6/11/95</td>
<td>x</td>
</tr>
</tbody>
</table>
2.5 Trabajos de laboratorio

Median 200 km entre el sitio de muestreo y el de análisis. Normalmente las muestras ingresaron al Laboratorio al día siguiente de su extracción, determinándose de inmediato pH, TA y K20 y filtrándose el resto para los restantes análisis. En algunos pocos casos, el tiempo transcurrido entre la fecha de muestreo y la de análisis fue de 2-3 días, por motivos de fuerza mayor. Por ello se controló el efecto del tiempo de extracción. Los resultados, obtenidos en muestras termostatizadas a 20\(^\circ\)C +/-1, no mostraron diferencias significativas, entre el primero y el cuarto día. Los cloruros, sulfatos y silicatos se determinaron en su totalidad al finalizar las tareas de muestreo, en muestras filtradas, conservadas a 4 \(^\circ\)C en botellas plásticas. Los cationes se conservaron, también a 4\(^\circ\)C, y se determinaron en cuatrimestralmente. Las muestras para nutrientes, filtradas, se conservaron a -18\(^\circ\)C hasta su determinación, en el lapso de 45 días.

2.6 Técnicas analíticas

- **pH:** se midió con un pH-metro ORION SA 720 y provisto de un electrodo de Ross
- **conductividad:** Horiba, U-2 y conductímetro Hanna, en muestras termostatizadas a 20\(+/- 1\) \(^\circ\)C. Ambos equipos se contrastaron previamente.
- **alcalinidad total:** se determinó por titulación amperométrica (Golterman et al. 1978) con doble punto final, utilizando el mismo equipo de pH.
- **sulfato:** se determinó espectrofotométricamente por turbidimetría con Cl\(_2\)Ba (APHA 1992)
- **cloruro:** espectrofotometría, técnica del tiocianato de mercurio con íon férrico (Golterman et al. 1978)
- **calcio:** absorción atómica, en llama de oxido nitroso-acetileno
- **magnesio:** por absorción atómica en llama de acetileno
- **sodio y potasio:** por absorción y emisión atómica, en llama de acetileno
- **DIN (N-NO\(_3\)+NO\(_2\))** por reducción en columna de cadmio, seguido por colorimetría
- **PRS:** técnica del azul de molibdeno según Golterman et al. (1978)
- **SiR:** espectrofotométrico, técnica del molibdato y reducción con SnCl\(_2\). (Goltermann et al. 1978)
-fósforo total (PT) y nitrógeno total (NT), mediante la técnica de Valderrama (1981) modificada, con digestión simultánea y posterior determinación como PRS y DIN, respectivamente.

-clorofila se determinó espectrofotométricamente en extracto acetónico (Golterman et al. 1978)

-coliformes fecales (CF): AWWA, 1975

-intermediae-aerogenes y cloacae (IAC): AWWA, 1975

-aerobias mesófilas (BAM): técnica de los tubos múltiples, incubados a 37°C y expresados como unidades formadoras de colonias (u.f.c.).

En la técnicas espectrofotométricas se utilizó un espectrofotómetro UV-Vis Shimadzu 160 A. Los cationes se determinaron por absorción/emisión atómica en un equipo IL 457.

2.7 Validación de los resultados

Durante todo el estudio se puso especial cuidado en el control de calidad de la metodología analítica, utilizando controles internos y externos. Se determinó el límite de detección y de cuantificación para la mayor parte de las técnicas empleadas, como así también su precisión (Tab. 2.3). Las técnicas de nitrógeno y de PRS dieron los valores más críticos; las concentraciones medidas fueron alguna veces inferiores al límite de detección, calculado según Long y Winefordner (1983).

2.7.1 Balance iónico y confrontación de conductividades

El balance entre aniones (A) y cationes (C) se realizó según A.P.H.A. (1992). Los valores medios de los aniones y de los cationes fueron 483 y 480 µeq l⁻¹, respectivamente, siendo el error porcentual \((\overline{A-C}/(A+C)\times 100)\) medio, −0.4 %. No se aceptaron los análisis con error > (±) 7.5 %.

La confrontación entre la conductividad equivalente (Ke) y la conductividad medida (Km), permitió un control adicional de los datos del espectro iónico conjuntamente con los de conductividad. Se aceptaron los análisis con un error porcentual inferior al ± 10 %. La relación Ke/Km media fue 1.03. Durante el estudio se
utilizaron sucesivamente equipos de conductividad, Horiba y Hanna, respectivamente. Se
homologaron las medidas de ambos instrumentos, por presentar respuestas diferentes,
especialmente en el rango de conductividades bajas.

Tab. 2.3. Límite de detección (LOD), límite de cuantificación (LOQ) según Long y Winefordner (1983)
y precisión (desv. std.) de las técnicas analíticas empleadas.

<table>
<thead>
<tr>
<th></th>
<th>LOD</th>
<th>LOQ</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH:</td>
<td></td>
<td></td>
<td>± 0.03</td>
</tr>
<tr>
<td>Conductividad:</td>
<td></td>
<td></td>
<td>± 2.2 µS cm⁻¹</td>
</tr>
<tr>
<td>Alcalinidad:</td>
<td></td>
<td></td>
<td>± 16 µeq l⁻¹</td>
</tr>
<tr>
<td>SO₄₂⁻:</td>
<td>mg l⁻¹</td>
<td>1.06</td>
<td>(22.1 µeq l⁻¹)</td>
</tr>
<tr>
<td>Cl:</td>
<td>mg l⁻¹</td>
<td>0.60</td>
<td>(2.8 µeq l⁻¹)</td>
</tr>
<tr>
<td>Si-SiO₂:</td>
<td>mg l⁻¹</td>
<td>0.10</td>
<td>(21.4 µM)</td>
</tr>
<tr>
<td>DIN:</td>
<td>µg l⁻¹</td>
<td>6.6</td>
<td>19.4</td>
</tr>
<tr>
<td>N-total:</td>
<td>µg l⁻¹</td>
<td>41.9</td>
<td>110.1</td>
</tr>
<tr>
<td>PRS:</td>
<td>µg l⁻¹</td>
<td>0.36</td>
<td>1.44</td>
</tr>
<tr>
<td>P-total:</td>
<td>µg l⁻¹</td>
<td>2.5</td>
<td>7.1</td>
</tr>
</tbody>
</table>

2.7.2 Intercalibración

El Laboratorio participó en tres rondas de intercalibración del Proyecto Aquacon-
MedBas (Analitical Quality Control and Assessment Studies in the countries of the
Mediterranean Basin), Subproyectos 5 y 6, de la Unión Europea, tanto para aguas de
lluvias como para aguas superficiales (1996). Cabe aclarar que la composición iónica de
las aguas de lluvia europeas se encuentra en el rango de valores de las aguas superficiales
estudiadas en este trabajo. La diferencia porcencial entre los resultados obtenidos (m) y
los resultados de referencia (r) se estimó como \((m-r)/(m+r) \times 100\) (APHA 1992), con y
sin eliminación de algunos valores anómalos (resultados entre paréntesis) (Tab. 2.4). Los
resultados de estos ejercicios de intercalibración están publicados en Mosello et al.

Tab. 2.4. Síntesis sobre los resultados de los ejercicios de intercalibración

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Conductividad:</th>
<th>3.2 (5.7) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH:</td>
<td>4.3 %</td>
<td>Alcalinidad:</td>
<td>2.2 %</td>
</tr>
<tr>
<td>Calcio:</td>
<td>3.2 (6.8) %</td>
<td>Sodio:</td>
<td>3.3 %</td>
</tr>
<tr>
<td>Magnesio:</td>
<td>6.7 %</td>
<td>Sulfato:</td>
<td>3.5 %</td>
</tr>
<tr>
<td>Potasio:</td>
<td>3.5 %</td>
<td>Amonio (*):</td>
<td>1.4 %</td>
</tr>
<tr>
<td>Cloruro:</td>
<td>4.2 %</td>
<td>PRS:</td>
<td>3.5 %</td>
</tr>
<tr>
<td>Nitrato:</td>
<td>5.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silice reactiva:</td>
<td>2.5 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) en los rangos de concentración bajos. Entre paréntesis error sin eliminación de valores
anómalos.
2.7.3. Confiabilidad de los datos (síntesis)

Los cloruros y nutrientes presentaron valores medios anuales que se encuentran por debajo del límite de cuantificación (LOQ). Sin embargo, los datos de los ejercicios de intercalibración, en rangos de concentración similares a los de las aguas del Puelo, dieron diferencias muy aceptables, del 5% para cloruros y nitratos. Los datos de NT, cuya media fue algo inferior al LOD, serían los menos confiables. Considerando la totalidad de las variables (menos PT y NT), los datos presentados en este trabajo deben considerarse con un error asociado promedio de 3.8%, siendo de 6.7% para el magnesio y de 2.5% para la sílice reactiva.

2.8 Métodos de estimación de las cargas

En la estimación de cargas químicas transportadas por los ríos se han aplicado numerosos tipos de modelos, que pueden dividirse en tres grandes categorías: estimadores promedio, de regresión y de proporción (Preston et al. 1989). Pueden además utilizarse combinados (estratificados) en un mismo río. La selección del modelo dependerá de los tipos de datos disponibles y del tipo del río, como así también del íón o sustancia cuya carga se desea estimar. Los estimadores promedio son los más sencillos, y se han aplicado siempre que no ha sido posible utilizar una técnica mejor. Sustancialmente consisten en el producto del caudal medio por la concentración media, expresada como moda o media ponderada sobre el caudal. Los supuestos implícitos de estos métodos son que los datos tengan una distribución independiente e igual. Estos métodos dan resultados erróneos cuando los datos no son representativos del rango entero de caudales y de concentraciones (Mosello y De Giuli 1982; Preston et al 1989). Cuando hay disponibles datos de caudal diario, pueden utilizarse estimadores de regresión. Estos requieren relaciones fuertes y consistentes entre caudal y concentración. Se han aplicado sobre todo para estimar la carga de iones principales y sílice, que suelen correlacionar muy bien con el logaritmo del caudal (Mosello y De Giuli 1982). Los muestreos a intervalos regulares pasan por alto muchas veces las lluvias torrenciales, por lo que los estimadores promedio o de regresión dan datos sesgados. Es conveniente utilizar en estos casos estimadores por proporción (curvas de rangos). Se han aplicado tradicionalmente para estimar la carga de sólidos suspendidos (Preston et al 1989).

En el presente y trabajo, con excepción, en parte, del PT, los demás solutos no tuvieron buenas correlaciones con el logaritmo del caudal. Por tal motivo, y no obstante...
satisfacerse los demás requerimientos, no pudieron aplicarse los métodos de regresión.
Se optó en consecuencia por un método evaluado (Mosello y De Giuli 1982, método 1b,
con la modificación de Sonzogni et al. 1979), método 1c.) y ampliamente utilizado para
estimar las cargas en ríos subalpino (Mosello, com. pers.) semejantes a los de la cuenca
del Puelo. Se basa en el producto de las concentraciones medias ponderadas por caudal y
el caudal medio anual. Siendo L la carga, se tiene:

\[L = \frac{(\sum C_iQ_i)}{(\sum Q_i)} \cdot Q_a = \frac{(\sum L_i)}{(\sum Q_i)} \cdot Q_a \]

siendo \(C_i \) la concentración en el i día de muestreo; \(Q_i \) el caudal medio diario en el i día de
muestreo y \(Q_a \) el módulo anual. Sonzogni et al. 1979) (en Mosello y De Giuli 1982)
propusieron la siguiente corrección:

\[L = \frac{(\sum L_i)}{(\sum Q_i)} \cdot Q_a [1+(1/n \cdot S_{QL/m_l \cdot m_Q})] / [1+(1/n \cdot S_{Q^2/m_Q^2})] \]

donde \(L \) es carga, \(Q \) caudal y \(C \) concentración; \(m_L \) carga diaria media y \(m_Q \) el caudal
diario de los días de muestreo:

\[m_L = \sum L_i/n \]

\[m_Q = \sum Q_i/n \]

\[S_{QL} = [\sum Q_iL_i - n m_L \cdot m_Q] / n-1 \]

\[S_{Q^2} = [\sum Q_i^2 - n m_Q^2] / n-1 \]

Este método permite además estimar el error cuadrado medio de la carga:

\[E_L = \{1/n (S_{Q^2/m_Q^2} + S_{L^2/m_L^2} - 2(S_{QL/m_L \cdot m_Q})) + \\
+ 1/n^2 [2(S_{Q^2/m_Q^2})^2 - 4 S_{Q^2/m_Q^2} S_{QL/m_L \cdot m_Q}) + (S_{QL/m_L \cdot m_Q})^2 + S_{Q^2/m_Q^2} S^2_{L^2/m_Q^2}] \}

2.9 Análisis estadístico:

La relaciones entre las variables se analizaron nivel exploratorio con métodos
principalmente gráficos y no paramétricos. Posteriormente ajustaron algunos modelos de
regresión simple, previo análisis de la distribución de los datos (test de Kolmogorov-
Smirnov), utilizando variables transformadas cuando fue necesario. Para la comparación
de medias se utilizó el test de Student sobre datos estandarizados.

Para identificar grupos de variables y relacionarlos con distintos posibles factores
de control (hidro-geológico, precipitaciones, efectos antrópicos, etc.) se utilizaron
técnicas de análisis multivariado. Se empleó el de agrupamiento (cluster) para identificar
grupos de variables con comportamiento semejante y para explorar la existencia de
estacionalidad en todos las variables o en algunos de los grupos identificados previamente.
El análisis de agrupamiento se realizó en todos los casos sobre una matriz de coeficientes
de Pearson calculada sobre datos estandarizados, con el método de pares de grupos no pesados usando medias aritméticas (UPGMA) o el método de Ward (Romesburg 1984).

El análisis factorial se realizó con el objeto de evidenciar asociaciones entre las variables medidas y algunos factores ambientales. Se extrajeron componentes principales a partir de la matriz de correlación obtenida también sobre datos estandarizados. Los componentes principales se rotaron ortogonalmente por el método varimax (Kleimbaum & Kupper 1978). Soporte informático utilizado: funciones estadísticas de Excell, Statgraphics y Statistica.

2.10 Parámetros morfométricos

Utilizando el perfil de la cuenca elaborado sobre imágenes Lansat y el valor de la superficie total de la misma (Coronato y Del Valle 1988), se estimaron las áreas de las subcuencas por planimetría en papel milimetrado. Se tomaron los valores medios de recuentos en triplicado. La cartografía base utilizada fue el mapa de Venzano (1960). Para el cálculo de las áreas en la subcuenca del río Azul se utilizó el mapa de (IOVIF 1970). La pendiente media del curso principal se determinó en base a las curvas de nivel.
3. DESCRIPCION DEL A DE ESTUDIO

Los flujos químicos son la resultante de la geología, suelos y clima, vegetación y uso del suelo. Por tal motivo se describirán con la mayor precisión posible todos aquellos factores relacionados con el origen y transporte de los iones principales y nutrientes, con particular referencia a la cuenca del río Azul (Fig. 1.4 y 3.4). Muchos de los trabajos publicados, presentan la particular dificultad de finalizar por el sur o por el norte, en el paralelo 42, límite administrativo de las provincias de Río Negro y Chubut. V.g. la cartografía georeferenciada de suelos y de bosques sólo está disponible para la parte sureste de la cuenca y solamente para las áreas de mayor interés económico, quedando excluidas las áreas protegidas, Parque Nacional Lago Puelo, cuenca del Turbio y otras. Todo ello dificulta la tarea de integrar la información sobre la cuenca.

3.1 Geología

Dos ciclos tectónicos principales, patagonídico y ándico, originaron respectivamente, la cadena de los Patagónides durante el Mesozoico y los Andes durante el Terciario. Los ciclos orogénicos se producen cuando la placa de Nazca es subductada debajo de la placa Sudamericana y el margen continental sufre el levantamiento de cadenas montañosas acompañado frecuentemente por vulcanismo extenso y activo. La cordillera nord-patagónica alcanza su estructura actual durante el Mioceno medio a superior, a través de la fase compresiva ocurrida hace 8-10 m.a. (Fulco 1995).

El rasgo estructural sobresaliente es el fallamiento en bloques del basamento cristalino, característica imperante en casi toda la cordillera. Morfológicamente da origen a una serie de valles longitudinales de arrumbamiento norte-sur, y a otro sistema menos importante, perpendicular al primero. Los mismos han perdido parte de su forma característica debido a la acción de los glaciares pleistocenos. Las fallas más destacadas
son las que circundan el borde oriental del cordón limítrofe; el sistema de fallas del cordón Piltriquirtrón y la falla de la margen izquierda del río Ternero. Los ríos Azul y Quemquemtreu corren por fosas que están cubiertas actualmente por depósitos sedimentarios (IOVIF 1971).

<table>
<thead>
<tr>
<th>Edad</th>
<th>Formación</th>
<th>Litólogía</th>
<th>Ubicación en la cuenca del Puelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holoc.</td>
<td>Depósitos piroclásticos</td>
<td>acumul. de cenizas y lapillitas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depósitos Aluviales/rem. en masa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleis.</td>
<td>Depósitos Glaciares</td>
<td>distintos till y drift glaci. Cuaaternarias</td>
<td>Import. en Epuyén</td>
</tr>
<tr>
<td>Plio.</td>
<td>Vulcanitas</td>
<td>Lava basálticas, basándesitas, andesitas</td>
<td>cuenca</td>
</tr>
<tr>
<td>Mio.</td>
<td>Sedimentitas F. Nirihuau y contín. F. Ñorquinco</td>
<td>Areniscas tobiéscas, wackes, conglim. lutitas, con pocos niveles cálcáreos</td>
<td>Loma del Medio (margen del Azul, faldeos del Piltriquirtrón)</td>
</tr>
<tr>
<td>Eo inf.</td>
<td>Vulcanitas ácidas/l unosísicas</td>
<td>30 % andesitas / basándesitas (+basaltos/dacitos/riodacitas/triquitas) más importante al este y sur de la cuenca</td>
<td>Los Repollos</td>
</tr>
<tr>
<td></td>
<td>(Serie andésítica)</td>
<td>70 % tobas/brechas/wackes</td>
<td></td>
</tr>
<tr>
<td>Cret.</td>
<td>Granitoides de cordillera/Granítico</td>
<td>Plutónicas e hipabasitas, granodioritas distribución amplia, al oeste de R. Azul, Co. Cuelas y Co. Pirque</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complejo Intrusivo</td>
<td>c/tonalitas (80 %) y adamantitas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Huemul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jur. sup.</td>
<td>Vulcanitas F. Millaque</td>
<td>Intrusiones del complejo granítico</td>
<td>Intercalado c/plutónitas al oeste del río Azul (Co. P.Moreno, Dedo Gordo, Hielo Azul, Alicia)</td>
</tr>
<tr>
<td></td>
<td>mesosílicas</td>
<td>Porfidos riodacitos y andesitos predominan las lavas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intercalaciones marinas</td>
<td></td>
</tr>
<tr>
<td>Jur. inf.</td>
<td>Sedimentitas F. Piltriquirtrón</td>
<td>Rocas sedimentarias</td>
<td>poca extensión areal</td>
</tr>
<tr>
<td>(Lias)</td>
<td>marinas/ vulcanitas</td>
<td>pelitas negras, areniscas cuarzo-</td>
<td>Co. Piltriquirtrón</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-feldesfáticas, caliza,</td>
<td>Cordon Pirque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lavas, brechas y tobas andesitas, riolíticas y dacíticas</td>
<td>Cordon Cholila</td>
</tr>
<tr>
<td>Trías.</td>
<td>Sedimentitas Continental</td>
<td>Vulcanitas y sedimentitas</td>
<td>poca extensión en la cuenca</td>
</tr>
<tr>
<td></td>
<td>F. Paso Flores (Serie porfirítica triásica)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precám.</td>
<td>Basamento Cristalino</td>
<td>gneiss, micasitas y migmatitas</td>
<td>Cordones Serruco y Piltriquirtrón</td>
</tr>
<tr>
<td></td>
<td>F. Cushman</td>
<td>c/áporte igneo, intruidas por granitos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Manuil Cholque</td>
<td>Granodioritas y otras plutónitas</td>
<td></td>
</tr>
</tbody>
</table>
a la datación de algunas formaciones. El paleozoico no parece tener la importancia que se le atribuyó en un comienzo y no estaría muy representado en el área de la cuenca. El material basáltico, dominante en el área de la meseta, es escaso en el área de la cordillera. El material plutónico, dominante en la subcuencas del río Turbio, del lago Epuyén y en parte baja del río Azul, hasta el límite internacional, se habría producido en distintos episodios magmáticos, desde el Devónico hasta el Terciario. Las principales unidades estratigráficas y su composición litológica dominante se presentan en la Tab. 3.1 y se ubican en la Fig. 3.1.

3.2 Geomorfología

El río Puelo constituye uno de los pasos más bajos del extenso límite internacional argentino-chileno. Nace en el lago homónimo y se desemboca en el Pacífico a través de un profundo corte transversal en la Cordillera (198 m s.n.m.). Sus aguas vierten primeramente en el lago Inferior (Chile) a pocos kilómetros del límite internacional (Figs. 1.4 y 3.2). Este profundo valle transversal se originó por erosión regresiva y captura de vertientes, fenómeno común en las cuencas hidrográficas que se originan en la vertiente este de los Andes y desaguan en el Pacífico.

El enfriamiento global durante el Pleistoceno produjo un extenso englazamiento, cuyo límite oriental puede ubicarse a los 71º W, aunque pueden encontrarse depósitos mucho más al este. Sólo algunas altas cumbres habrían sobresalido del manto de hielo de alta montaña. Durante este período se produjeron como mínimo tres expansiones principales de los glaciares (Flint y Fidalgo 1969; González Díaz y Malagnino 1984).

El fallamiento en bloques, rasgo estructural característico de la comarca, ha sido enmascarado por la acción de los glaciares cuaternarios, por los depósitos aluviales y por los depósitos de cenizas volcánicas. El efecto de las glaciaciones puede observarse hasta más allá del límite oriental de la cuenca, a lo largo del meridiano 71º W. Los depósitos aluviales más importantes se formaron durante el periodo postglacial. Al mismo tiempo las cenizas volcánicas fueron suavizando en paisaje, rellenando depresiones y acumulándose especialmente en las laderas a sotavento (I.O.V.I.F. 1971; Fulco 1995).

La cuenca del lago Puelo se haya circunscripta por picos montañosos de 2000-2200 metros s.n.m. (Fig. 3.2). La pendiente media teórica es del 12.4 % (Coronato y Del Valle 1988). Presenta dos cubetas lacustres importantes, los lagos Puelo y Epuyén, originadas al igual que otros lagos andinos, en depresiones tectónicas y valles.
Fig. 3.2. Ubicación de los principales cordones montañosos y cumbres de la cuenca del Puelo.
Fig. 3.3. Orden lótico, según Strahler, de los cursos de agua en la red hidrográfica de la cuenca del lago Puelo (Tomado de Coronado y Del Valle 1988).
sobreexcavados por glaciares (Iriondo 1989). Las masas glaciarias actuales más
importantes se encuentran en el cerro Tres Picos (2492 m) y en en Cordón Esperanza
(sub-cuenca del río Turbio) (Cordón et al. 1993).

Tabla 3.2. Parámetros morfométricos de la cuenca del lago Puelo (1)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie:</td>
<td>3040 km²</td>
</tr>
<tr>
<td>Perímetro:</td>
<td>380 km</td>
</tr>
<tr>
<td>Diámetro mayor:</td>
<td>90 km</td>
</tr>
<tr>
<td>Diámetro menor:</td>
<td>48 km</td>
</tr>
<tr>
<td>Longitud del curso principal:</td>
<td>87 km</td>
</tr>
<tr>
<td>Densidad de drenaje:</td>
<td>0.47 km²/km²</td>
</tr>
<tr>
<td>Pendiente media de laderas:</td>
<td>12.4 %</td>
</tr>
<tr>
<td>Cuenca de los ríos Puelo-Manso (Arg.-Chile)</td>
<td>≈ 8,800 km² (2)</td>
</tr>
</tbody>
</table>

Según el sistema de Strahler (1984) El río Azul tiene orden lótico 4 hasta la
desembocadura del río Quemquemtreu, y orden lótico 5 desde allí hasta su
desembocadura en el lago Puelo (Fig. 3.3). Los ríos Epuyen y Turbio, son de orden
lótico 4. La sub-cuenca del río Azul presenta una red de drenaje particularmente
asimétrica, con la mayor parte de los afluentes en la margen Oeste del río (Fig. 3.4).
Estos afluentes, Motoco, Lindo, Raquel, se originan en las cercanías del límite
internacional. La altura máxima (2270 m) es el Co. Hielo Azul. Su afluentes principal es el
rio Quemquemtreu, que drena el sector más oriental de la cuenca y que es prácticamente
el único afluentes en la margen oriental. El río Quemquemtreu se forma en la unión del A°
Los Repollos y el A° Los Terneros, que tiene sus nacientes a 2,250 m s.n.m. El límite
oriental de la cuenca está constituido por la anticordillera y conforma la divisoria de
aguas Atlántico-Pacífico. La anticordillera está formada por una sucesión de cordones y
cerros de arrumbramiento predominante norte-sur, entre los que se destacan el Cordón
Serruco, Cerro Paleta, y el cordón Piltriquitrón, con el cerro El Rincón, que alcanza la
mayor altura (IOVIF 1971). El límite norte está formado por el cordón P. Moreno,
terrazas (Loma Atravesada), con alturas medias de 1000-1200 metros s.n.m, que separan
la cuenca del Azul de la del Manso. La Loma del Medio divide la cuenca superior del
Azul de la del Quemquemtreu.

La sub-cuenca del río Epuyen se encuentra hacia el sur de la subcuenca del río
Azul. El río Epuyen nace en el lago homónimo, y en su transcurso hacia el lago Puelo
describe un trayecto poligonal casi cerrado (Fig. 3.2). La subcuenca del río Turbio, es la
Fig. 3.4. Sub-cuenca del río Azul

Referencias:

Cuenca del río Azul Superior

Cuenca del río Azul en la estación de aforo

Estaciones de aforo
más extendida hacia el oeste y por lo tanto la más lluviosa y con mayor superficie glaciarizada. Es la más homogénea desde el punto de vista litológico, con predominio de granitoides. Su colector, el río Turbio, desemboca en el extremo sur del lago Puelo, arrastrando gran cantidad de sedimentos finos, tipo harina glaciare.

El lago Puelo ocupa una cubeta de origen fluvi-glacial de 180 m de profundidad máxima. Esta enclavado en un valle en forma de “L” con salida hacia el lago Puelo Inferior (Chile). Sus principales parámetros morfométricos se presentan en la Tab. 3.3, conjuntamente con los del lago Epuyén.

| Tab. 3.3. Parámetros morfométricos de los lagos Puelo y Epuyén (Quirós 1988). |
|-----------------|-----------------|-----------------|
| | L. Puelo | L. Epuyén |
| Superficie: | 44 | 17.4 | km² |
| Volumen: | 4092 | 1608 | hm³ |
| Profundidad máxima: | 180 | 148 | m |
| Profundidad media: | 111.4 | 92.4 | m |
| Longitud de costa: | 57 | 3.3 | km |

3.3 Clima

El clima es templado-húmedo, con inviernos fríos y lluviosos, y estación seca en verano-otono. La cordillera de Los Andes, funciona a modo de una barrera natural que obliga a los vientos dominantes del Pacífico, a subir. Las nubes provocan precipitaciones muy abundantes en la vertiente occidental (Fig. 3.5), mientras que hacia la vertiente oriental disminuyen notoriamente, efecto conocido como sombra de lluvias. Se genera así uno de los gradientes climáticos más abruptos del planeta (Seibert 1976). En poco más de 50 kilómetros se pasa de una zona con 4000 a otra con 200 mm de precipitaciones anuales, respectivamente (Fig. 3.6).

Esta cuenca, en relación con otras binacionales, está especialmente favorecida por la poca altitud de los valles transversales y por la cercanía al Pacífico (distante sólo 40 km). Su influencia se hace sentir tanto en los totales pluviométricos, como en la marcha anual de la temperatura, que raramente desciende de 3 °C. La isoterma de 10 °C penetra excepcionalmente, englobando la mayor parte de la cuenca (Coronato y del Valle 1988). A esta latitud, tales temperaturas no se encuentran sino 400 km al este. En el Bolsón el promedio de lluvias para el período 1940-1960 fue de 893 mm; la temperatura media anual de 9.8°C, con una máxima absoluta de 37.2 °C y una mínima absoluta de -10.3 °C.
Fig. 3.5. Perfil topográfico generalizado de los Andes Patagónicos indicando vientos dominantes y los efectos de la barrera orográfica sobre las precipitaciones (Modificado de Colmet Daage et al. 1995).

(IOVIF 1971). El índice continentalidad de Gorczynski da una buena imagen del clima benigno de la cuenca, en relación a otras áreas de la meseta. Siendo k el índice de Gorczynski (tomo de Mendía e Irisari 1986), A, la oscilación anual de la temperatura en °C y L, la latitud en grados sexagesimales,

$$k = 1.7 \left(\frac{A}{\text{sen} L} \right) - 20.4$$

K oscila entre (-)12 en estaciones marcadamente oceánicas y (+) 100 en las estaciones marcadamente continentales. Definiendo k(0-10) baja continentalidad, k(10-35) media continentalidad y k(>35) alta continentalidad (Mendía e Irisari 1986), la cuenca del Puelo posee un clima de baja continentalidad.

El gradiente de precipitaciones este-oeste está comprendido entre valores superiores a 4000 mm anuales -algunos puntos de la cordillera y 500 mm, -ladera oeste del cordón occidental de El Maitén (Coronato y Del Valle 1988) (Fig. 3.6). Para la cuenca del Puelo, el promedio de precipitaciones es de 1400 mm anuales y el promedio de temperatura es de 12.2 °C (Coronato y del Valle). Los vientos son escasos, predominando los de dirección norte y sur, con una velocidad media de 7 km/hora. La frecuencia media de días con heladas es 92. El año más lluvioso fue 1953 con 1187 mm y el menos lluvioso, el año 1956 con 580 mm. En promedio, el trimestre invernal (JJA) arroja totales cuatro veces superiores al estival (DEF) (Coronato y Del Valle 1988). La mayor parte de las precipitaciones se producen entre mediados de abril y
Fig. 3.6. Isohietas en la cuenca del lago Puelo, mostrando el gradiente de precipitaciones Este-Oeste (Modificado de Cordón et al. 1990)
mediados de setiembre. (IOVIF 1971). La precipitación media anual es superior a la
evapotranspiración potencial, pero en los trimestres de verano y otoño la
evapotranspiración potencial supera a las precipitaciones (Cordón et al. 1993). Las
precipitaciones tienen una notable dependencia con la altura, sobre todo en los cordones
occidentales y en segundo lugar con la distancia a la cordillera. Las isohietas de los 800-
1000 mm marcarían la zona de transición entre el bosque caducifolio y del Distrito
Valdiviano. La isohieta de los 500 mm recorre el ecotono estepa-bosque sub-antártico
(Cordón et al. 1993).

3.4 Suelos
La litología del basamento y las glaciaciones del cuaternario tienen a menudo
importancia secundaria en la génesis de suelos. En gran parte de la Patagonia andina se
señala que las cenizas volcánicas han sido mucho más importantes como formadoras de
suelos que las rocas precuaternarias (Colmet-Daage 1987; Irisarri y Mendía 1991). La
cordillera andino-patagónica fue cubierta por potentes mantos de cenizas volcánicas, en
los cuales unos pocos siglos son suficientes para su transformación en suelos muy fértiles
(Colmet Daage 1987). Su espesor es marcadamente uniforme en toda la región, hasta en
pendientes de más de 50° (Colmet Daage et al. 1995) creciendo hasta en pendientes de
70° en la cuenca del Puelo (Irisarri y Mendía 1991).
Fig. 3.7. Conos de dispersión de las cenizas de volcanes de chilenos (Modificado de Salmi 1941) con mayor incidencia en la formación de los suelos volcánicos de la cuenca del Puelo.
Los suelos volcánicos contienen alocfán en porcentajes más o menos considerables, componente que les confiere comportamientos muy particulares y diferentes de los demás tipos de suelos (Besoain 1985). El sistema norteamericano los consideró en el suborden Andepts hasta 1975, “suelos de baja densidad (menos de 0.85 g cm\(^{-3}\))”, de alto contenido de alocfano, con un complejo de cambio dominado por componentes amorfos, desarrollados en regiones húmedas y en general sin horizontes de diagnóstico”; pero en el Soil Taxonomy de 1990 se crea el orden Andisoles para agrupar a todos los suelos con propiedades ándicas (Planas et al. 1996). Los suelos volcánicos bien drenados tienen una alta capacidad de retener aniones y cationes (en el orden F>PO4>SO4>NO3>Cl y, Ca>Mg>K>Na, respectivamente) (Irisarri, com. pers.). La alta retención de fósforo es una de las características definitorias (y desventajosas) de estos suelos (Colmet-Daage et al. 1995).

La composición química de los materiales volcánicos difiere notablemente de las rocas andinas (Moreno y Varela 1985) e incluso cambia de un volcán a otro, y aún en un mismo volcán, de erupción en erupción (Colmet-Daage 1987). Las cenizas que alcanzaron la cuenca del Puelo pueden ser provenientes de los volcanes Calbuco, Hornopirén, Apagado, Huequi y Michinmahuida (Fig. 3.7). En los suelos de una transecta ubicada a 41° 45', Planas et al. (1996) sugieren a modo tentativo una correspondencia con la mineralogía de los volcanes Calbuco y Hornopirén. El

Fig. 3.8. Perfil topográfico de la cordillera y antecordillera en la vecindad del paralelo 42° S, indicando el gradiente E-W de suelos y tipo de vegetación. Nótese como los bosques se ubican especialmente en las laderas de sotavento (Modificado de Colmet-Daage et al. 1995).
Vn. Calbuco ha presentado más de 10 erupciones en lo que va del siglo, siendo la última en 1974. El Vn. Huequi tuvo su última erupción en 1920 (Moreno y Varela 1985). Diversos estudios coinciden en señalar la basicidad de la fracción arena de los materiales expulsados. Ciertas cenizas tienen predominio de hipersteno, entre ellas las del Vn. Calbuco, mientras que en otras predomina olivino. Etcheverre (1972) afirma que las cenizas andesítico-basálticas dominan en la cordillera patagónica argentina desde los 39 mesosilicica-ácida, proveniente de diversas erupciones, con abundancia de minerales pesados. Por lo expresado podemos concluir que el material parental dominante es de tipo mesosilico a ácido y que es relativamente nuevo.

El grado de desarrollo (andolización) de los suelos volcánicos está vinculado al clima y se correlaciona con la humedad de los suelos, v.g. laderas con exposición norte y con exposición sur (Irisarri y Mendia 1991; Planas et al. 1996). Por esta razón encontramos también un fuerte gradiente edáfico Este-Oeste. En clima húmedo los alofános se transforman en imogolita, un material fibroso de transición. Cuando aparece una estación seca muy marcada, en suelos con drenajes más lentos hacia el extremo oriental de la zona lluviosa (1500 mm anuales), se forma halosita, un mineral de

Fig. 3.9. Composición mineralógica relativa en la transecta edafológica Co. Lindo – Co. Piltriquitrón, en la cuenca del río Azul. Síntesis a partir de los datos de Colmet Daage et al. (1995) y Planas et al. (1996) principalmente. En ordenadas se indican porcentajes. La escala de kilómetros comienza en el límite con Chile.

neoformación. Hacia el límite de contacto con la estepa disminuyen las propiedades ándicas de los suelos. La imogolita origina arcillas cristalinas de tipo montmorillonita o
vermiculitas y el tipo de suelo pasa de andisols a molisols, aun en pocos kilómetros (Colmet Daage el al 1995) (Fig. 3.6 y 3.8).

Según el estudio mineralógico de Planas et al. (1996), desde la vertiente oriental de la cordillera (cuenca del Azul superior) hasta la Loma Atravesada predomina el hipersteno (36-56%) y la augita es importante (12-20%), siendo el olivino y hornblenda escasos o nulas. En la vertiente oriental del Piltriquitrón es muy abundante la hornblenda (30-38%), seguido por el hipersteno (27%) y escasa augita (5-6%) y olivino (3-8%). El hipersteno va disminuyendo hacia el este a la vez que aumenta la hornblenda y la augita. Los opacos abundan más (28-35%) en el perfil del Maitén mientras que las alteritas abundan más en el perfil más occidental, probablemente por ubicarse en un ambiente más húmedo. Entre los minerales livianos, domina las plagioclasas (Fig. 3.9).

3.5. Hidrología

La Tab. 3.5.a muestra el módulo medio para algunos cursos de agua con más de 20 años de registros. Todos los cursos presentan un régimen de escorrentía bimodal, con un pico invernal producto de las precipitaciones y un pico primaveril producto del deshielo. El máximo estiaje se produce en el mes de marzo. Los máximos invernales del Azul están adelantados de un mes con respecto de los del Quemquemtreu (Tab. 3.5.b). Obsérvese que los periodos de máxima del Quemquemtreu no coinciden con los del Azul. No obstante el módulo medio es mayor en el Azul (alto), el caudal máximo medio diario y mínimo medio diario fué mayor en el Quemquemtreu. No obstante la cercanía de ambas cuencas, deben asumirse la existencia de algunos factores de control hidrológico particulares en cada una de ellas. Uno de ellos es el área de la cuenca en las respectivas estaciones de aforo; la del río Quemquemtreu duplica la del Azul.

<table>
<thead>
<tr>
<th>Período</th>
<th>Período</th>
<th>Cuenca</th>
<th>Módulo</th>
<th>Mód. medio</th>
<th>Mód. mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Azul</td>
<td>1970-94</td>
<td>24</td>
<td>395</td>
<td>21.8</td>
<td>127.0</td>
</tr>
<tr>
<td>R. Quemquemtreu</td>
<td>1957-94</td>
<td>37</td>
<td>650</td>
<td>10.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Aº Catarata.</td>
<td>1968-90</td>
<td>21</td>
<td>34</td>
<td>0.899</td>
<td>5.35</td>
</tr>
<tr>
<td>R. Epuyén.</td>
<td>1951-94</td>
<td>40</td>
<td>500</td>
<td>15.2</td>
<td>62.5</td>
</tr>
<tr>
<td>Aº Las Mercedes</td>
<td>1959-85</td>
<td>25</td>
<td>60</td>
<td>0.397</td>
<td>1.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Máx med</th>
<th>Mín med</th>
<th>Med año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td></td>
</tr>
<tr>
<td>Prom.</td>
<td>16.0</td>
<td>29.2</td>
<td>27.7</td>
<td>25.3</td>
<td>22.6</td>
<td>20.1</td>
<td>22.5</td>
<td>27.1</td>
<td>26.7</td>
<td>19.4</td>
<td>14.1</td>
<td>12.0</td>
<td>127</td>
<td>5.32</td>
<td>21.8</td>
</tr>
<tr>
<td>Máx</td>
<td>43.5</td>
<td>70.0</td>
<td>51.2</td>
<td>51.5</td>
<td>72.3</td>
<td>39.7</td>
<td>34.3</td>
<td>52.4</td>
<td>54.5</td>
<td>35.4</td>
<td>27.8</td>
<td>33.1</td>
<td>244</td>
<td>6.77</td>
<td>29.2</td>
</tr>
<tr>
<td>Mín</td>
<td>2.0</td>
<td>10.3</td>
<td>10.1</td>
<td>11.3</td>
<td>6.3</td>
<td>9.8</td>
<td>10.6</td>
<td>14.2</td>
<td>12.9</td>
<td>10.0</td>
<td>6.9</td>
<td>4.4</td>
<td>29</td>
<td>0.80</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Quem															
Prom.	5.96	8.7	11.0	13.0	12.5	11.0	12.3	14.6	12.4	8.33	5.89	5.03	52.3	3.58	10.3
Máx	15.9	22.7	29.8	49.2	34.2	17.5	21.1	33.2	23.4	16.8	11.7	9.14	267	6.56	18.8
Mín	2.26	2/42	3.90	1.36	1.71	2.8	3.73	3.60	1.56	3.82	2.47	2.12	16	5.67	4.95

3.6 Vegetación

La cuenca del Puelo cubre un área relativamente homogénea, enclavada casi totalmente en la franja correspondiente a los bosques subantárticos (Fig. 1.4). La vegetación de la cuenca acusa el mismo patrón de apertura hacia el Pacífico que el clima. La provincia fitogeográfica Valdiviana penetra en territorio argentino en las inmediaciones del lago Puelo (Coronato y Del Valle, 1988), con especies tales como Drymis winteri (canelo), el bosque pantanoso de pitra, etc. Sólo una mínima parte, en las nacientes del Quemquemtreu (río Los Terneros) se insinúan características ecotones.

Estas se hacen mucho más marcadas y contrastantes en la cuenca del arroyo Las Minas, afluente del río Epuyén, cuyas nacientes se encuentran en ambiente de estepa. Según la clasificación de Cabrera (1976), en las alturas, y en forma de manchas aisladas, se encuentra la vegetación típica del Distrito Alto Andino Austral.

Existe un gradiente altitudinal marcado, con Nothofagus pumilio (lenga) entre los 900 – 1400 metros s.n.m., tanto sobre el distrito Valdiviano como el del Bosque Caducifolio (Cabrera 1976; Seibert 1976). Por encima de los 1400 m se encuentra lenga achaparrada. En el sobrobosque predomina Chusquea culeou (caña coligue). La caña es un buen indicador de suelos con alofanos, alta disponibilidad de agua en todo el perfil y a lo largo del año (Colmet Daage et al. 1995). En los pisos inferiores predominan bosques de Nothofagus dombyei (coihue), de hasta 40 metros de altura, y N. antarctica (fiire), junto con coníferas Austrocedrus chilensis (ciprés de la cordillera). Subdominantes y de menor altura son Lomatia hirsuta (radal), Mairena boaria (maitén), Myrcegenia apiculata (arrayán) y Aristotelia maqui (maqui). Los bosques monoespecíficos más extendidos en la cuenca son los de Austrocedrus chilensis, Nothofagus dombyei y N.

La vegetación costera de la parte baja de arroyos y ríos suele estar dominada por bosque en galería de *Salix sp.* (sauce). En los cursos de menor orden pueden encontrarse *Coriaria ruscifolia* (deu), *Escallonía rubra* (siete camisas), *Azara microphylla* (chin chin), *Gunnera tinctoria* (nalca), *Fuchsia magellanica* (chilco), *Discuria sp.* (chacay) y chaura principalmente. La *Rosa eglanteria* (rosa mosqueta), especie exótica, invade la mayoría de las áreas de bosques quemados para ampliar campos de pastoreo, encontrándose en constante expansión.

Las laderas del cordón Currumahuida y gran parte del Co. Pirque están afectadas en un 80 % por el incendio de 1987. El área incendiada se extendió hasta la parte inferior del valle del Azul (Fig. 1.1). El incendio de 1994 afectó una gran extensión del valle medio del río Turbio. Una parte creciente del área ocupada originalmente por bosques nativos está siendo reemplazada por bosques de coníferas exóticas, tal como puede observarse a lo largo la Ruta Nacional Nro. 258. Las áreas de cobertura de cada tipo de bosque pueden observarse en la Tab. 3.6.

<table>
<thead>
<tr>
<th>Tipo de Vegetación</th>
<th>km²</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coníferas nativas</td>
<td>93</td>
<td>8.7</td>
</tr>
<tr>
<td>Latifol. perennes</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>Deciduos (lenga/fuire)</td>
<td>322</td>
<td>30</td>
</tr>
<tr>
<td>Incendios recientes</td>
<td>35</td>
<td>3.3</td>
</tr>
<tr>
<td>Cultivos, pastizales, urbanizada</td>
<td>249</td>
<td>23</td>
</tr>
<tr>
<td>Altas cumbres</td>
<td>285</td>
<td>27</td>
</tr>
<tr>
<td>Superficie total</td>
<td>1070</td>
<td>100</td>
</tr>
</tbody>
</table>

Para la cuenca del Río Turbio puede estimarse un 70 % de cobertura forestal y un 30 % de suelos rocosos (valle aluvial del río Turbio, glaciares y altas cumbres), siendo esta la cuenca con mayor porcentaje de superficie glaciariizada. La cuenca del río Epuyen no presenta glaciares permanentes; ha sido la más castigada por los incendios de 1987 y 1994.
3.7 Uso del suelo

La cuenca del Puelo fue explorada a fines del siglo pasado por los gobiernos de Argentina y Chile, en relación a cuestiones limitrofes. Una sola familia habitaba entonces en el llamado Valle Nuevo (Steffen 1909). El mismo autor relata extensos incendios en el valle del Quemquemtreu a principios de siglo, que marcan el comienzo de la colonización. Willis (1914) menciona extensas áreas incendiadas en la ladera del Piltriquitrón y los primeros efectos del sobrepastoreo por vacunos. El crecimiento demográfico ha sido lento pero constante a lo largo del siglo y se ha acelerado en los últimos tres años con las facilidades de comunicación hacia S.C. de Bariloche abiertas por la nueva Ruta 258 y el asfalto de la misma. Se prevé entonces una presión demográfica en los próximos años.

La actividad turística constituye un impacto importante en la cuenca. El mayor flujo se produce en enero, disminuyendo en febrero y marzo. La Dirección Provincial de Turismo registró un promedio de 13000 visitantes por temporada, de paso por el Bolsón.

Tabla C8. Sintesis demográfica y ganadera en las subcuenas de los ríos Azul, Epuyén y Turbio.

Fuentes: En la Provincia de Río Negro: Servicio Forestal Andino, Municipalidad de El Bolsón, Dirección de Turismo; En la Provincia de Chubut: Parque Nacional Lago Puelo, Municipalidades de Lago Puelo, el Hoyo y Epuyén. Los censos ganaderos han sido amablemente proporcionados por los respectivos Juzgados de Paz. Los datos corresponden en general, al año 1996-7.

<table>
<thead>
<tr>
<th>Subcuenca</th>
<th>Azul</th>
<th>%</th>
<th>Epuyén</th>
<th>Turbio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie (km²)</td>
<td>1.070</td>
<td>820</td>
<td>730</td>
<td></td>
</tr>
</tbody>
</table>

Población

	Residentes	Transitorios		
Residencia	24500	3300		50
	18000	5000		350

| Densidad | 19.78 | 4.01 | 0.07 |

** Ganadería **

	Bovinos	Equinos	Ovinos	Caprinos	Porcinos
	4510	547	9084	44	20
	2405	367	6591	604	
	1040	110	380		

Un 20 % de estas se dirigen hacia Lago Puelo. Dado el tipo de registro, probablemente dicha cifra sea varias veces superior. Existen 3 campings sobre el río Azul superior y cinco sobre el río Quemquemtreu. A partir de 1993, con la finalización del asfalto Esquel - Bariloche, las presencias temporales han tenido un incremento marcado.
La zona de mayor laboreo agrícola corresponde a la cuenca de Arroyo del Medio, denominada Mallín Ahogado. Se cultivan principalmente lúpulo y fruta fina. Es una zona fría y los cultivos se destinan sobre todo al autoconsumo (huerta, animales de granja, explotación forestal). Los campos presentan el fenómeno de la subdivisión progresiva (Ing. S. Terradillas, INTA AER El Bolsón, com. pers.). Como fertilizante, se utiliza el abono orgánico, sea estiércol de ovejas o de chivos. Para el cultivo del lúpulo se utiliza muy poco fertilizante nitrogenado foliar. Los fertilizantes químicos se utilizan muy poco, y generalmente son el di-fósforo de amonio (18:46:0) o triple 15:15:15 (N:P:K). La escasa actividad agrícola hace que también sea escaso el uso de fertilizantes. En zanahoria se utiliza el Linurón (pre-emergente).

El manejo ganadero es semiextensivo. Se crían vacas y en menor escala ovejas, en hatos de 40-50 animales, que sirven sobre todo para autoconsumo. En las cuencas de los arroyos Los Terneros y Los Repollos, predomina la ganadería sobre los cultivos. Las majadas son más grandes que en Mallín Ahogado, siendo el 90 % de ovejas. Algunos campos tienen 10-20 vacas (Terradillas, INTA AER El Bolsón, com. pers.). El lavado de ovejas con antisáuricos se vierte luego a las aguas del R. Azul superior (L. Fabrizio 1995, com. pers.).

La actividad forestal y los incendios forestales constituyen sin lugar a duda el mayor impacto antrópico en el área de la cuenca. Debido a la pérdida de la capacidad de retención hídrica por los suelos de la cuenca alta de los arroyos Los Repollos y Los terneros, desde 1960 comenzaron a producirse serias inundaciones en la parte baja de la cuenca del Quemquemtreu (IOVIF, 1971). No obstante recomendaciones precisas de no introducir especies exóticas en áreas de bosque autóctono (Colmet Daage 1987), la pinificación es creciente.

Áreas Protegidas

Aproximadamente el 50 % de la superficie de la cuenca del lago Puelo forma o formará parte de una red de distintos tipos y categorías de áreas protegidas. La creación de estas áreas es un proceso activo en la cuenca. La más importante y de más antigua data es el Parque Nacional Lago Puelo, dependiente de la Administración de Parques Nacionales (Fig. 1.2).

La mayor superficie protegida en Chubut corresponde al Parque y Reserva Provincial Río Turbio, que incluye la cuenca del lago Esperanza. Es una reserva de uso
múltiple establecida recientemente (1997) y por su inaccesibilidad, es una de las áreas que ha sufrido menos impacto en el pasado. La Reserva Municipal El Desemboque, situada en la desembocadura del río Epuyén se creó, inicialmente como Reserva Privada, para la protección del bosque de pitras (*Myrceugenia exsucca*) allí existente. El Parque Provincial El Pirque, se encuentra en el cerro homónimo, en las nacientes del río Epuyén, también es de reciente creación (1994) por interés de los pobladores residentes.

En la Provincia de Río Negro se encuentran la Reserva Nacional Loma del Medio, y el Área Natural Protegida Río Azul-Lago Escondido, que se extiende desde el margen occidental del río Azul hasta el límite con Chile; esta última está regulada por la administración provincial y de reciente creación. Existe la intención de extender la franja de áreas protegidas desde el Parque Nacional Nahuel Huapi hasta el Parque Nacional Lago Puelo (van Koninemburg, com. pers.).

Tab. 3.8. Areas naturales protegidas en la cuenca del Puelo. Fuentes: Dirección de Bosques, Pcia de Chubut; Servicio Forestal Andino, Pcia. de Río Negro, Administración del Parque Nacional Lago Puelo.

<table>
<thead>
<tr>
<th>Area Protegida</th>
<th>Superficie (has)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia de Chubut:</td>
<td></td>
</tr>
<tr>
<td>Parque Nacional Lago Puelo</td>
<td>23.700</td>
</tr>
<tr>
<td>Parque y Reserva Provincial Río Turbio</td>
<td>50.000</td>
</tr>
<tr>
<td>Parque Provincial El Pirque</td>
<td>250</td>
</tr>
<tr>
<td>Reserva Municipal El Desemboque</td>
<td>30</td>
</tr>
<tr>
<td>Provincia de Río Negro:</td>
<td></td>
</tr>
<tr>
<td>Reserva Nacional Loma del Medio</td>
<td>2.000</td>
</tr>
<tr>
<td>Área Natural Protegida Río Azul-Lago Escondido</td>
<td>80.000</td>
</tr>
<tr>
<td>Total:</td>
<td>155.980</td>
</tr>
</tbody>
</table>
4. RESULTADOS

4.1 HIDROLOGIA

Se presentan primeramente los resultados obtenidos en el sistema lítico Azul-Quemquemtreu. La Fig. 4.1.1 muestra el perfil altitudinal del curso de mayor longitud muestreado, y las estaciones de muestreo ubicadas sobre el mismo.

Fig. 4.1.1. Esquema topográfico del sistema lítico Quemquemtreu-Azul, ubicación de las estaciones de muestreo, afluentes y centros urbanos.

Las estaciones de aforo no coincidieron con las estaciones de muestreo químico, por lo que el flujo hídrico de la cuenca del Azul se estimó indirectamente. Se supuso homogeneidad de precipitaciones en toda la vertiente occidental del río Azul y se estimó un caudal para el Azul en su desembocadura, sin el aporte del Quemquemtreu, multiplicando el caudal medido en la estación H1, por 1.42, factor de proporcionalidad que representa el área de la cuenca no aforada (Fig. 3.4). Este caudal se denominó qAc. El caudal total del Azul en su desembocadura (qAd), se estimó por suma de qAc y el caudal del río Quemquemtreu (qQ).
Fig. 4.1.2. Caudales medios mensuales históricos y durante el período de estudio (datos de Agua y Energía Eléctrica y de EVARSA).
Fig. 4.1.3. Caudal diario de los río Azul y Quemquemtreu durante 1995-96.

Fig. 4.1.4. Contribución porcentual de los ríos Azul y Quemquemtreu al caudal total del Azul
Fig. 4.1.5. Datos físicos en el sistema Azul-Quemquemtreu durante los días de muestreo
El módulo del río Azul durante el período de estudio fue prácticamente igual al módulo histórico, sin embargo este es un valor medio enmascarado por las crecientes excepcionales que ocurrieron durante 1996 y 1997. El valor de la mediana fue un 43 % menor (Tab. 3.5.b y Tab. 4.1.1). El módulo del río Quemquementreu, en cambio fue menor al valor histórico (Tab. 3.5.b y Tab. 4.1.1). Los hidrogramas mensuales de ambos ríos no fueron representativos de la tendencia histórica. Por una parte el río Azul presentó picos que duplican los valores normales para los meses de mayo y junio y, en el resto del año, el caudal fue menor, particularmente en diciembre y enero, que tuvieron aportes tres y dos veces inferiores, respectivamente (Fig. 4.1.2.b). En cuanto al Quemquementreu, tuvo casi siempre un caudal inferior al de la media histórica (Fig. 4.1.2.a), en julio, agosto y enero fue inferior en un 50 % a dicha media. qAd resultó similar a qA (Fig. 4.1.2.c).

Los hidrogramas diarios de los ríos Azul y Quemquementreu durante el período de estudio muestran diferencias notorias. Los picos no siempre fueron coincidentes en magnitud y fecha de ocurrencia (Fig. 4.1.3). Si bien el módulo del R. Quemquementreu (qQ) es inferior al del R. Azul (qA), en 20 ocasiones se observó la situación inversa (Fig. 4.1.4). En 63 días se verificó qQ > qA, en promedio 1.5 veces, con un máximo de 3.15 veces, el 11 de diciembre. En 29 días se verificó qQ > qAc, en un 30 % en promedio. Estos casos se produjeron durante noviembre y diciembre de 1995. Este hecho sorpresivo puede explicarse porque la superficie de la cuenca aguas arriba de H2, es mayor (> 70 %) que la situada aguas arriba de H1. Incluso, es mayor que la de Ac.

| Tab. 4.1.1. Aporte hídrico relativo de los ríos Azul y Quemquementreu. Valores para el año hidrológico abril 1995-marzo 1996. Q: Quemquementreu; A: Azul; Ac: Azul corregido; Ad: Azul desembocadura. (qAd= qQ+qAc). Nótese que hubo 63/319 días con qQ>qA. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| N | 319 | 319 | 319 | 319 | 63 | 319 |
| media | 7,21 | 21,10 | 29,98 | 37,20 | 1,53 | 0,40 |
| mediana | 6,18 | 11,97 | 17,01 | 23,07 | 1,36 | 0,28 |
| máx | 55,40 | 195,38 | 277,61 | 322,61 | 3,14 | 2,21 |
| mín | 1,88 | 2,33 | 3,31 | 7,42 | 1,00 | 0,03 |
| SD | 5,25 | 27,26 | 38,73 | 41,56 | 0,46 | 0,35 |
| CV% | 73 | 129 | 129 | 112 | 112 | 30 | 88 |

En ciertas condiciones meteorológicas, tales como lluvias generalizadas, esta mayor superficie se reflejaría en los caudales, no obstante el gradiente de precipitaciones este-
oeste. Como media durante el período de muestreo, qAd estuvo compuesto en un 60 % por qAc y en un 40 % por qQ. El valor de la mediana sin embargo, indicaría que el 72 % del caudal correspondió al río Azul y el 28 % al Quemquemtreu (Tab. 4.1.1). La Fig. 4.1.5 muestra las temperaturas máximas y mínimas, el caudal final del Azul y el porcentaje de aportes del Quemquemtreu durante los días de muestreo.

El río Azul, no obstante su mayor módulo, es más inestable hidrológicamente que el Quemquemtreu, como se desprende del coeficiente de variación del caudal diario, 129 % y 73 %, respectivamente (Tab. 4.1.1). Es decir, el río Azul presenta un régimen mucho más torrencial que el río Quemquemtreu. Su red hidrográfica, es notoriamente asimétrica, y sus afluentes están ubicados en la zona de mayor pluviometría, y con mayor pendiente media.

Estos hechos, al mismo tiempo que las diferencias en la composición iónica de ambos ríos, ponen problemas especiales para la estimación de las cargas químicas en E7, como se discutirá más adelante. Otra característica llamativa y que tal vez requieran de revisiones posteriores fue la relación muy débil entre precipitaciones y caudal. Lluvias de 20-30 mm (julio, setiembre y noviembre de 1995) no aparecen reflejadas en el caudal.
4.2 SISTEMA AZUL-QUEMQUEMTREU

4.2.1 ESPECTRO IÓNICO Y NUTRIENTES

Las aguas dominantes en el sistema estudiado son de baja mineralización y de tipo bicarbonato cálcico, sub-tipo sulfato magnésico-sódicas y presentaron un espectro iónico relativamente homogéneo. El bicarbonato fue siempre superior al 80 % de los aniones y el calcio siempre superior al 60 % de los cationes. El magnesio fue siempre superior al sodio y los sulfatos a los cloruros (en equivalentes). Los cloruros y el potasio fueron muy poco importantes porcentualmente, siendo siempre menores al 3-4 %. En peso, el sodio fue superior al magnesio entre un 20 y un 35 %. Los nutrientes, NT y PT fueron bajos en general, con máximos aguas debajo de El Bolsón y mínimos en el río Azul superior.

Las relaciones entre sumatoria de aniones y sumatoria de cationes fueron altamente consistentes (Fig. 4.2.1 a y b). Entre los aniones, el sulfato tuvo la correlación más alta con la conductividad (Fig. 4.2.2.a) y entre los cationes, correlacionaron en forma altamente significativa el magnesio, calcio y sodio. El potasio tuvo un coeficiente claramente menor (Fig. 4.2.2.b). La alcalinidad total correlacionó con la conductividad y con los cationes divalentes. Notoriamente la relación con el pH fue menor (Fig. 4.2.3.). Correlacionaron muy bien los cationes divalentes con los monovalentes; siendo menor el coeficiente entre cloruros y sodio (Fig. 4.2.4).

4.2.1.1 El río Quemquemtreu

En este ambiente, por considerárselo como el sometido a mayor presión antrópica, se estableciendo cuatro estaciones de muestreo. Fue notorio el aumento de la temperatura media entre E2 y E3 (1.7 °C) (Fig. 4.2.5). Se trata de un curso de agua de conductividad baja, de alrededor de los 80 µS cm⁻¹, con oscilaciones entre 60 y 100 µS cm⁻¹. El pH fue constante en todo el río. Entre E1 y E2 las distintas variables evidenciaron modificaciones atribuibles principalmente al arroyo del Medio. Prácticamente todas las variables determinadas se incrementaron entre E2 y E3, tramo que incluye el centro urbano de El Bolsón; fue notoria la duplicación de los sulfatos, y el aumento de la alcalinidad y los cloruros en un 30 % (Figs. 4.2.6). Entre los cationes, el mayor incremento correspondió al del Mg (1.7 veces) (Fig. 4.2.6b). En la desembocadura (E4), se vuelven a observar valores similares a E1, estación de control. Entre E3 y E4 se observó una disminución de más del 50 % de los sulfatos (Fig. 4.2.6a).
Los nutrientes se duplicaron entre E2 y E3. En E4 se recuperaron los valores de PT, pero no los de NT, que continuaron altos.

4.2.1.2. El arroyo Golondrinas

El arroyo Golondrinas (E6) se caracteriza por la abundante macrofitia que prácticamente ocluye la luz del cauce, en formando largas cabelleras extendidas en la corrientes (*Potamogeton* sp, y otras). La temperatura media fue la más alta registrada en el estudio (Fig. 4.2.5). Este arroyo drena la cuenca más pequeña muestreada en este estudio (orden lótico 2), con abundante cobertura forestal, y población rural en las partes bajas. Su caudal es insignificante (< 1 m³ s⁻¹) en relación al río Azul. Sin embargo es importante precisamente como indicador del funcionamiento de una cuenca pequeña en un área con población y actividad rural. Presentó el mayor contenido total de sales y conductividad entre las estaciones muestreadas (2.5 meq l⁻¹, y 119 µS cm⁻¹, respectivamente); sin embargo la representación porcentual de cada uno de los iones principales fue similar a la del río Quemquemtreu en E4. El NT fue igual a E4, pero el PT fue muy bajo, comparable con el del río Azul (Fig. 4.2.7), hecho que evidenciaría la capacidad de retención de nutrientes atribuida generalmente a las macrofitas.

4.2.1.3. El río Azul

El Azul superior, tramo ubicado aguas arriba de la desembocadura del Quemquemtreu (E5), presentó la menor conductividad media anual (40 µS cm⁻¹) y la menor concentración de cationes y aniones (0.783 meq l⁻¹) y de nutrientes. Presentó el mayor porcentaje de calcio entre los cationes. Estos resultados son congruentes con un ambiente de precipitaciones medias elevadas (2000 mm anuales), rocas cristalinas y presencia humana poco importante.

El coeficiente de variación medio de TA, K20 y cationes del río Azul (E5) fue del 19 % y el del Quemquemtreu del 21 %, para n=6. Este resultado indicaría que ambos ríos presentan desde el punto de vista químico una variabilidad semejante. Entre E5 y E7, el río Azul recibe las aguas del río Motoco y de torrentes menores (margen izquierda) y del río Quemquemtreu y del arroyo Golondrinas (margen derecha). La composición iónica del arroyo Motoco, se supuso semejante a la del río Azul en E5. La composición iónica final del río Azul (Fig. 4.2.6), y de nutrientes (Fig. 4.2.7), se modificó muy poco cualitativamente, en relación con los aportes del Quemquemtreu. La concentración de iones tuvo incrementos medios del 20 % (Fig. 4.2.6). En E5, los
Fig. 4.2.1. Sumatoria de aniones (a) y de cationes (b) vs. conductividad (K20) en el sistema Azul-Quemquemtreu.

\[\Sigma an = 0.0879x + 8.0684 \]

\[R^2 = 0.9695 \]

\[\Sigma cat = 0.0901x + 6.2883 \]

\[R^2 = 0.9789 \]
Fig. 4.2.2. a. Aniones vs. alcalinidad total en el sistema Azul-Quemquemtreu
b. Cationes vs. alcalinidad total en el sistema Azul-Quemquemtreu

\[\text{CO}_3H = 9.8151x - 40.99 \quad R^2 = 0.8985 \]
\[\text{SO}_4 = 1.4164x - 12.332 \quad R^2 = 0.5252 \]
\[\text{Cl} = 0.1545x + 8.0708 \quad R^2 = 0.5661 \]

Fig. Cationes vs. conductividad en el sistema Azul-Quemquemtreu

\[\text{Ca} = 6.7324x + 3.7794 \quad R^2 = 0.9622 \]
\[\text{Mg} = 2.7738x - 57.127 \quad R^2 = 0.9802 \]
\[\text{Na} = 1.427x - 10.45 \quad R^2 = 0.9218 \]
\[\text{K} = 0.1845x - 1.5477 \quad R^2 = 0.7773 \]
Fig. 4.2.3. pH, conductividad y cationes divalentes vs. alcalinidad total (HCO₃⁻) en el sistema Azul-Quemquemtreu.

- Graph 1: \[y = 0.3102x + 0.4785 \]
 \[R^2 = 0.2128 \]

- Graph 2: \[y = 9.8151x - 40.99 \]
 \[R^2 = 0.8985 \]

- Graph 3: \[y = 0.8869x + 46.899 \]
 \[R^2 = 0.8624 \]
Fig. 4.2.4 Catíones divalentes vs. monovalentes, y sodio vs. cloruro (en μeq l⁻¹) en el sistema Azul - Quemquemtreu.
Fig. 4.2.5. Valores medios de temperatura, pH y conductividad en siete estaciones del sistema Azul-Quemquemtreu; coeficiente de variación de pH y K20, y desvío estandar de Temp.
Fig. 4.2.6. Valores medios de aniones y cationes en el sistema Azul-Quemquemtreu. Datos de muestreos bimensuales en siete estaciones.
valores medios anuales de PT y NT, 2.9 y 8.3 μg l⁻¹, respectivamente, fueron notoriamente los más bajos de la cuenca, al igual que el de los silicatos (84 μM). En E7 se observó un aumento significativo en NT (Fig. 4.2.7), probablemente debido a los aportes del Quemquemtreu.

4.2.2 BACTERIOLOGÍA

Las variables bacteriológicas son particularmente apropiadas para evidenciar el impacto urbano. No hubo cifras llamativas de CF, pero sí en cambio de CT e IAC, que se multiplicaron por 2.9 y por 4.5, respectivamente, entre E2 y E3 (Fig. 4.2.8). Desde el punto de vista bacteriológico (Fig. 4.2.8) se destaca la estación E6 por el número muy elevado de bacterias heterotróficas (BAM). Este hecho podría estar asociado a la secreción de substancias orgánicas por la abundante macrofitia que prácticamente ocluye la luz del cauce. Los valores de las variables bacteriológicas en E5 fueron los más bajos de la cuenca. La cría extensiva de ganado puede considerarse como la actividad de mayor impacto en este valle (Azul superior), y el turismo en los meses de verano (camping de diversos tipos).

La gráfica de las medias bacteriológicas (Fig. 4.2.8) es particularmente engañosa para dilucidar tendencias a lo largo del sistema, por la presencia de máximos extremos en uno de los muestras. Las medianas (Tab. 4.2.1) muestran que la estación con mayor carga bacteriana es E4 y no E3 como muestran las medias. La media y mediana máxima de BAM se observaron en E6. Estos resultados obtenidos durante cinco muestras no conforman una base de datos suficientemente estabilizada, siendo necesario para ello muestras con mayor frecuencia. Los resultados en E3 y E4 mostraron que no sólo los nutrientes y la bacteriología acusaron el impacto urbano, sino también los cationes y aniones, normalmente considerados como elementos conservativos.

| Tabla 4.2.1. Media / mediana de las variables bacteriológicas en siete estaciones de muestreo en el sistema Azul-Quemquemtreu (n=5). BAM en ufc/100 ml; CT, CF e IAC en bact./ml. |
|---|---|---|---|---|
| **BAM** | **CT** | **CF** | **IAC** |
| E1 | 290 | 30 | 70 | 30 | 7 | 160 | 70 |
| E2 | 310 | 140 | 130 | 60 | 60 | 30 | 70 | 30 |
| E3 | 470 | 200 | 370 | 90 | 70 | 30 | 300 | 60 |
| E4 | 280 | 70 | 150 | 20 | 60 | 50 | 100 | 110 |
| E5 | 170 | 200 | 80 | 60 | 30 | 0 | 60 | 60 |
| E6 | 600 | 500 | 110 | 40 | 50 | 40 | 60 | 10 |
| E7 | 370 | 50 | 60 | 25 | 5 | 0 | 60 | 27 |
Fig. 4.2.7. Nitrógeno total, fósforo total y sílice reactiva en siete estaciones del sistemas Azul-Quemquemtreu. Valores medios y desviación estándar de 4-5 muestreos bimensuales.
Fig. 4.2.8. Bacteriología en siete estaciones del sistema Azul-Quemquemtreu. Valores medios y desvío estándar de cinco muestreos bimensuales durante el período 1995/96.
4.2.3 Análisis de agrupamiento

El análisis de agrupamiento entre variables (Fig. 4.2.9) evidenció tres grupos principales. El **grupo 1**, incluyó las cuatro variables bacteriológicas y la temperatura, el **grupo 2**, la alcalinidad, conductividad, calcio, magnesio y sodio con correlaciones altas, y el silice, nitrógeno total y sulfato, con coeficientes algo más bajos. El **grupo 3**, cloruros, pH y fósforo total, apareció en forma bastante independiente del resto de las variables, al igual que el potasio. El caudal, si incluido, se vinculaba con la temperatura a una distancia de ligamiento de 0.50. En síntesis el grupo con relaciones más estrechas entre sí fue el de los cationes, menos potasio, alcalinidad, conductividad y silice.

Fig. 4.2.9. Análisis de agrupamiento entre variables en el sistema Azul-Quemquemtreu
4.3 RÍO AZUL

Se presentan a continuación los resultados del muestreo semanal en la desembocadura del río Azul, llevado a cabo entre abril de 1995 y mayo de 1996. Los valores medios fueron algo mayores (Tab. 4.3.1) que los estimados en los muestreos bimensuales, excepto para nutrientes, que fueron un 50 % más altos. Esta diferencia se explica por que en la frecuencia semanal se tomaron muestras durante crecientes extraordinarias, no incluidas en el muestreo bimensual.

Tabla 4.3.1. Valores medios de los muestreos bimensuales y semanales realizados en la desembocadura del río Azul (µeq l⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>K₂O</th>
<th>TA</th>
<th>SO₄</th>
<th>Cl</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>SiR</th>
<th>NT</th>
<th>PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bimens.</td>
<td>7.5</td>
<td>53</td>
<td>459</td>
<td>73</td>
<td>17</td>
<td>358</td>
<td>91</td>
<td>63</td>
<td>8</td>
<td>90</td>
<td>1.69</td>
<td>0.14</td>
</tr>
<tr>
<td>Semanal</td>
<td>7.3</td>
<td>47</td>
<td>399</td>
<td>68</td>
<td>16.3</td>
<td>336</td>
<td>77</td>
<td>57</td>
<td>9.1</td>
<td>79</td>
<td>2.8</td>
<td>0.28</td>
</tr>
<tr>
<td>Dif. (%)</td>
<td>1.03</td>
<td>1.13</td>
<td>1.15</td>
<td>1.07</td>
<td>1.04</td>
<td>1.07</td>
<td>1.26</td>
<td>1.11</td>
<td>0.88</td>
<td>1.14</td>
<td>0.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

4.3.1. Iones principales y sílice.

La composición iónica media anual (n ~ 50) del río Azul y algunos estimadores de dispersión, se muestra en la Fig. 4.3.1. Se trata de aguas de mineralización muy baja, como se desprende de los valores de conductividad en el rango 63 - 33 µS cm⁻¹, con una media de 47 µS cm⁻¹. Los cationes (en equivalentes) se ordenaron en Ca > Mg > Na > K, y los aniones en HCO₃ >> SO₄ > Cl. La representación porcentual de cada ión, en equivalentes, fue 82.6, 14 y 3.4 %, y 70, 16, 12 y 2%, respectivamente. Son por lo tanto de aguas de tipo bicarbonato cálcico, sub-tipo sulfato magnésico-sódicas. El

Fig. 4.3.1. Espectro iónico medio (n~50) del río Azul (desembocadura) y respectivos desvío estándar.
pH medio fue 7.3, registrándose valores inferiores a 7 (>6.5) en el mes de junio y un dato aislado en febrero. El potasio se encontró en concentración muy reducida.

Con excepción del potasio, los demás componentes del espectro iónico mostraron una distribución de los datos cercana a la normal (Fig. 4.3.2). El coeficiente de variación osciló entre el 19 % para la conductividad y el 62 % para el potasio. El coeficiente de variación anual de la K20, TA, SO4, Cl, Ca, Mg y Si fue de alrededor del 20 % y el del logaritmo del caudal, durante las fechas de muestreo, fue del 21 %.

Fig. 4.3.2. Gráfico cajas y patillas, con valores medios, máximos, mínimos, percentiles 25 y 75 %, de las variables estimadas en la desembocadura del río Azul. (Conductividad en μS cm⁻¹, iones en μeq l⁻¹ y nutrientes en μg l⁻¹; caudal (AZD) en m³ s⁻¹)

Tabla 4.3.2. Regresión lineal, R², y nivel de significación entre:

a. algunos pares de variables determinadas (datos estandarizados)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>K20</td>
<td>45</td>
<td>0.91</td>
<td>0.00</td>
</tr>
<tr>
<td>K20</td>
<td>45</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>TA</td>
<td>48</td>
<td>0.87</td>
<td>0.00</td>
</tr>
<tr>
<td>TA</td>
<td>52</td>
<td>0.87</td>
<td>0.00</td>
</tr>
<tr>
<td>log TA</td>
<td>53</td>
<td>0.13</td>
<td>0.036</td>
</tr>
</tbody>
</table>

b. conductividad vs. aniones y cationes (datos estandarizados)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>R²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>46</td>
<td>0.85</td>
<td>0.00</td>
</tr>
<tr>
<td>SO₄</td>
<td>42</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>Cl</td>
<td>32</td>
<td>0.03</td>
<td>n.s.</td>
</tr>
<tr>
<td>Ca</td>
<td>42</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>38</td>
<td>0.72</td>
<td>0.00</td>
</tr>
<tr>
<td>Na</td>
<td>32</td>
<td>0.87</td>
<td>0.00</td>
</tr>
<tr>
<td>K</td>
<td>32</td>
<td>0.14</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Fig. 4.3.3. Sumatoria de aniones y cationes vs. Conductividad en el río Azul

La regresión lineal para la suma de aniones (Σ aniones) y cationes (Σ cationes) es la siguiente:

1. Sumatoria de aniones
 - Ecuación: $y = 0.1047x - 4.3726$
 - Coeficiente de determinación (R^2): 0.9085

2. Sumatoria de cationes
 - Ecuación: $y = 0.0868x + 3.9244$
 - Coeficiente de determinación (R^2): 0.9202
Fig. 5.3.4. Aniones y cationes vs. conductividad en el río Azul
Fig. 4.3.5. Conductividad, pH y cationes divalentes vs. alcalinidad total en la desembocadura del río Azul (en μeq l⁻¹). Muestreos semanales.
Las Figs. 4.3.3.a y b, muestran las relaciones entre conductividad y la sumatoria de aniones y cationes, respectivamente. Las Figs. 4.3.4.a y b, muestran las relaciones entre los aniones y cationes individuales con la conductividad que fueron muy significativas; en primer lugar con TA, Ca y Na, y en segundo lugar Mg. El R^2 de Cl, si bien bajo (0.31), fue altamente significativo ($p = 0.001$). No hubo correlación significativa con SO$_4$ y K. La alcalinidad correlacionó bien con la sumatoria de iones divalentes y con la conductividad, pero no con pH (Fig. 4.3.5). Entre Na y Cl se tuvo un R^2 bajo (0.38), pero altamente significativo ($p = .000$). Otras relaciones iónicas se observan en la Fig. 4.3.5 y en la Tab. 4.3.2. Los silicatos mostraron una estrecha correlación con la sumatoria de cationes (Fig. 4.3.6.a) ($R^2 = 0.79$) y con los cationes individuales, excepto potasio (Fig. 4.3.6.b). Los respectivos coeficientes fueron Ca: $r^2 = 0.78$, Mg: $r^2 = 0.80$, Na: $r^2 = 0.70$ y K: $r^2 = 0.012$.

Fig. 4.3.6.a. Sumatoria de cationes vs. sílice reactiva en el río Azul

Fig. 4.3.6.b. Cationes (μeq l$^{-1}$) vs. sílice reactiva en la cuenca del río Azul

4.3.2. Nutrientes

Los nutrientes se encontraron en concentraciones extremadamente bajas en el río Azul (Tab. 4.3.3). Particularmente para el caso del NT y del PT es conveniente
considerar las medianas, en lugar de las medias, a causa de su distribución notablemente asimétrica (Fig. 4.3.2). Las relaciones NT-DIN (Norg) y PT-PRS (Porg) indican que, no obstante los posibles errores al trabajar por debajo del límite de cuantificación de las técnicas respectivas, se obtuvieron resultados coherentes en la mayor parte de los análisis. Todos, excepto el PRS, presentaron coeficientes de variación un orden de magnitud más elevados que el de los iones principales.

<table>
<thead>
<tr>
<th>Tab. 4.3.3. Estadística descriptiva de los datos semanales de nutrientes en el río Azul (1995-96).</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN</td>
</tr>
<tr>
<td>µg/l</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Observ.</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Mediana</td>
</tr>
<tr>
<td>Máx</td>
</tr>
<tr>
<td>Mín</td>
</tr>
<tr>
<td>Desv. std.</td>
</tr>
<tr>
<td>cv%</td>
</tr>
</tbody>
</table>

El 75 % del nitrógeno y del fósforo se encontraron en la fracción orgánica. También en este caso (fracción orgánica) conviene considerar los valores de la mediana en lugar de los de la media.

El nitrógeno presentó dos aspectos sobresalientes. El primero, su concentración excepcionalmente baja, con valores medios de 0.6 µeq l\(^{-1}\) y máximos de alrededor de 20 µeq l\(^{-1}\) (no considerando dos datos de una creciente excepcional, 50.6 µeq l\(^{-1}\)); el segundo, un patrón de agotamiento primaveral, que podría corresponderse con el período de reactivación del crecimiento vegetal en la cuenca (Fig. 4.3.9).

4.3.3. Análisis de agrupamiento y factorial

En el análisis de agrupamiento (Fig. 4.3.7) se diferenciaron tres grupos de variables, sin considerar el pH (o la concentración de H\(^+\)), que aparecen siempre en forma aislada. El **Grupo 1**, con las menores distancias de ligamiento (<0.2), incluyó conductividad, alcalinidad, silicatos y los cationes, exceptuando el potasio. Los cloruros y nitratos se relacionaron con este grupo, pero mucho más débilmente. En el **Grupo 2** se vincularon débilmente sulfatos y la relación de caudales Azul/Quemquemtreu (qAc/qQ), y más débilmente aún NT y K. En el **Grupo 3**, se asociaron el PT con las precipitaciones diarias ponderadas para toda la cuenca (PPAdD), y con el caudal (AZD)
en segundo término. El PRS está vinculado a este grupo pero a una distancia de ligamiento mucho mayor.

Fig. 4.3.7. Dendrograma de agrupamientos por el método UPGIMA, basado en el coeficiente \(r \) de Pearson, sobre datos previamente estandarizados de la desembocadura del río Azul, sin sustitución de datos faltantes (\(n = 33 \)).

Los cuatro factores extraídos en el análisis factorial (Tab. 3.3.4), explicaron el 77 % de la varianza total. El primero de ellos explicó el 36 % y carga las variables relacionadas con la meteorización. Tuvieron una importancia menor los cloruros y nitratos. El segundo factor carga el caudal (AZD), las precipitaciones diarias (PPAD) y PT, también NT y PRS, pero más débilmente. El tercero (10 % de la varianza total) cargar la concentración de \(H^+ \) y las precipitaciones medias durante los cinco días previos al día del muestreo (PPAd5). El cuarto factor, explica un 13 % de la varianza total y vincula la concentración de sulfatos con la relación qAc/qQ. Utilizando pH en lugar de la concentración de \(H^+ \), se pierde la relación con PPAd5. Los datos resultantes mostraron que la concentración de \(H^+ \), está más relacionada con las precipitaciones en los días previos al muestreo que con ninguna otra variable. El hecho de que la correlación haya sido mayor con la PPAd5 que con PPAdD (precipitaciones del día de muestreo) permite sustentar la hipótesis de que la concentración de \(H^+ \) de las aguas superficiales está influida por la escorrentía no solo superficial, sino también por la escorrentía sub-superficial (aguas de infiltración). La relación encontrada podría estar
indicando así una relación entre el pH de los suelos y el de las aguas superficiales. El ejercicio se realizó también con la precipitaciones medias desde los 10 días anteriores al muestreo, pero con resultados de menor significación. Las conclusiones precedentes, son preliminares y requieren ser verificadas mediante un análisis más exhaustivo. PT estuvo más fuertemente asociado con PPAdD (Fig. 4.3.7), que con el caudal (AZD).

Este resultado era esperable para el material (75 % particulado) que llega al curso de agua principalmente por arrastre superficial. Cl, K, DIN, PRS y NT no cargaron definidamente en ninguno de los factores extraídos, sin embargo DIN pesa mayormente en el Factor 1. Cl pesa repartidamente en el Factor 1 y 3, NT en 1 y 2, y PRS en 2 y 4.

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-.115</td>
<td>-.038</td>
<td>.820</td>
<td>.017</td>
</tr>
<tr>
<td>K20</td>
<td>.944</td>
<td>-.155</td>
<td>-.075</td>
<td>.205</td>
</tr>
<tr>
<td>TA</td>
<td>.907</td>
<td>-.173</td>
<td>-.246</td>
<td>.123</td>
</tr>
<tr>
<td>SO4</td>
<td>.227</td>
<td>.105</td>
<td>-.143</td>
<td>.781</td>
</tr>
<tr>
<td>Cl</td>
<td>.597</td>
<td>.081</td>
<td>.410</td>
<td>.308</td>
</tr>
<tr>
<td>Ca</td>
<td>.928</td>
<td>-.176</td>
<td>-.083</td>
<td>.242</td>
</tr>
<tr>
<td>Mg</td>
<td>.912</td>
<td>-.132</td>
<td>-.109</td>
<td>-.159</td>
</tr>
<tr>
<td>Na</td>
<td>.919</td>
<td>.011</td>
<td>.017</td>
<td>.340</td>
</tr>
<tr>
<td>K</td>
<td>.278</td>
<td>.117</td>
<td>-.205</td>
<td>.517</td>
</tr>
<tr>
<td>SiR</td>
<td>.942</td>
<td>-.186</td>
<td>.088</td>
<td>-.119</td>
</tr>
<tr>
<td>DIN</td>
<td>.685</td>
<td>.009</td>
<td>.375</td>
<td>-.233</td>
</tr>
<tr>
<td>PRS</td>
<td>-.155</td>
<td>.575</td>
<td>-.211</td>
<td>-.375</td>
</tr>
<tr>
<td>NT</td>
<td>.484</td>
<td>.518</td>
<td>-.123</td>
<td>.326</td>
</tr>
<tr>
<td>PT</td>
<td>-.167</td>
<td>.939</td>
<td>.014</td>
<td>.029</td>
</tr>
<tr>
<td>AZD</td>
<td>-.248</td>
<td>.701</td>
<td>.289</td>
<td>.362</td>
</tr>
<tr>
<td>AC%</td>
<td>.128</td>
<td>.271</td>
<td>.208</td>
<td>.807</td>
</tr>
<tr>
<td>PPAdD</td>
<td>-.290</td>
<td>.851</td>
<td>.140</td>
<td>.209</td>
</tr>
<tr>
<td>PPAd5</td>
<td>-.138</td>
<td>.467</td>
<td>.722</td>
<td>.021</td>
</tr>
</tbody>
</table>

Var. Expl. 6.57 3.16 1.86 2.37
Prop. Total .36 .18 .10 .13

El análisis de cluster (Fig. 4.37) y factorial (Tab. 4.3.4) muestra que la sílice disuelta se asocia estrechamente con el magnesio, calcio y sodio, y al bicarbonatos y conductividad, en segundo lugar. Estas relaciones se mantuvieron con distintas alternativas de análisis probadas (datos con y sin estandarización; con y sin sustitución por las medias); por lo que pueden considerarse como sólidas. Los componentes principales oponen fundamentalmente dichas variables con el caudal. Sin embargo la
correlación entre sílice y caudal fue débil (r = -0.34, Tab. 4.3.5). Resultó notoria la correlación negativa entre la sílice y el PT (-0.45). La ausencia de correlación entre Na, Cl y PP5d, evidencia también la escasa importancia de los aportes atmosféricos.

4.3.4. Fluctuaciones temporales

La Fig. 4.3.8 muestra las fluctuaciones semanales del Ca, Na, SiR y de las relaciones mono/divalentes y Na/Cl. Todas ellas se ajustan a un modelo sinusoidal que de alguna forma estaría relacionado con el caudal, *aunque ello no sea evidente en el análisis de correlación. Las concentraciones presentaron un máximo en invierno (junio, julio, agosto), un mínimo durante el deshielo (fines de octubre a fines de diciembre) y un segundo máximo durante el período de verano – inicio del otoño (febrero-abril), descendiendo luego hacia el otoño. Los puntos que no se ajustan a este modelo sinusoidal (datos bajos de fines de verano – inicios del otoño/96), en su mayor parte coinciden con eventos de crecientes, al igual que los mínimos del mismo período en 1995. El deshielo máximo (en los días de muestreo) se produjo el 7 de noviembre.

Los nutrientes, en cambio, no presentaron un patrón definido (Fig. 4.3.9). Por una parte, los dos picos extraordinarios de NT (200 y 300 µg l⁻¹) se registraron en el mismo día de una creciente también extraordinaria, a comienzos del otoño (Fig. 4.3.9.b). Este hecho da una respuesta afirmativa a la hipótesis del lavado de cuenca a fines del verano, es decir, grandes pulsos de nutrientes que se producen concurrentemente con las primeras grandes lluvias a fines de cada temporada estival. Lamentablemente no están disponibles los datos de DIN para este evento. Los datos máximos de DIN (~50 µg l⁻¹) se verificaron en coincidencia lluvias invernales (julio), aunque con caudales relativamente normales. El patrón más sorprendente de DIN fue su desaparición (valores ~ 0 µg l⁻¹) durante dos meses, desde el 12/10 hasta el 4/12, como así mismo sus valores muy bajos en el verano (<10 µg l⁻¹) (Fig. 4.3.9a). El agotamiento del nitrógeno en primavera podría explicarse por su total absorción durante el período de reactivación del crecimiento vegetal, como se discutirá posteriormente. El NT también presentó un comportamiento similar, pero el patrón de agotamiento fue más definido para los nitratos.

Todos los valores de PT fueron inferiores a 12 µg l⁻¹, con excepción de los valores obtenidos durante los tres picos de caudal registrados durante este estudio: el 4/4/95, 12/5/95 y el 8/4/96. Durante estos eventos se produjeron pulsos de más de 40 µg
Fig. 4.3.8. Fluctuaciones del calcio, sodio, silice y del caudal en el río Azul.
Fig. 4.3.9. Fluctuaciones del DIN, N-NT (en mg m$^{-3}$) y de la relación DIN:PRS en la desembocadura del río Azul.
TP 1°. El PRS no evidenció un patrón particular, habiéndoselo encontrado siempre en un rango de concentraciones estrecho y extremadamente bajo.

El análisis de agrupamiento entre fechas, considerando sólo las variables relacionadas con la meteorización (Fig. 4.3.10) permitió diferenciar fechas de muestreos en relación con probables fenómenos de estacionalidad. El Grupo 1 comprendió los muestreos desde el 22 de febrero hasta 20 de abril de 1996 y corresponde a fines de verano-principios de otoño. El Grupo 2, claramente diferenciado y con distancias de ligamiento muy pequeñas, correspondió al periodo de primavera (desde el 13 de setiembre hasta el 2 de enero). Las muestras del periodo invernal se dividieron en dos grupos, uno vinculado uno al grupo de primavera (Grupo 3a) y otro más cercano a las muestras de verano (Grupo 3b). El Grupo 4 incluyó las muestras de verano (18 de diciembre al 12 de febrero) y algunas de otoño en las que se registraron caudales mínimos. El Grupo 3 (Invierno) incluyó una muestra de otoño para la que se registró el
máximo caudal del año y una muestra del 19-01 de difícil explicación, al igual que la muestra del 21 de junio, vinculada al Grupo 1. En síntesis, el grupo que más se apartó del conjunto fue el Grupo 1, verano-otoño. Se caracterizó por ser el grupo con mayor módulo promedio y con mayor aporte proporcional de caudales del río Azul (87 %), por presentar el máximo valor de sulfatos y los valores mínimos de magnesio, sodio y sílice, en relación con los otros grupos.

Los patrones mencionados se observaron también en el dendrograma de estacionalidad entre aniones, pero más desdibujados. Solamente el grupo de verano-otoño, apareció bien diferenciado y en segundo término, el de primavera. Uno de los motivos por los que no se diferenció mejor el grupo de invierno, probablemente fue por lo incompleto del muestreo; de hecho, en agosto solamente se tomó una muestra.

4.3.5 Flujos químicos en la desembocadura del río Azul

Las características hidrológicas del río Azul en su desembocadura dependen, obviamente, de la suma de los caudales del río Azul superior, del caudal del área no añorada (42%) y de su tributario más importante, el río Quemquemtreu. Se había hipotetizado un comportamiento hidrológico similar para ambas subcuencas. Sin embargo, en el 17 % de los casos, se verificó

\[q(Q) \gg q(Ac) \]

Estos hechos muestran que el comportamiento hidrológico de ambas cuencas es muy diferente y que está regulado por más de una factor climático y/o orográfico, cuya dilucidación escapa a los objetivos de esta tesis. Las lluvias convectivas pueden provocar grandes diferencias de precipitación de un valle a otro (Pongolini, EVARSA, com. pers.). Los días muy fríos cierran el flujo hídrico del Azul (Bidóz, com. pers.), mientras que el Quemquemtreu, sin glaciares, resulta menos afectado.

Los caudales del río Azul durante los días de muestreo fueron aproximadamente representativos de los caudales diarios observados durante el periodo de estudio (Fig. 4.3.11). El rango entre 75 y 100 m³ s⁻¹ aparece sobredimensionado. En efecto, si bien el muestreo se planteó con una frecuencia semanal, se realizaron muestreos más frecuentes durante las crecientes (diarios y hasta dos veces por día).

El pH, K₂O, TA, SO₄, Cl, Ca, Mg, Na, SiR y PRS mostraron una distribución normal (test de Kolmogorov-Smirnov). Uno de los resultados más sorpresivos de este estudio fue la falta de correlación o correlación muy baja entre concentración y caudal para la mayor parte de las variables (Tab. 4.3.5). TA, Ca, Mg, SiR, NT y PT
Fig. 4.3.11. Comparación de frecuencias de caudales (en m3 s$^{-1}$) entre A, en los días de muestreo (n=57) y B, el período abril/95-15 de mayo/96 (n=412).
correlacionaron en forma altamente significativas \((p<0.01)\), excepto PT que tuvo un coeficiente de correlación de 0.58, ninguna de las restantes superó el valor de 0.47. NT y PT tuvieron mejor correlación con el modelo log-lin, mientras que las restantes mencionadas, ajustaron mejor con el coeficiente log-log (Tab. 4.3.5). No obstante el nivel de significación elevado, los coeficientes fueron bajos en relación a lo esperable.

Tabla 4.3.5. Coeficientes de correlación \((r)\) log-lin y log-log entre caudal y concentración en el R. Azul.

<table>
<thead>
<tr>
<th></th>
<th>log-lin</th>
<th>(p=)</th>
<th>log-log</th>
<th>(p=)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K20</td>
<td>-.30</td>
<td>.03</td>
<td>-.31</td>
<td>.03</td>
<td>49</td>
</tr>
<tr>
<td>TA</td>
<td>-.41</td>
<td>.002</td>
<td>-.43</td>
<td>.001</td>
<td>52</td>
</tr>
<tr>
<td>SO4</td>
<td>-.02</td>
<td>.89</td>
<td>-.02</td>
<td>.86</td>
<td>54</td>
</tr>
<tr>
<td>Cl</td>
<td>.18</td>
<td>.15</td>
<td>.21</td>
<td>.13</td>
<td>52</td>
</tr>
<tr>
<td>Ca</td>
<td>-.45</td>
<td>.0007</td>
<td>-.47</td>
<td>.0003</td>
<td>53</td>
</tr>
<tr>
<td>Mg</td>
<td>-.43</td>
<td>.0014</td>
<td>-.45</td>
<td>.0007</td>
<td>52</td>
</tr>
<tr>
<td>Na</td>
<td>-.21</td>
<td>.13</td>
<td>-.23</td>
<td>.09</td>
<td>54</td>
</tr>
<tr>
<td>K</td>
<td>.03</td>
<td>.85</td>
<td>.05</td>
<td>.72</td>
<td>54</td>
</tr>
<tr>
<td>SiR</td>
<td>-.31</td>
<td>.02</td>
<td>-.36</td>
<td>.007</td>
<td>55</td>
</tr>
<tr>
<td>DIN</td>
<td>-.09</td>
<td>.55</td>
<td>-.05</td>
<td>.71</td>
<td>46</td>
</tr>
<tr>
<td>PRS</td>
<td>.05</td>
<td>.61</td>
<td>.04</td>
<td>.78</td>
<td>46</td>
</tr>
<tr>
<td>NT</td>
<td>.41</td>
<td>.003</td>
<td>.31</td>
<td>.03</td>
<td>50</td>
</tr>
<tr>
<td>PT</td>
<td>.58</td>
<td>.0000</td>
<td>.54</td>
<td>.0001</td>
<td>50</td>
</tr>
</tbody>
</table>

Dicho resultado se explican probablemente por la mezcla de aguas de concentración iónica diferente (ríos Azul y Quemquemtreu) en muy diversas proporciones, al como se vio en 4.1.2. La contribución muy variable del río Quemquemtreu perturba las correlaciones entre caudal y concentración en el río Azul. Nótese en la Tab. 4.3.6 el incremento del coeficiente de correlación, especialmente para K20, Ca, TA, Mg, SiR, PT y NT, a medida que se consideran subconjuntos de análisis con disminución del porcentaje del caudal aportado por el río Quemquemtreu. Para lograr buenas correlaciones deberían considerarse solamente los muestreos en los cuales \(q_{Ac}\) fue mayor que el 80 % del caudal total (\(q_{Ad}\)).

Lo expresado implica que los modelos de estimación de cargas basados en regresiones concentración-caudal, son aplicables solamente en un número reducido de casos (14, ó 24 a lo sumo), y además los resultados no tendrían en cuenta las situaciones en que es importante el caudal del Quemquemtreu. Considerando estas condiciones, se escogió un modelo basado en el producto de la carga en los días de muestreo, pesada sobre el caudal medio diario y por el caudal medio anual (Mosello y De Giuli, 1982).
Tab. 4.3.6. Coeficiente de correlación de Spearman entre el caudal del río Azul (qAd) y subconjuntos de muestras establecidos según el porcentaje de participación del Azul en el caudal total (qAc/qQ).

<table>
<thead>
<tr>
<th>Subconjunto</th>
<th>Ac/Q</th>
<th>Ac%</th>
<th>pH</th>
<th>K20</th>
<th>TA</th>
<th>SO4</th>
<th>Cl</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>SIR</th>
<th>DIN</th>
<th>PRS</th>
<th>NT</th>
<th>PT</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos</td>
<td>0.59</td>
<td>0.52</td>
<td>-0.34</td>
<td>-0.32</td>
<td>-0.34</td>
<td>0.01</td>
<td>0.25</td>
<td>-0.32</td>
<td>-0.34</td>
<td>-0.13</td>
<td>0.01</td>
<td>-0.24</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.20</td>
<td>0.29</td>
<td>51</td>
</tr>
<tr>
<td>AC%<.50</td>
<td>0.57</td>
<td>0.46</td>
<td>-0.41</td>
<td>-0.31</td>
<td>-0.34</td>
<td>-0.01</td>
<td>0.30</td>
<td>-0.32</td>
<td>-0.35</td>
<td>-0.10</td>
<td>0.04</td>
<td>-0.25</td>
<td>-0.10</td>
<td>-0.05</td>
<td>0.12</td>
<td>0.25</td>
<td>46</td>
</tr>
<tr>
<td>AC%<.70</td>
<td>0.71</td>
<td>0.56</td>
<td>-0.40</td>
<td>-0.42</td>
<td>-0.43</td>
<td>-0.01</td>
<td>0.25</td>
<td>-0.41</td>
<td>-0.43</td>
<td>-0.20</td>
<td>-0.02</td>
<td>-0.33</td>
<td>-0.16</td>
<td>-0.10</td>
<td>-0.10</td>
<td>0.21</td>
<td>38</td>
</tr>
<tr>
<td>AC%<.80</td>
<td>0.74</td>
<td>0.68</td>
<td>-0.35</td>
<td>-0.52</td>
<td>0.60</td>
<td>-0.19</td>
<td>0.09</td>
<td>-0.57</td>
<td>-0.59</td>
<td>-0.42</td>
<td>-0.25</td>
<td>-0.50</td>
<td>-0.27</td>
<td>-0.03</td>
<td>0.09</td>
<td>0.23</td>
<td>24</td>
</tr>
<tr>
<td>AC%<.85</td>
<td>0.65</td>
<td>0.63</td>
<td>-0.33</td>
<td>-0.65</td>
<td>-0.59</td>
<td>-0.11</td>
<td>0.09</td>
<td>-0.57</td>
<td>-0.63</td>
<td>-0.40</td>
<td>-0.27</td>
<td>-0.55</td>
<td>-0.51</td>
<td>0.04</td>
<td>0.24</td>
<td>0.39</td>
<td>14</td>
</tr>
<tr>
<td>AC%<.90</td>
<td>0.28</td>
<td>0.28</td>
<td>-0.13</td>
<td>-0.97</td>
<td>-0.71</td>
<td>-0.03</td>
<td>-0.62</td>
<td>-0.73</td>
<td>-0.71</td>
<td>-0.28</td>
<td>0.01</td>
<td>0.68</td>
<td>-0.27</td>
<td>0.70</td>
<td>0.32</td>
<td>0.71</td>
<td>8</td>
</tr>
</tbody>
</table>

explicitado en la 2.8. Las cargas estimadas como así también los coeficientes de exportación areal, se muestran en la Tab. 4.3.7. Estos resultados se contrastaron con los de otros estimadores promedio sencillos L = C Q k (Mosello y De Giuliani 1982) y L = 365[ΣCtQ(t)]/m (Preston et al. 1989). Las diferencias entre estos métodos de cálculo oscilaron entre 9 y 13 %. El error medio estandar de K se estimó con valores extremos eliminados y el de H y pH, con valores extremos incluidos (Tab. 4.3.7).

Tabla 4.3.7. Cargas químicas y coeficientes de exportación areal para la cuenca del río Azul. Primera fila: Cargas (TA en meq a⁻¹; iones y nutrientes en t a⁻¹). Segunda Fila: Coeficientes de exportación (TA en meq km⁻² a⁻¹; iones y nutrientes en kg km⁻² a⁻¹).

<table>
<thead>
<tr>
<th>TA</th>
<th>Cl</th>
<th>SO₄</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>DIN</th>
<th>PRS</th>
<th>TP</th>
<th>TN</th>
<th>SiR</th>
</tr>
</thead>
<tbody>
<tr>
<td>516</td>
<td>830</td>
<td>4617</td>
<td>8683</td>
<td>1170</td>
<td>1844</td>
<td>530</td>
<td>10</td>
<td>2</td>
<td>26</td>
<td>79</td>
<td>2884</td>
</tr>
<tr>
<td>483</td>
<td>775</td>
<td>4314</td>
<td>8116</td>
<td>1094</td>
<td>1723</td>
<td>495</td>
<td>9</td>
<td>1.8</td>
<td>24</td>
<td>74</td>
<td>2695</td>
</tr>
</tbody>
</table>
4.4 LAGO PUELO

Los estudios en el lago Puelo se llevaron a cabo principalmente para proporcionar una caracterización limnológica general y especialmente desde el punto de los nutrientes y de su estado trófico, en relación con la hipótesis de la heterogeneidad espacial (H3 y H4). El estudio del espectro iónico en el Lago tuvo una importancia secundaria.

4.4.1. Temperatura y transparencia

Las temperaturas máxima y mínima en superficie fueron 18.6 °C y 6.5 °C, respectivamente. La temperatura del hipolimnion profundo fue de 6.9 °C, valor que puede considerarse como la temperatura de fondo permanente de este Lago durante el año de estudio. En los 100 metros de profundidad las diferencias a lo largo del año fueron de 0.1-0.2 °C. La termoclina se encontró a 7 metros a inicios de diciembre y a 36 metros en abril. La termoclina más profunda fue la del brazo Epuyén (40 m). Los perfiles térmicos de verano fueron diferentes en las tres estaciones de muestreo. PI presentó el epilimnion con mayor homogeneidad térmica y la termoclina más claramente diferenciada, mientras que en PII el fenómeno se observa en el hipolimnion (Fig. 4.4.1). En el primer caso, la homogeneización completa del epilimnion se debe a que es la estación más expuesta a los fuertes vientos que tienen entrada directa desde el

Fig. 4.4.1. Perfiles térmicos en distintos subambientes del lago Puelo y en la estación central (PZ). De izquierda a derecha, se muestran los perfiles de fines de invierno (setiembre), de inicio del verano (diciembre) y de fines del verano (marzo).
Pacífico (paso a 200 m s.n.m.). En PII existe un efecto de la morfometría y de la cercanía del fondo en el sitio de muestreo, sin que los datos disponibles permitan hacer mayores conjeturas. La Fig. 4.4.2 muestra la batimetría y vientos dominantes.

La transparencia, medida con el disco de Secchi, presentó un gradiente a lo largo del eje principal del lago, en todas las fechas de muestreo, siendo más acentuado en el mes de abril (Tab. 4.4.1). Los perfiles verticales de P.A.R. y los coeficientes de extinción respectivos, evidenciaron la misma tendencia. En promedio, la zona fótica (1% Ls) abarcó los primeros 25 metros de profundidad. El valor menor se encontró en el muestreo de septiembre, en coincidencia con el periodo de deshielo.

Tab. 4.4.1. Valores estacionales de transparencia medidos con el disco de Secchi en PI, PII y PIII

<table>
<thead>
<tr>
<th></th>
<th>6-04-94</th>
<th>6-09-94</th>
<th>28-12-94</th>
<th>9-03-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>11.5</td>
<td>7.4</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>PII</td>
<td>12</td>
<td>6.9</td>
<td>9.5</td>
<td>12</td>
</tr>
<tr>
<td>PIII</td>
<td>11</td>
<td>6.4</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

4.4.2 Composición iónica de las aguas lacustres e influencia de los afluentes

Las aguas del lago evidenciaron un espectro iónico de tipo bicarbonato cálcico, con muy bajo contenido de sales, pH levemente alcalino y bien oxigenadas en toda la columna (Tab. 4.4.2). Los cationes se ordenaron (en equivalentes) en la secuencia Ca>Na>Mg>K. Los cloruros estuvieron por debajo del límite de detección y los sulfatos

Tabla 4.4.2. Valor medio y coeficiente de variación de variables químicas estimadas en los tres afluentes principales y en el lago Puelo (PI, PII, PIII y PZ). TA en μeq L⁻¹; nutrientes en μg L⁻¹.

<table>
<thead>
<tr>
<th>n=</th>
<th>Temp</th>
<th>K20</th>
<th>pH</th>
<th>TA</th>
<th>DIN</th>
<th>PRS</th>
<th>NT</th>
<th>PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>4</td>
<td>13.6</td>
<td>40</td>
<td>7.4</td>
<td>338</td>
<td>9.5</td>
<td>1.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Cv</td>
<td>23</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>111</td>
<td>70</td>
<td>34</td>
</tr>
<tr>
<td>PII</td>
<td>14.5</td>
<td>44</td>
<td>7.4</td>
<td>372</td>
<td>7.7</td>
<td>0.7</td>
<td>30</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>130</td>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>PIII</td>
<td>14.4</td>
<td>42</td>
<td>7.4</td>
<td>346</td>
<td>7.2</td>
<td>1.0</td>
<td>33</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>132</td>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>PZ</td>
<td>7.1</td>
<td>40</td>
<td>7.3</td>
<td>369</td>
<td>20</td>
<td>0.3</td>
<td>24</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>50</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>54</td>
<td>282</td>
<td>34</td>
</tr>
<tr>
<td>A1</td>
<td>11.9</td>
<td>52</td>
<td>7.5</td>
<td>433</td>
<td>6.5</td>
<td>1.3</td>
<td>25</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>27</td>
<td>30</td>
<td>0</td>
<td>21</td>
<td>130</td>
<td>98</td>
<td>23</td>
</tr>
<tr>
<td>E1</td>
<td>12.1</td>
<td>110</td>
<td>7.6</td>
<td>836</td>
<td>12.5</td>
<td>2.2</td>
<td>45</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>41</td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>78</td>
<td>88</td>
<td>4</td>
</tr>
<tr>
<td>T1</td>
<td>12.4</td>
<td>28</td>
<td>7.3</td>
<td>248</td>
<td>3.6</td>
<td>1.3</td>
<td>21</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>34</td>
<td>26</td>
<td>1</td>
<td>12</td>
<td>29</td>
<td>84</td>
<td>54</td>
</tr>
</tbody>
</table>
Fug. 4.4.2 Patrón espacial de transparencia en el lago Puelo, medida con el disco de Secchi en situación de estabilidad hidrológica (6-04-94). Los rombos indican la ubicación de las estaciones Pt, PII y PIII. En fechas, vientos dominantes.
Fig. 4.4.3 Silice y cationes en los principales afluentes del lago Puelo y en las zonas de respectiva influencia. Nótese como PI, PII y PIII, se asemejan más al centro del Lago (PZ), que a sus respectivos afluentes (A1, E1 y T1). Datos de un muestreo durante el período de aguas bajas (abril/94). PZ, estación central. Isobatas cada 50 metros. Mapa bathimétrico modificado de Quirós et al. (1988b).
tuvieron una media de 3.5 mg l\(^{-1}\).

La figura 4.4.3 muestra diferencias marcadas en los valores de los cationes y silice de los afluentes. La mayor concentración ionesica total correspondió al Epuyén, mientras que el flujo más diluido provino del río Turbio. El río Azul mostró valores intermedios. Los valores de alcalinidad, conductividad y silicatos ordenan a los ríos Turbio > Azul > Epuyén, duplicándose la sumatoria de cationes entre uno y otro (Tab. 4.4.2, Fig. 4.4.3).

En la Tab. 4.4.2 y en la Fig. 4.4.3 se muestran los efectos de cada uno de los afluentes sobre la respectiva zona de influencia en el Lago. Nótese la relativa homogeneidad química en el Lago (PZ, PI, PII y PIII) y las diferencias entre los afluentes (A1, E1 y T1). Las estaciones de los extremos se asemejan más al centro del Lago (PZ), que a sus respectivos afluentes. En PII (brazo Epuyén) se obtuvieron valores muy variables, desde iguales al resto del lago, hasta muy semejantes a los del río Epuyén (diciembre). Cationes, cloruro, sulfato y silicato se analizaron solamente en una o dos ocasiones, por lo que estos resultados deben considerarse solamente como una primera aproximación. En la Fig. 4.4.4 se observan los perfiles verticales de pH.

4.4.3 Oxígeno disuelto y nutrientes.

El oxígeno disuelto se determinó en la estación central (PZ), a 0, 50, 100 y 170 metros de profundidad, siendo los valores medios del porcentaje de saturación 104, 93, 94 y 91 %, respectivamente. En todos los monitoreos se observó una buena oxigenación, con porcentajes de saturación que oscilaron entre 89 y 110 %. El mínimo absoluto fue 80 %, en marzo de 1995 (Fig. 4.4.4). Durante el resto del año fue levemente inferior al 100 % de saturación. Los máximos (poco marcados) se observaron siempre en el estrato superior, probablemente por efecto tanto de la fotosíntesis, como del calentamiento diario de los estratos superficiales, a velocidad mayor que la de difusión del excedente de oxígeno de sobresaturación. Excepto en abril del 94 el pH fue siempre algunas décimas superior en superficie que en las restantes profundidades, debido probablemente a la absorción fotosintética de CO\(_2\) y subsiguientes equilibrios en el sistema carbonato-bicarbonato (Fig. 4.4.4).

La concentración de nitratos en la columna de agua en la estación central (Fig. 4.4.5) tuvo un promedio de 16 \(\mu g\) l\(^{-1}\), un máximo de 26 \(\mu g\) l\(^{-1}\) en setiembre/94 y un mínimo de 8 \(\mu g\) l\(^{-1}\) en marzo/95 (Tab. 4.4.2). Se observó un patrón de agotamiento en el estrato fótico, claramente delineado en abril y en diciembre, pero ausente en setiembre,
Fig. 4.4.4. Perfil vertical de saturación de oxígeno disuelto y de pH en la estación central (PZ) del lago Puelo. En el eje Y, profundidad, en metros. y: pH; x: oxígeno disuelto.

- 6/4/94
- 6/9/94
- 28/12/94
- 9/3/95
donde se observó una concentración homogénea en toda la columna. En general la concentración de nitratos desde los 50 metros hasta el fondo fue siempre apreciable, excepto en el mes de marzo/96, donde se redujeron sensiblemente desde los 100 metros hasta el fondo. El fósforo estuvo siempre en concentraciones desde muy bajas a indetectables, con un patrón de distribución prácticamente ortógrado (Fig. 4.4.5).

En los afluentes, la concentración de DIN, PRS y NT mayor se detectó en el río Epuyén, con valores que duplicaron los del río Azul (Tab. 4.4.2). El PT fue máximo en el río Turbio y mínimo en el río Azul. En base a la concentración de DIN, los ríos se ordenan en orden decreciente, Epuyén > Azul > Turbio, con 18, 9 y 4 μg l⁻¹, respectivamente.

Entre los subambientes hipotetizados en el Lago (PI, PII y PIII), PI mostró la mayor concentración de DIN, PRS y PT (muestras integradas en el estrato fótico). Sin embargo las diferencias entre PI, PII y PIII fueron pequeñas (Tab. 4.4.2) y no significativas al análisis de la varianza (en dos muestreos con análisis en duplicado). El valor medio de NT fue prácticamente igual en las tres estaciones. En los extremos del lago, fue notorio el valor de nitrógeno de PI (abril/94), que duplica el de PII y PIII. Los valores de PRS fueron superiores en el brazo Epuyén (PII). En resumen, la distribución horizontal de nutrientes en el lago parece estar determinada en primera instancia por las fuerzas de mezcla del lago. Sin embargo, utilizando el test T de Student sobre datos estandarizados, se obtuvieron diferencias entre PI y (PII, PIII, PZ ₀.₅₉) significativas al nivel de p< 0.31 para el DIP y no significativas para el DIN (p< 0.72). Ello otorga un primer soporte experimental a la hipótesis del gradiente de presión antrópica Azul vs. resto del Lago, al menos para PRS.

En síntesis, lo inestable de la base de datos solo permite hacer apreciaciones provisionales. La comparación entre los valores medios de las estaciones extremas del lago con las de los respectivos afluentes, evidencian que el aquí es mucho más homogéneo que los ríos que lo alimentan, y que la capacidad de mezcla horizontal alcanza a todos los extremos del mismo. No obstante, los elevados coeficientes de variación de las tres estaciones hipotetizadas, muestran que a lo largo del año pueden darse diversas situaciones, desde una mayor influencia del respectivo afluenete (v.g. en ocasión de grandes crecientes), hasta una mayor preponderancia de las fuerzas de mezcla del lago (v.g., caudales de ríos bajos y vientos fuertes). De las tres estaciones, el brazo Epuyén fue el que se diferenció mayormente.
Fig. 4.4.5. Perfil vertical DIN y PRS en la estación central (PZ) del lago Puelo. En el eje Y, profundidad, en metros. Referencias:

Fig. 4.4.6. Estacionalidad en la concentración de DIN y PRS en los estratos superiores (0-40 m) del lago Puelo; valores medios de 4 estaciones de muestreo (PI, PII, PIII y PZ).

El análisis temporal de la concentración de DIP y PRS en los estratos superiores del Lago indicó una estacionalidad muy marcada, especialmente para el nitrógeno (Fig. 4.4.6) y para las relaciones N/P. La máxima concentración de DIN se observó en el muestreo de invierno, con el lago en circulación vertical. Esta reserva de disminuye en primavera hasta valores por debajo del límite detección y continua siendo muy baja en verano. Por el contrario de lo verificado en los estratos superiores, fue notoria la relativa constancia de la reserva de DIN profunda (50-170 m).

4.4.4 Ensayos complementarios

Los valores de clorofila fueron inferiores a 1 μg l⁻¹, y con diferencias poco significativas entre las estaciones PI, PII y PIII. Se realizó entonces un ensayo complementario para evidenciar una posible heterogeneidad desde el punto de vista trófico, mediante la medición de la biomasa del perifitón crecido sobre sustratos artificiales incubados in situ (A. Austin, com. pers., 1988). En cada una de las estaciones PI, PII y PIII, se colocaron tres boya ancladas al fondo sobre la isobata de 50 metros y distantes 400-500 metros entre sí. Como sustratos artificiales se utilizaron trozos de acetato de transparencias, de 4 x 8 centímetros fijos a la profundidad de 5 metros, para evitar el efecto del oleaje superficial. Se dejaron incubando durante el lapso de 40 días durante el periodo de máximo crecimiento (octubre-noviembre). Por falta de adherencia del perifitón gran parte del biofilm se perdió durante la extracción. Las tansas de sujeción presentaron mayor adherencia que el acetato. Al examen visual,
fué notoriamente abundante el crecimiento de perifiton en PI, en el dispositivo ubicado en el ángulo noreste del lago. Es de mencionar que las corrientes y vientos acumulan en este ángulo del lago todo el material flotante de este extremo. Las corrientes del río Azul, posiblemente también sean desviadas hacia este sitio.
5. DISCUSION

5.1 PROCESOS DE METEORIZACION EN EL RÍO AZUL

El espectro íonico de las aguas superficiales de una cuenca es la resultante de un conjunto de procesos que se sintetizan y esquematizan en la Fig. 5.5.1. La complejidad de los mismos advierte a priori sobre cualquier explicación demasiado simplista. Si bien los aspectos fundamentales se conocen desde temprano, muchos de ellos constituyen objeto de intensa investigación actual, v.g. la meteorización de los silicatos, los intercambios íonicos con las arcillas, la formación de minerales secundarios, el papel de la vegetación, el intercambio con los acuíferos profundos y las relaciones entre estos procesos con las oscilaciones climáticas, el uso del suelo y las perturbaciones de origen antrópico (Webb & Walling 1990; Likens 1992; Mosello et al. 1993; 1995, Williams et al. 1993; Psenner y Catalán 1994: Bluth & Kump 1994; Velbel 1995; Meybeck 1996). Los procesos de meteorización, pueden estudiarse sólo cuando la influencia de los aerosoles marinos es negligible o sustraible (Meybeck 1996). El porcentaje de participación de los componentes atmosféricos en el espectro íonico de las aguas dulces, es muy variable de región en región, dependiendo de la cercanía al mar y de la litología existente (Margalef 1983). Los mayores avances en el conocimiento de los ciclos biogeoquímicos se han obtenido por dos tipos de metodologías. Estudios intensivos, focalizados en cuencas experimentales pequeñas han proporcionado muchos conocimientos sobre el origen y dinámica de los iones en solución. Dichas cuencas tienen desde algunas hectáreas a no más de 10 km² de superficie, v.g. Hubbard Brook, en New Hampshire, Coweeta en los Apalaches, entre las primeras y otras más recientes, Montseny, en los Pirineos españoles; cuenca del lago Emerald, Sierra Nevada, California, etc. (Escarré et al. 1984, Likens 1992, Velbel 1985, 1995 y Williams et al. 1993). Una de las herramientas básicas de los estudios intensivos ha sido el balance de masas a nivel de la cuenca. Los estudios extensivos, realizados en una gran cantidad de cursos de agua representativos de la mayor diversidad litológica y climática posible (Gibbs 1970; Meybeck 1979; Bluth y Kump 1994) también han sido fuente de nuevas hipótesis y producido resultados muy valiosos y muchas veces complementarios de los enfoques intensivos.

En síntesis, existe consenso en los siguientes conceptos:

- el total de sólidos disueltos es función de la escorrentía
- pero las tasas de disolución están controladas por la litología de la cuenca, la permeabilidad del suelo y de la roca madre.
Fig. 5.1.1. Esquema conceptual sobre los procesos naturales que determinan la composición iónica de las aguas superficiales. 1, Aportes atmosféricos; 2, meteorización congruente e incongruente de minerales primarios y secundarios; 3, ciclo de absorción y restitución por la cobertura vegetal; 4, intercambios entre el agua del suelo, freático y aguas superficiales.
• el bicarbonato y sílice son las mejores variables para examinar procesos de meteorización, porque son las menos afectadas por la actividad humana
• la vegetación modifica los balances geoquímicos a nivel de cuenca
• aunque a gran escala y a largo plazo se asume que los bosques están en estado estacionario, a escalas locales la dinámica de parches induce desbalances importantes de K, Ca, Mg y SO₄.

Los estudios previos sobre la hidroquímica de la región andino-patagónica han precisado que la meteorización es el principal proceso determinante de la composición iónica de las aguas superficiales entre los 39 y 42 ° S (Pedrozo et al. 1993, Chilrud et al. 1996) y de la región andino-patagónica en general (Quiróz y Drago 1996). Pedrozo et al. (1993) y Chilrud et al. (1996) dedujeron además que la contribuciones atmosféricas son poco importantes en la vertiente oriental de Los Andes. No obstante la cercanía del Océano Pacífico y la dominancia de vientos de oeste, la cordillera ejerce un efecto muy marcado, por el cual no solo se producen mayores precipitaciones en la vertiente occidental (Fig. 3.5), sino que también se retienen en ella la mayor parte de las sales ciclicas. Este hecho explicaría la mayor concentración de Na, K y Cl en los lagos chilenos ubicados a la misma latitud (Pedrozo et al. 1993).

En el caso de la cuenca del río Azul, la hidroquímica ha sido monitoreada de forma intensiva, pero es difícil cuantificar con precisión muchos de los factores importantes debido a su extensión. Aquellos aspectos para los cuales la información disponible es insuficiente, se discutirán en modo tentativo.

5.1.1. Estimación de los aportes atmosféricos

Por falta de mediciones directas, se utilizaron dos aproximaciones diferentes para estimar los aportes atmosféricos de iones en la cuenca del Azul. La primera supone que la totalidad de los cloruros son de origen marino e introduce una corrección para cationes y aniones proporcional a la concentración de los mismos en el agua de mar (Tab. 5.1.1). La segunda aproximación consistió en suponer esencialmente semejante la composición de las lluvias en la cuenca del río Azul y en el Mte. Tronador, conocida ésta por el trabajo de Chilrud et al. (1994). Ambos sitios distan 80 km uno de otro y están ubicados en la misma franja climática-orográfica, a 70 km del océano Pacífico (Golfo de Ancud) (Fig. 1.2). Las dos estimaciones dieron resultados similares, 38 y 28 µeq l⁻¹, equivalente al 4 y 3 %,
respectivamente, del contenido total de sales de las aguas fluviales. Sin embargo, las diferencias cualitativas muy fueron muy marcadas (Tab. 5.1.1). Las lluvias en el Mte. Tronador (2) tuvieron un valor de sodio 2/3 inferior y de sulfatos 3 veces superior a los valores esperables con la corrección por cloruros (1). Pedrozo et al. (1993) y Chilrud et al (1994) señalaron que la mayor parte de las sales cíclicas precipitan en la vertiente occidental de los Andes. El exceso de sulfatos en el Mte. Tronador proviene, no de los aerosoles marinos, sino del DMS (dimetil-sulfuro) producido como gas por las microalgas del océano (Chilrud et al. 1994). La formación de partículas de SO₄ a partir del DMS ha recibido atención creciente por su importancia en la regulación del clima planetario (Psenner y Catalán 1994; Kley et al. 1996);

| Tabla 5.1.1. Estimación del aporte atmosférico de iones en la cuenca del río Azul (μeq l⁻¹) |
|---|----------|----------|----------|----------|----------|----------|
| Concentración en el mar | TA | SO₄⁺ | Cl⁻ | Ca⁺ | Mg⁺ | Na⁺ | K⁺ |
| Concentración media en el río Azul | 400 | 55 | 535 | 20 | 105 | 459 | 10 |
| Estimación de aportes atmosféricos (1): | | 68 | 16 | 336 | 77 | 61 | 9.1 |
| Aportes de las precipitaciones (2): | | 2 | 16 | 3 | 3 | 14 | 0.3 |
| Porcentaje de corrección (1): | 6.6 | 11.6 | 2.95 | 0.55 | 5.6 | 1.2 |
| Porcentaje de corrección (2): | 400 | 61.4 | 4.4 | 333 | 76.5 | 55.4 | 7.9 |
| Porcentaje de corrección (1): | | 1 | 100 | 0.1 | 0.4 | 33 | 3 |
| Porcentaje de corrección (2): | 10 | 72 | 1.8 | 0.7 | 9 | 13 |

(1) aporte de sales cíclicas estimadas en base a la concentración de cloruros;
(2) Chilrud et al. (precipitaciones corregidas por evapotranspiración)

las emisiones volcánicas también contribuyen al incremento del azufre atmosférico. Es de aclarar que los datos del Mte. Tronador sólo corresponden a precipitaciones invernales. Teniendo en cuenta estos resultados y también los de algunas mediciones en Esquel (conductividad ~2-3 μS cm⁻¹) (Pizzolon y Mangani, datos no publicados, 1995), la corrección por aportes atmosféricos es poco significativa en el total de sales disueltas, pero modifica apreciablemente la concentración de los elementos que están en concentraciones más bajas, cloruro (70-100 %), sodio (9-33 %), potasio (3-13 %) y sulfato (10 %).

La corrección convencional por contribuciones atmosféricas subestima a veces los aportes debidos a elementos de la corteza llevados por las lluvias (Negrel et al. 1993). En la cuenca del Puelo están ausentes el polvo de las zonas desérticas y la polución antrópica del aire. Solamente en un 15 % de los días sopla viento proveniente de la Patagonia estépica, donde el factor de erosión eólico es muy importante. Por lo expuesto, se asume que esta contribución es poco significativa en el total anual. Por el contrario, en las áreas industrializadas, la concentración de iones principales se encuentra completamente modificada
por los aportes antrópicos directos o, a través de la atmósfera, 9% Ca, 8% Mg, 28% sodio, 10% potasio, 25% Cl y 38% sulfato (Meybeck 1984).

5.1.2. Composición iónica resultante de los procesos de meteorización

Como resultado de los procesos de meteorización en la cuenca del Azul puede aceptarse una concentración media anual de 470 µeq l⁻¹ de aniones y otro tanto de cationes. Sustraídos los aportes de las precipitaciones, bicarbonatos, sulfatos y cloruros representaron el 86, 13 y 1%, respectivamente, de los aniones principales y el calcio, magnesio, sodio y potasio, el 70, 16, 12 y 2%, respectivamente, de los cationes principales (Tab. 5.1.1). El ordenamiento (en equivalentes) Ca > Mg > Na > K y HCO₃ > SO₄ > Cl, fue concordante con la de las aguas más comunes de ríos no poluidos (Meybeck 1996).

<table>
<thead>
<tr>
<th>Sitio</th>
<th>K₂O</th>
<th>pH</th>
<th>TA</th>
<th>SO₄</th>
<th>Cl</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>SiR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MCNC</td>
<td>7.0</td>
<td>31</td>
<td>4.8</td>
<td>3.9</td>
<td>8.0</td>
<td>2.4</td>
<td>3.7</td>
<td>1.0</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>2. Río (Chile)</td>
<td>39</td>
<td>6.7</td>
<td>17</td>
<td>1.8</td>
<td>0.40</td>
<td>3.8</td>
<td>1.17</td>
<td>1.54</td>
<td>0.37</td>
<td>5.54</td>
</tr>
<tr>
<td>3. Lagos (Chile)</td>
<td>52</td>
<td>6.9</td>
<td>25</td>
<td>1.6</td>
<td>0.41</td>
<td>5.5</td>
<td>0.97</td>
<td>1.96</td>
<td>0.51</td>
<td>6.04</td>
</tr>
<tr>
<td>4. Lagos (Arg.)</td>
<td>78</td>
<td>7.7</td>
<td>42</td>
<td>5.6</td>
<td>0.51</td>
<td>10.6</td>
<td>1.05</td>
<td>2.39</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>5. Río C. Limay</td>
<td>40</td>
<td>7.4</td>
<td>20</td>
<td>2.7</td>
<td>0.59</td>
<td>6.7</td>
<td>0.97</td>
<td>1.32</td>
<td>0.26</td>
<td>2.25</td>
</tr>
<tr>
<td>6. Río C. Maipo</td>
<td>46</td>
<td>7.5</td>
<td>25</td>
<td>3.2</td>
<td>0.59</td>
<td>6.7</td>
<td>0.97</td>
<td>1.32</td>
<td>0.26</td>
<td>2.25</td>
</tr>
<tr>
<td>7. Río Quero, El</td>
<td>25</td>
<td>7.3</td>
<td>30</td>
<td>4.3</td>
<td>0.57</td>
<td>1.14</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Río Azul, ES</td>
<td>64</td>
<td>7.3</td>
<td>56</td>
<td>7.2</td>
<td>0.89</td>
<td>4.68</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Río Azul, ES</td>
<td>64</td>
<td>7.3</td>
<td>56</td>
<td>7.2</td>
<td>0.89</td>
<td>4.68</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Río Carrilhue</td>
<td>25</td>
<td>6.7</td>
<td>16</td>
<td>4.0</td>
<td>0.90</td>
<td>1.45</td>
<td>0.41</td>
<td>3.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.1.2. Valores de la mediana de aniones y cationes (mg l⁻¹) en el área de estudio (sitios con menor influencia antrópica), comparados con otros datos locales, regionales o mundiales.

Los resultados obtenidos son muy similares (algo inferior) a las MCNC (concentraciones más comunes en las aguas naturales), parámetro propuesto por Meybeck (1996) en reemplazo de las medias mundiales. MCNC es la mediana de las concentraciones de grandes ríos prístinos, pesada por el caudal. Los valores de SiR resultaron bajos en comparación con la MCNC y con otros ambientes andino-patagónicos. Los cloruros fueron muy bajos comparados con MCNC, pero muy semejantes a otros valores de la vertiente este de los Andes (Tab. 5.1.2). Mg, Na y K fueron entre 2 y 3 veces más bajos que MCNC, pero semejantes a otros datos regionales. Este resultado se explicaría por el secuestro de dichos iones en las precipitaciones de la vertiente occidental de los Andes (Pedrozo el at. 1993).
5.1.3. Importancia de la ceniza volcánica como material parental de los procesos de meteorización

Los antecedentes sobre la hidroquímica de la región andino-patagónica (Pedrozo et al. 1993; Chilrud et al. 1994 y Quirós y Drago 1996), han hecho especial incipiente en la litología precuaternaria como factor determinante de la misma. La existencia de las cenizas volcánicas apenas se ha citado como descripción general del área, y sin mayor relación efectiva con los procesos de meteorización. Al analizar el origen de las sales disueltas en esta región no puede menospreciarse el potente manto de cenizas cuaternarias y de los suelos originados en ella. No obstante las cenizas se hayan originado en volcanes chilenos, por efecto de los vientos dominantes, la mayor parte de la misma se ha depositado en Argentina. Por este motivo los Andes patagónicos presentan características peculiares por las que no son directamente comparables con otras regiones montañosas. Los suelos volcánicos de Argentina representan una situación singular a nivel mundial (Irisarri, com. pers.). Está claramente establecida la importancia casi exclusiva de las cenizas volcánicas en la génesis de los suelos regionales (Besoain 1985, Colnet-Daage 1987, Irisarri y Mendia 1991, Colnet-Daage et al. 1995). Se propone aquí la hipótesis, que también la composición iónica de sus aguas está más determinada por los suelos y cenizas volcánicas que por las rocas basales. En otros términos, que las cenizas y suelos constituyen el principal material parental de los procesos de meteorización en la cuenca. Esta hipótesis se fundamenta en las siguientes consideraciones: 1) la relativa impermeabilidad de la roca basal; 2) la elevada capacidad de retención de aniones y cationes de los andisols, con lo cual pueden modificar marcadamente la composición de la solución del suelo; 3) la gran superficie de meteorización de las cenizas volcánicas y de los minerales originados en ella 4) la extensión de los andisols, que cubren ¼ partes de la superficie de la cuenca del Pueblo hasta pendientes de más 70 º y 5) la importancia cuantitativa y cualitativa de los suelos y de la cobertura vegetal en los procesos de meteorización, que está siendo ampliamente reconocida (Taylor y Velbel 1991; Mosello et al. 1991; Likens 1992; Boggero et al. 1992; Williams et al. 1993; Bluth y Kump 1994; Psenner y Catalán 1994).

Las plutonitas y rocas del basamento cristalino, que ocupan más del 50 % de las cuencas de los ríos Azul y Quemquemtreu, son muy poco permeables (I.O.V.I.F. 1971) (Tab. 5.1.3). Estas consideraciones justifican sustentar que el material mayormente en contacto con el agua de deshielo y de las precipitaciones es el manto de cenizas y suelos volcánicos suprayacentes.
<table>
<thead>
<tr>
<th>Litología</th>
<th>Permeab.</th>
<th>Cobertura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Vulcanitas</td>
<td>B</td>
<td>16</td>
</tr>
<tr>
<td>3 Sedimentitas</td>
<td>CD</td>
<td>7</td>
</tr>
<tr>
<td>4 Depósitos glac. Fluviales</td>
<td>D</td>
<td>24</td>
</tr>
</tbody>
</table>

Las partículas de suelos volcánicos, presentan un desarrollo extraordinario de la superficie específica; por ejemplo, para el alofán, la superficie específica es de 700-1100 m² g⁻¹ (Egashira & Aomine 1974, citado en Galindo & Escudey 1985) o de 40 m² g⁻¹ para la imogolita, factor que hace a la gran capacidad de retención hídrica de estos suelos, y por consiguiente, al aumento del tiempo de reacción.

A diferencia de lo expresado por Moreno y Varela (1985) para Chile, en la cuenca del Puelo, la composición mineralógica de las cenizas y de la roca basal presentan diversos minerales en común (Tab. 5.1.7). En efecto, particularmente en la cuenca del río Azul, el componente mesosilíctico parece dominar tanto en las rocas basales (plutonitas y vulcanitas) como en las cenizas cuaternarias. Este hecho hace que esta cuenca no sea el sitio más indicado para cuantificar el efecto de las rocas basales y de las cenizas volcánicas en los procesos de meteorización.

5.1.4. Comparación del espectro iónico de los ríos Azul y Quemquemtreu

Es importante comparar la composición iónica del río Azul superior en E5 con la del río Quemquemtreu en E1, como representantes de una franja occidental y oriental de la cuenca del Puelo, ambas con mínimo impacto antropico. La concentración porcentual de aniones y cationes, ponderadas por caudal, fue sustancialmente similar en ambos ríos (Fig. 5.1.2.a). La diferencia es principalmente cuantitativa (Fig. 5.1.2.b), presentado el Azul 0.6 veces la concentración de sales del Quemquemtreu. Este resultado, sin duda debe atribuirse al gradiente climático, a la menor cantidad de lluvias en las nacientes del Quemquemtreu (Fig. 3.6) y a su menor pendiente media, y en consecuencia, al mayor tiempo de residencia del agua intersticial (Mosello et al. 1994). El cloruro tuvo una mayor concentración relativa en la cuenca del Azul (0.9), hecho que podría estar indicando un gradiente en las precipitaciones relacionado con la distancia al Océano. El sodio, al igual que lo encontrado por Pedrozo et al. (1993), no sigue
forzozamente el patrón del cloruro. La relación Si (Quem.)/Si (Azul) fue 0.65, similar a la de cationes y de aniones (0.60), lo que permite suponer que en ambas subcuencas, el mecanismo básico productor de iones es la meteorización de los silicatos (ver 5.1.5.1). Las respectivas, litologías, no obstante el dominio del componente mesosílico, presentan diferencias (Tab. 5.1.3). Como puede observarse también la permeabilidad sería diferente entre ambas cuencas, factor que, sumado a la mayor pendiente media, y mayor rango de precipitaciones, explica también la mayor torrencialidad de la cuenca del Azul.

La uniformidad del espectro iónico en el Azul superior y en el Quemquemtreu contrasta con los de la cuenca del lago Rivadavia, donde Pizzolon et al. (1994) evidenciaron un gradiente E-O muy marcado en la relación Mg/Na (Tab. 5.1.2). Resumiendo, podemos decir entonces que no hay cambios cualitativos en el espectro iónico de la cuenca del Azul, atribuibles a la ubicación de las estaciones de muestreo en el gradiente E-O. Esto indica que toda cuenca del Azul, se ubica al oeste de la franja ecotonal, es decir, en la región andino-patagónica propiamente dicha. Esta es una diferencia notoria con la cuenca del Futaleufú, que presenta lagos y ríos muy contrastantes por su ubicación en franjas ecológicas diferentes (ecotono estepa-cordillera y cordillera propiamente dicha) (Pizzolon 1992). En la cuenca de Azul, los mayores cambios cualitativos ocurrieron en estaciones con impacto antrópico.

Fig. 5.1.2. Concentración absoluta y porcentual de iones aniones y cationes en los ríos Azul y Quemquemtreu, corregida por aportes atmosféricos y ponderada por caudal ($Q_{(Quem.)} = 1$), en base a 4 fechas de muestreo con datos de caudal disponibles.
Tabla 5.1.4. Litología dominante en las sub-cuencas de los ríos Azul superior (E5) y del río Quemquemtreu (E1)

<table>
<thead>
<tr>
<th>Azul superior</th>
<th>Sup. (km²)</th>
<th>Sup (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonitas</td>
<td>247</td>
<td>62.4</td>
</tr>
<tr>
<td>Vulcanitas</td>
<td>149</td>
<td>37.6</td>
</tr>
<tr>
<td>total:</td>
<td>396</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quemquemtreu</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metamórficas</td>
<td>99</td>
<td>16.1</td>
</tr>
<tr>
<td>Plutonitas</td>
<td>160</td>
<td>26.1</td>
</tr>
<tr>
<td>Sedimentitas</td>
<td>77</td>
<td>12.5</td>
</tr>
<tr>
<td>Vulcanitas</td>
<td>23</td>
<td>3.7</td>
</tr>
<tr>
<td>Depós. Glaci-fluv.</td>
<td>255</td>
<td>41.5</td>
</tr>
<tr>
<td>total:</td>
<td>614</td>
<td>100.0</td>
</tr>
</tbody>
</table>

5.1.5 Origen de las sales disueltas en el sistema Azul-Quemquemtreu

Se ensayan dos interpretaciones sobre el origen de las sales disueltas en el río Azul: por comparación con datos de cuencas monolítológicas, y, por comparación con el espectro iónico estimado a partir de la composición mineralógica dominante. La composición iónica media de un curso de agua puede predecirse si se conoce la composición mineralógica dominante en la cuenca y sus productos de solubilidad (Stumm y Morgan 1981, p. 531). Como corolario, cuencas litológicamente similares, tendrán aguas de composición semejante. El primer inconveniente que impide utilizar este enfoque proviene de la extensión de la cuenca del Azul (>1000 km²), de su heterogeneidad geológica, y de un conocimiento de la misma que no permite cuantificar confiablemente los minerales dominantes. Sólo pueden intentarse aproximaciones. Los datos de cuencas monolítológicas se refieren a pequeñas cuencas (~10 km²) donde la relación entre litología e hidroquímica es obvia. Además, es probable que en este caso y, en general, la región andino-patagónica, las rocas basales tengan solo una importancia secundaria en la determinación del espectro iónico, en relación con los suelos.

Las tasas de meteorización están directamente relacionadas con la litología de la cuenca y la permeabilidad de sus suelos y rocas basales (Bluth y Kump 1994). Los principales tipos de rocas pueden ordenarse por su velocidad de meteorización en sedimentarias (carbonatos) > metamórficas (esquistos) > vulcanitas > plutónicas > arenas). La velocidad de la meteorización de las rocas plutónicas o volcánicas depende del porcentaje de sílice (Tab. 5.1.5) (Viers 1978; Psenner y Catalán 1994). Los minerales fósicos son mucho menos meteorizables que los mafícos (Velbel 1992). Los silicatos constituyen los minerales más reactivos de las rocas fósicas y su meteorización es uno de los procesos más importantes en los ciclos
biogeoquímicos globales (Velbel 1992). La disolución de los feldespatos está controlada por reacciones de superficie y no por difusión a través de una fina capa alterada. El ión H+ tiene un papel central en este proceso (Psenner y Catalán 1994).

<table>
<thead>
<tr>
<th>Contenido de sílice</th>
<th>> 70 %</th>
<th>62-70 %</th>
<th>52-62 %</th>
<th>42-52 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusivas: (plutónicas)</td>
<td>granito</td>
<td>granodiorita</td>
<td>diorita</td>
<td>gabro</td>
</tr>
<tr>
<td>Extrusivas: (volcánicas)</td>
<td>riolita</td>
<td>dacita</td>
<td>andesita</td>
<td>basalto</td>
</tr>
</tbody>
</table>

lenta <-------- meteorización -------- > rápida

5.1.5.1 Comparación con los datos de cuencas monolitológicas

La sumatoria de cationes ubica al río Azul entre los ríos de cuencas volcánicas/plutónicas (Tab. 5.1.6). De acuerdo con los datos de pequeñas cuencas monolitológicas de Francia (Meybeck 1984, Fig. 5.1.3 a y b), los valores del río Azul en el espacio pH - K20 corresponderían a rocas volcánicas y detriticas no carbonatadas (Fig. 5.1.3.a, grupos 2 y 3 de Meybeck) y en menor proporción a granitos, gneis y esquistos. En el espacio SiO2 - Σcationes el río Azul no coincide con ninguno de los grupos franceses, ocupando una posición equidistante entre los grupos 4 y 6 de Meybeck (Fig. 5.1.3.b), es decir, entre las areniscas/esquistos y las rocas detriticas carbonatadas. Por otra parte la relación Σcationes/SiO2 (equivalentes/moles) es igual a 470/85.2 = 5.5, valor que coloca a la cuenca del Azul más próxima del extremo de las calizas (7.3) que de los basaltos (0.91) en una escala donde no figuran vulcanitas (Bluth y Kump 1994). Estos índices no pueden tomarse en forma aislada, pero evidenciaro que la concentración de sílice fué baja para un área rocas silícas. La comparación con resultados de cuencas monolitológicas indicaría una cierta mezcla de rocas en la cuenca del Azul, con importante porcentaje de carbonatos, hecho que no es fácilmente aceptable por lo que se conoce de su geología.

5.1.5.2. Relación Ca/(Mg+Na+K) en el espectro iónico del río Azul

El resultado más sorprescente en la composición iónica del río Azul fué la concentración de calcio muy alta en comparación con el resto de los cationes. La relación (en equivalentes) Ca/(Mg+Na+K) fué igual a 2.4:1, mientras que en cuencas con plutonitas, vulcanitas y rocas metamórficas es < 1 y en cuencas carbonáticas es ~ 3.7 (Tab. 5.1.6). Pueden formularse al respecto las siguientes hipótesis: el exceso de calcio
Fig. 5.1.3.1. Relación general entre pH y conductividad a 25 ºC en 200 pequeñas cuencas monolíticas de Francia. 1: Granitos, gneis, micacitas; 2: rocas volcánicas; 3: rocas detriticas no carbonatadas; 4: rocas detriticas carbonatadas; 5: calcáreas y dolomitas; 6: evaporitas; 1b: aguas sulfatadas de granitos y gneiss (Modificado de Meybeck 1984). (* Rio Azul)

Fig. 5.1.3.b Variación de la silice disuelta en función de la suma de cationes corregida por los aportes atmosféricos, en 200 pequeñas cuencas monolíticas no poluidas de Francia. 1: Granitos, gneis, micacitas; 2: trachiolandesitas; 3: basaltos; 4: areniscas y esquistos; 5: arcillas y arcosas; 6: rocas detriticas carbonatadas; 7: esquistos pérmicos; 8: clacáreas y dolomitas; 9: creta, yeso 10: evaporitas (Modificado de Meybeck 1984). (* Rio Azul)
1: proviene de la presencia pequeños porcentajes de rocas carbonáticas dispersos entre las rocas ignea o metamórficas o en los suelos

2: se explica por el dominio de las plagioclasas cálcicas en las rocas mesosilicas, o por la meteorización preferencial de la anortita

3: se explica por la formación de minerals secundarios

4: es resultado de intercambios cationicos en los suelos de la cuenca

| Tabla 5.1.6. Concentración íónica media de ríos de cuencas de composición litológica uniforme, corregida por precipitaciones atmosféricas (unidades en μg l⁻¹, SiO₂ en μM, K₉₀ a 20° C). |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| | K₂O| pH | TA | SO₄⁺| Cl⁻| Ca⁺| Mg⁺| Na⁺| K⁺| Σcat| SiO₂|
| Granito | 2 | 31 | 66 | 128 | 31 | 0 | 39 | 31 | 88 | 8 | 166 |
| Granitos | 3 | 42 | 74 | 209 | 112| 13 | 241| 70 | 84 | 0 | 395 |
| Gneis | 2 | 30 | 66 | 136 | 56 | 0 | 60 | 37 | 80 | 10 | 207 |
| Gneis+anfib. | 3 | 33 | 64 | 22 | 164| 11 | 128| 66 | 62 | 0 | 256 |
| Vulcanitas | 2 | 45 | 72 | 425 | 10 | 0 | 154| 161| 105| 14 | 435 |
| Esquistos | 2 | 500 | 143 | 20 | 400| 240| 404| 240| 105| 20 | 770 |
| Carbonáticos | 2 | 358 | 79 | 3195| 85 | 0 | 2560| 640| 34 | 13 | 3247|
| Río Azul | 1 | 48 | 73 | 400 | 61 | 4 | 333| 77 | 55 | 8 | 473 |
| C. Manso | 4 | 39 | 280 | 3 | 0 | 45 | 23 | 62 | 8 | 8 | 138 |
| R. Carrilequi | 5 | 25 | 73 | 498 | 212| 47 | 212| 47 | 50 | 8 | 309 |

1 Este trabajo
2 Medias de 150 arroyos y ríos no poluídos de Francia y de 75 ríos del mundo (Meybeck y Helmer 1989)
3 Arroyos Castello (Gneis/anfibolitas) y Monorfino (granito) (Mosello et al. 1995)
4 Ríos de la cuenca del Manso (Pedrazzo et al. 1993)

El material calcáreo en la cuenca del Azul se encuentra como cemento de conglomerados en la Formación Piltriquitrón (Lizuain 1983), y de conglomerados del terciario inferior, en el valle del Azul (Diez y Zubía, 1981), ambos de escasa representación areal (Fig. 3.1; Tab. 5.1.7). También puede encontrarse calcita como alterita de algunas andesitas (Lizuain 1983, pág. 53). No obstante lo reducido de estos afloramientos, por su alta tasa de meteorización podrían hacer aportes importantes de calcio. Al respecto, Velbel (1992) afirma que en paisajes de rocas máficas y félicas mezcladas, pequeños porcentajes de las rocas más reactivas pueden alterar notoriamente el balance de cationes. Williams et al. (1995) encontraron que la concentración de calcio más elevada que el resto de las cationes proviene, en algunas cuencas, de la presencia de material carbonáctico. El bicarbonato en las áreas plutónicas proviene totalmente de la disolución del CO₂ atmosférico (Meybeck 1979; Psenner y Catalan 1994). Si el exceso de calcio es producido por calcita, deben verificarse dos condiciones (Drewer y Hutcomb 1986, en Williams et al. 1993), que haya suficiente bicarbonato como para balancear por sí solo la concentración de calcio, ya planteado más
arriba, y que la relación Si/Ca sea mucho más baja que la de las plagioclases. Una relación molar media Si/Ca < 1.0 indica meteorización preferencial de la calcita (Mast et al. 1990); esta relación en la cuenca del Azul fue holgadamente inferior (0.47 ± 0.1). Meybeck (1984) indica que el calcio, magnesio y el bicarbonato provienen de rocas carbonatadas cuando están entre el 75 y el 99% de los percentiles. Sólo el Ca representó el 70% de los cationes del Azul y el TA el 86% de los aniones. Las evidencias disponibles sobre el origen del calcio en el Azul, son contrastantes porque la alcalinidad y conductividad (400 μeq l⁻¹, 48 μS cm⁻¹), están en el rango de las vulcanitas, muy inferior al de las cuencas carbonáticas (Tab. 5.1.6) y, porcentualmente, la presencia de rocas carbonáticas sería poco importante.

El predominio del calcio también puede explicarse por las características de las mismas rocas silicicas dominantes en la cuenca. Los granitos y otras plutonitas son rocas de composición mineralógica muy variable de un lugar a otro, por el contrario de los anfiboles y basaltos que presentan, cualquiera sea su procedencia, una composición mucho más uniforme (Velbel 1992; Bluth & Kump 1994). Por lo tanto, es esperable que también la relación Ca/(Mg+Na+K) presente variaciones importantes en diferentes cuencas de plutonitas/vulcanitas. El exceso de calcio puede indicar el predominio de las plagioclases cálcicas, es decir, plagioclases con elevado porcentaje de anortita (Anexo) en las rocas basales y suelos. Sin embargo, tampoco parece ser este el caso de la cuenca del Azul, en cuyos suelos predomina la andesina (Planas et al. 1996) (Na/Ca=1), y en cuyas rocas basales, dominaría la oligoclase (Tab. 5.1.7) (Na/Ca>1). Los feldespatos son los minerales más reactivos de las rocas fósicas (Velbel 1992), y entre estos, la anortita es más reactiva que la albita (Quade et al. 1996). Sin necesidad de una dominancia de bitownita, el exceso de calcio puede explicarse también por la meteorización preferencial de la anortita en cualquiera de las plagioclases, tal como lo evidenciaron Clayton (1988) y Williams et al. (1993).

La influencia de los suelos alofánicos parece ser contradictoria. Por una parte presentan nódulos de calcita, pero por la otra, su capacidad de retención de bases en el orden Al>Ca>Mg>K y Na (Carrasco y Sadzawka 1980; Bornemisza 1982; Irisarri, com. pers.), tiene como consecuencia el secuestro de iones calcio en primer lugar, proceso simultáneo con el de retención de iones fósforo. En resumen, el análisis de los suelos y de la litología basal tal como se conoce en el presente, no permite dilucidar las causas de la elevada proporción de calcio en las aguas del río Azul. Una ulterior hipótesis plausible fue explicar el enriquecimiento en calcio como resultado de la recombinación de los productos de la meteorización de los feldespatos para formar minerales secundarios (Williams et al 1993). La caolinita puede recombinarse con
todo el magnesio y algo de calcio, sodio, potasio y algo de bicarbonato para formar hornblenda, proceso que lleva a un primer enriquecimiento en calcio:

\[7.8 \text{ Al}_2\text{Si}_3\text{O}_6(\text{OH, F, Cl})_4 + 18.4\text{ Ca} + 22\text{ Mg} + 3.1\text{ Na} + 1.5\text{ K} + 85.4\text{ HCO}_3 = 10\text{ Ca}_{1.8}\text{Mg}_{2.2}\text{Na}_{0.31}\text{K}_{0.15}\text{Al}_{1.25}\text{Si}_{6.76}(\text{OH, F, Cl})_{1.95} + 85\text{ CO}_2 + 48.6\text{ H}_2\text{O} \]

La hornblenda es un mineral importante en la geología de la cuenca (14 %) y se la encuentra también en los suelos (Tab. 5.1.7). Sin embargo, este y otros procesos similares propuestos (retro-reacción del Na, Ca, HCO₃ y Si para formar plagioclases de elevado contenido de anortita, y ulterior meteorización de estas plagioclases, no explicarían la magnitud de la concentración de calcio en relación a los restantes cationes en el río Azul.

5.1.5.3. Espectro iónico esperado a partir de la mineralogía dominante

La composición mineralógica dominante (CMD) en la cuenca del Puelo se estimó, asumiendo que a cada roca volcánica le corresponde su plutónica (Fig. 5.1.4), por provenir del mismo magma, con excepción de los basaltos (Viers 1978). La CMD se estimó a partir de datos publicados para la cuenca del río Azul, y, a partir de los datos de petrología dominante y de la Fig. 5.1.4. El intento de despejar la CMD en la cuenca del Azul daría así los resultados de la Tab. 5.1.7. Obviamente, a nivel de una cuenca de más de 1000 km², estos valores sólo representan una aproximación orientativa.

Fig. 5.1.4. Composición mineralógica de las rocas ígneas, graficado versus el contenido decreciente de SiO₂. (Modificado de Psenner y Catalán 1994, s/Schnoor y Stumm 1986).
Taba 5.1.7. Estimación de los minerales dominantes en suelos y rocas de la cuenca del río Azul, ponderados por volumen en la roca y suelo portante, y por la respectiva área de cobertura. V, P, N: form. Ventana, Piltriquitrón y Nîrihuanu.

<table>
<thead>
<tr>
<th>SUELOS (Andisola) (6)</th>
<th>ROCAS (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>km2</td>
<td>%</td>
</tr>
<tr>
<td>Fulvud</td>
<td>Vitreer.</td>
</tr>
<tr>
<td>588</td>
<td>428</td>
</tr>
<tr>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Felsíticos</td>
<td></td>
</tr>
<tr>
<td>ortoclasa</td>
<td></td>
</tr>
<tr>
<td>oligoclase</td>
<td></td>
</tr>
<tr>
<td>andesina</td>
<td></td>
</tr>
<tr>
<td>muscovita</td>
<td></td>
</tr>
<tr>
<td>silice</td>
<td></td>
</tr>
<tr>
<td>vidrios</td>
<td></td>
</tr>
<tr>
<td>Máficos</td>
<td></td>
</tr>
<tr>
<td>hipersteno</td>
<td></td>
</tr>
<tr>
<td>augita</td>
<td></td>
</tr>
<tr>
<td>hornblenda</td>
<td></td>
</tr>
<tr>
<td>olivina</td>
<td></td>
</tr>
<tr>
<td>biotita</td>
<td></td>
</tr>
<tr>
<td>opacos</td>
<td></td>
</tr>
<tr>
<td>otros</td>
<td></td>
</tr>
<tr>
<td>Alteritas</td>
<td></td>
</tr>
<tr>
<td>totales</td>
<td></td>
</tr>
<tr>
<td>clorita</td>
<td></td>
</tr>
<tr>
<td>sericitita</td>
<td></td>
</tr>
<tr>
<td>albita</td>
<td></td>
</tr>
<tr>
<td>Arcillas</td>
<td></td>
</tr>
<tr>
<td>alocán</td>
<td></td>
</tr>
<tr>
<td>imogolita</td>
<td></td>
</tr>
<tr>
<td>halosita</td>
<td></td>
</tr>
<tr>
<td>montmoril.</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>32</td>
</tr>
</tbody>
</table>

En las rocas predominan ampliamente los feldespatos (65 % en volumen) (oligoclase>andesina>ortoclasa), con una cantidad de cuarzo (13 %) que probablemente está subestimada. Entre los máficos predomina la hornblenda (14 % del total) siendo la olivina y biotita de menos importancia (4 % cada una). Diez y Zubía (1981) destacaron el contenido de pirita de los granitoides, incluido en la columna “opacos” (Tab. 5.1.7). En lo suelos, en cambio, habría un 30 % de andesina y un 43 % de vidrio y silice, predominando el hipersteno (5 %) entre los máficos (Irisarri y Mendía 1991; Planas et al. 1996). En síntesis, los minerales primarios sobre los que actúan los procesos de meteorización en la cuenca del Azul serían silice, oligoclase (0.29), andesina (0.19), ortoclasa (0.17) y hornblenda (0.14). El hipersteno, olivino, y biotita ocupan el segundo lugar. Las arcillas de los suelos presentan predominio de
aloñán e imogolita. Estas y el hipersteno son los compuestos que aparentemente son más exclusivos de los suelos de esta cuenca.

El conocimiento de la CMD en la cuenca y sus productos de solubilidad (Stumm y Morgan 1981), permite predecir la composición iónica media de un curso de agua. Las reacciones de meteorización (congruentes e incongruentes) que pueden tener lugar en dichos minerales, en condiciones de equilibrio, serían:

1. \(\text{SiO}_2 + 2 \text{H}_2\text{O} \Rightarrow \text{H}_2\text{SiO}_4 \)
2. \(\text{CaCO}_3 + \text{H}_2\text{O} \Rightarrow \text{Ca} + \text{HCO}_3 + \text{OH} \)
3. \(\text{CaCO}_3 + \text{HCO}_3 \Rightarrow \text{Ca} + 2 \text{HCO}_3 \)
4. \(\text{FeS}_2 + 3\frac{3}{4} \text{O}_2 + 3\frac{1}{2} \text{H}_2\text{O} \Rightarrow \text{Fe(OH)}_3 + 4 \text{H} + 2 \text{SO}_4 \)

Albita \(\Rightarrow \) Caolinita

5. \(\text{NaAlSi}_2\text{O}_8 + \text{H}^+ + 9/2 \text{H}_2\text{O} \Rightarrow \text{Na} + \frac{1}{2} \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2 \text{H}_4\text{SiO}_4 \)
Anortita \(\Rightarrow \) Caolinita

6. \(\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{H}_2\text{CO}_3 + \text{H}_2\text{O} \Rightarrow \text{Ca} + 2 \text{HCO}_3 + \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 \)

Ortoclasa \(\Rightarrow \) Mica

7. \(3 \text{KAlSi}_3\text{O}_8 + 2 \text{H}_2\text{CO}_3 + 12 \text{H}_2\text{O} \Rightarrow 2 \text{K} + 2 \text{HCO}_3 + 6 \text{H}_4\text{SiO}_4 + \text{KA}_2\text{Si}_3\text{O}_{10}(\text{OH})_2 \)

Ortoclasa \(\Rightarrow \) Caolinita

8. \(\text{KAlSi}_3\text{O}_8 + \text{H}^+ + 9/2 \text{H}_2\text{O} \Rightarrow \text{K} + \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2 \text{H}_4\text{SiO}_4 \)

Anfibol (hornblenda) \(\Rightarrow \) Caolinita y goetita

9. \(\text{NaCa(Mg}_2\text{Fe}_2)(\text{Al}_3\text{Si}_3)\text{O}_{22}(\text{OH})_2 + 11 \text{H}^+ + 3 \text{H}_2\text{O} \Rightarrow \text{Na} + 2 \text{Ca} + 3 \text{Mg} + 3/2 \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 2 \text{FeOOH} + 2 \text{H}_4\text{SiO}_4 \)

(ecuaciones 1-4, 6 y 7 s/ Stumm y Morgan 1981; ecuaciones 5,8 y 9, s/Velbel 1995)

Los minerales del grupo de las caolinitas son los principales productos de la meteorización de los feldespatos. Nótese, de las ecuaciones (3) y (6), que la meteorización de anortita produce la misma relación Ca/HCO₃ que la meteorización de calcita (Stumm y Morgan 1981). La anortita por su parte tiene un coeficiente de solubilidad mayor que el de otros feldespatos y arcillas y además su solubilidad se incrementa más que la de otros feldespatos con cada unidad de aumento de la presión parcial de CO₂ (Stumm y Morgan 1981, fig. 9.7).

Williams et al. (1993), perfeccionaron el procedimiento recomendado por Garrels (1967) para investigar la contribución de las plagioclases al contenido de solutos de las aguas superficiales, graficando las relaciones Na/Ca vs. HCO₃/H₄SiO₄. Aplicando este procedimiento
(Fig. 5.1.5) los resultados obtenidos en el río Azul caen en el campo de estabilidad de la caolinita; el arroyo Golondrinas estaría más desplazado hacia el campo de estabilidad de la esmectita. En el análisis estacional, el grupo de verano y verano otoño se ubican próximo al campo de estabilidad de la esmectita (Fig. 5.1.5.b). La producción de caolín como mineral secundario significa que los silicatos están actualdo como mineral primario. Los diagramas de equilibrio de minerales indicarían que la concentración de cationes en el Azul, aún a caudales bajos, está controlada por una cinética de disolución-precipitación más bien que por equilibrio con los minerales primarios (Afifi & Bricker 1983). Los minerales secundarios relevados son arcillas en las rocas basales de la cuenca del Azul (argilitas y limonitas de la Formación Ventana, Lizuain (1983)). Las andesitas de esta formación se encuentran más o menos caolinizadas, especialmente los mantos superiores (Diez y Zubía 1981). Hay arcillas entre el till glacial del pleistoceno (Diez y Zubía 1981; Lizuain 983), con importante representación areal.

En resumen, atendiendo a que, 1. SiR y cationes, exceptuando potasio, formaron el grupo con distancias de ligamiento más breves entre las variables analizadas (Fig. 4.3.7); 2. el elevado porcentaje de varianza del SiR ($r^2 = 0.79$) explicado por la Σcationes (Fig. 4.3.6 a y b) indica que estos elementos provienen de la meteorización de los silicatos (Meybeck 1996); 3. el diagrama de Garrels (1967) mostró que la relación entre los productos (Na/Ca y HCO$_3$/SiO$_2$) cayó en el campo de estabilidad de la caolinita, entonces debe asumirse que los silicatos fueron el principal mineral parental de los procesos de meteorización. En la comparación con datos de cuencas monolitológicas (Meybeck 1984), el río Azul se ubica entre las rocas volcánicas-metamórficas en el espacio pH-conductividad, pero sin coincidir con ninguno de los grupos francés, se acerca más a las rocas carbonatadas en el espacio Σcationes/SiO$_2$. El exceso de calcio en relación a los demás cationes, haría suponer una dominancia de las plagioclases cálcicas en lugar de las sódicas, aún sin considerar que las primeras son más rápidamente meteorizables que las segundas. Se ha supuesto también como mecanismo explicativo la existencia de pequeñas cantidades de rocas carbonáticas en la cuenca, pero ello no consta en la geología de la misma tal como se la conoce en el presente. Nos encontramos así frente a viejo enigma geoquímico que Williams et al (1993) examinaron exhaustivamente y expresaron en los siguientes términos “¿de dónde se origina el calcio que domina entre las bases de los emisarios de muchas cuencas félisicas y confunden las predicciones de los modelos estequiométricas de meteorización, tales como el de Garrels y Mackenzie (1967)”. El mismo problema ha sido expresado también por otros autores, entre ellos Stauffer (1990). Los datos diponibles no permiten dar mayores explicaciones.
Fig. 5.1.5. a. Fracción molar Na/Ca vs. fracción molar HCO$_3$/H$_4$SiO$_4$ para la desembocadura del río Azul (E7) y otras estaciones del sistema Azul-Quemquemtreu. Las curvas teóricas de Garrels (1976) han sido dibujadas por Williams et al (1993) para la meteorización de la plagioclasa a esmectita, caolinita y gibbsita.

b. Igual al anterior, con los grupos estacionales
5.1.6 Importancia del pH y de la cobertura forestal en los procesos de meteorización

Los procesos de meteorización pueden verse como el resultado de una titulación a nivel planetario en el cual el ácido carbónico y otros ácidos orgánicos disuelven los minerales de la corteza terrestre y cuyo resultado es la composición iónica del océano (Stumm y Morgan 1981; Psenner y Catalán 1994). Los estudios sobre la acidificación han evidenciado que no sólo los ácidos fuertes de origen antrópico aceleran las tasas de meteorización, sino que también juegan un papel importante los ácidos orgánicos producidos en condiciones naturales. Los ecosistemas acuáticos presentan una variedad muy grande de ácidos orgánicos (ácético, oxálico, láctico fúlvicos y húmicos) originados generalmente en los suelos (Psenner y Catalán 1994). Se ha evidenciado que las tasas de meteorización se incrementan hasta dos y tres veces en los suelos con vegetación respecto de las rocas desnudas. La cubierta vegetal juega un papel activo en los procesos de meteorización química (Stumm y Morgan 1981; Mosello et al. 1991; Boggero et al. 1993; Mosello et al. 1994; Psenner y Catalán 1994). La meteorización se incrementa hasta 2-3 veces (Bluth y Kump 1994) en el horizonte C de los suelos desarrollados, debido a los altos niveles de CO₂, HCO₃⁻ y diversos ácidos orgánicos producidos por la actividad biológica (Stumm y Morgan 1981; Psenner y Catalán 1994).

Las substancias amarillas tienen características de ácidos orgánicos fuertes (Otsuki y Weetzel 1973), y entre estas, los ácidos fúlvicos son agentes reductores mucho más fuertes que los húmicos (Skogerboe y Willson 1981). Interactúan con el carbonato de calcio (Otsuki y Wetzel 1973) y bloquean los sitios de intercambio de las arcillas, impidiendo el transporte de pequeñas moléculas orgánicas y otros iones por bloqueo competitivo (Fitch y Jia Du, 1996). En los suelos de la cuenca del Puelo predominan los ácidos fúlvicos (Irisarri y Mendía 1981), que tienen mayor capacidad para disociar protones que los húmicos (Conzonno, com. pers.), y por lo tanto mayor poder de ataque. Dadas sus propiedades fuertemente ácidas y complejificantes sin duda sus efectos en la meteorización y en la composición química de las aguas superficiales son importantes. V.g., podrían explicar la meteorización de rocas silíceas sin que se observe la contraparte esperable de alcalinidad, propia de las rocas carbonáticas, aspecto discutido en 5.1.5. Un trabajo reciente de Pedrozo & Chilrud (1998), aparecido estando esta tesis en impresión final ha hecho aportes valiosos al respecto.

En el área de estudio no se han observado aguas negras, como en otros valles andinos con menor pendiente y menor drenaje, en los que se forman suelos hidromorfolos (mallines). El pH de los suelos generalmente se encuentra entre 6.1-6.5 (Mendía e Irisarri 1986), valor
inferior en una unidad al del río Azul y Quemquemtreu (7.3 y 7.6, respectivamente). Esta diferencia de una unidad entre el pH del suelo y del agua es similar al valor reportado por Psenner y Catalán (1994) para el caso en que el ácido carbónico haya producido bicarbonatos por meteorización. En caso de no ocurrir meteorización se esperan diferencias de dos unidades de pH.

El análisis factorial carga la \([H^+]\) en el Factor 3 conjuntamente con las precipitaciones medias de los cinco días anteriores a la fecha de muestreo (media móvil) (Tab. 4.3.4.). Esta relación vincula la \([H^+]\) con una variable hidrológica que integra intensidad de precipitación, tasa de infiltración y flujos superficial, subsuperficial y subterráneo. Tomando los valores de precipitaciones y la \([H^+]\) sólo del día de muestreo, no hubo correlación significativa entre \([H^+]\) y escorrentía; con el promedio de los 10 días anteriores la correlación fue menor. En síntesis la correlación con lluvias medias durante los días previos al muestreo da indicios de la velocidad de flujo en todos los compartimentos hidrológicos.

La biomasa vegetal tiene además un segundo efecto sobre la composición química del agua de una cuenca, absorbiendo o liberando iones (Velbel 1985; 1996). Estas influencias sólo han sido reconocidas en décadas recientes (Bluth y Kump 1994), pero no siempre se han considerado en los balances de masa (Velbel 1985; 1996). La cubierta vegetal, acelera entonces los procesos de meteorización, pero además absorbe y libera iones. Se asume frecuentemente que este proceso absorción/liberación se encuentra en estado estacionario (Bluth y Kump 1994), pero los balances de masa a nivel de cuenca, han demostrado que no siempre ocurre así (Likens y Borman 1975; Likens 1992; Monk & Day 1988), que hay una dinámica de parches y que los bosques evolucionan como sistemas abiertos, en consonancia con perturbaciones antrópicas y naturales de diferente escala de tiempo y de espacio. Si a escala global se puede aceptar una situación de equilibrio, a escala menor lo que se observa son manchas en distintos estadios sucesionales, con particulares requerimientos de nutrientes en cada caso (Taylor y Velbel 1991; Velbel 1995).

5.1.7 Fluctuaciones estacionales en la hidroquímica del río Azul

Las variables más fuertemente relacionadas con los procesos de meteorización (Fig. 4.3.10) mostraron un patrón de fluctuación cíclica estacional provocado por cambios ambientales que son marcadamente cíclicos por naturaleza y más aún por la latitud media del área de estudio (42° S). Este comportamiento cíclico de la hidroquímica caracteriza también a
otros ríos de latitudes intermedias y revela influencias sucesivas del deshielo, precipitaciones y del agua subterránea (Davis y Keller 1983).

K20, SiR, TA, Ca, Mg y Na, mostraron un patrón de mínimos bien definidos durante todo el mes de noviembre y diciembre (Fig. 4.3.8). Este período se caracteriza por la máxima cantidad de horas-luz, máxima temperatura del aire y deshielo. Otros mínimos irregulares se verificaron por efecto de dilución por lluvias torrenciales de fines de verano-otoño. Es posible que el mínimo de primavera sea provocado además absorción vegetal (Davis & Keller 1983), al igual que en el caso de los nutrientes (ver. 5.2.1). Ambos mínimos, de iones y de nutrientes, presentaron un patrón semejante y ocurrieron prácticamente en las mismas fechas. Los grupos definidos mediante el análisis de agrupamiento (Fig. 5.1.6.a y b), confirmaron el análisis visual de los datos crudos (Fig. 4.3.8 y 4.3.9). La amplitud de estas fluctuaciones puede estimarse por medio del coeficiente de variación. Todas las variables del espectro iónico determinadas en el río Azul presentaron un coeficiente de variación de alrededor del 22 % durante el periodo de estudio, excepto el potasio, que siendo más bien una constante, presentó un coeficiente de variación del 62 %, por algunos valores extremos. Los mencionados valores fueron considerablemente menores que los de caudal (99 %) y de [H⁺] (93 %).

Si se analiza la carga diaria durante los días de muestreo (Fig. 5.1.7.), en lugar de la concentración, se observan los mismos mínimos, pero más extendidos en el tiempo y máximos invernales, más o menos coincidentes con los de concentración. Obsérvese que TA, Ca, Mg,
Fig. 5.1.7. Cargas químicas diarias en el río Azul durante los días de muestreo (en equiv. d⁻¹, K20 en S d⁻¹; TA y Ca sobre el eje Y secundario.
Na y Si mostraron un patrón de mínimos bien definido entre el 20/11 y el 4/3, es decir la segunda mitad de la primavera y casi la totalidad del verano. En ambos otoños se produjo la mayor variabilidad, tanto en las concentraciones como en las cargas, debido a los eventos aislados de lluvias torrenciales que tienen lugar con cierta recurrencia hacia fines de verano.

Es decir, que tanto concentración como cargas evidenciaron un patrón de máximos en invierno y un patrón de mínimos durante el deshielo y verano. La primera explicación de las diferencias invierno-verano en las concentraciones y en las cargas es de tipo hidrológico. El total de sólidos disueltos es principalmente función de la intensidad de las mismas (Bluth y Kump 1994; Meybeck 1996). Pero los resultados de este estudio no mostraron relaciones fuertes con el caudal. Las relaciones caudal-concentración son diferentes en diferentes litologías (Meybeck 1995) y no siempre ajustan a modelos lineales, tipo $TSD = b \log Q + \log A$, o a Q_b con $-1 < b < +1$, y otros similares revisados por Hall (1970, 1971), Mosello y De Giuli (1982), Preston et al. (1989). Variaciones de segundo orden introducidas por tributarios (v.g. el río Quequemnetre) se observan con cierta frecuencia y producen relaciones complejas entre concentración y caudal (Meybeck 1995, Preston et al. 1989). Su resolución formal para el caso del Azul, queda fuera del alcance de esta tesis.

5.1.8 Influencia de los factores ambientales

Los dos factores ambientales naturales a los que se atribuye mayor peso en las tasas de meteorización son el caudal (Bluth y Kump 1994; Meybeck 1996) y la temperatura. Sobre la influencia del caudal, y en general de las variables hidrológicas (precipitaciones) es mucho lo que se ha escrito y modelizado. Sobre la influencia de la temperatura, en cambio, existen algunos resultados contradictorios, y los obtenidos en una cuenca o región nos serían extrapolables a todas. La influencia de la temperatura sobre el pH y la meteorización está recibiendo creciente atención por su relación con el fenómeno invernadero y el cambio climático global.

Por otra parte, diversos autores revisados por Bluth y Kump (1994) y Psenner y Catalán (1994) sugieren una correlación negativa entre temperatura y tasas de meteorización. Psenner y Schmidt (1992), Koinig et al. (1997a & b), evidenciaron registros históricos y datos paleolimnológicos y geocronológicos, que el pH de lagos de alta cuota descende en los años más fríos independientemente de influencias antropicas. La regulación del equilibrio ácido-base en las aguas superficiales se relaciona así con el cambio climático global, y por lo tanto con alcances e implicancias también en regiones remotas de los centros de polución. No obstante ello los resultados obtenidos no son directamente extrapolables a otras regiones. Especialmente los climas de alta montaña pueden presentar evolución muy diferente del clima general circundante (Koinig et al. 1997; Williams et al. 1996). Lo importante de estos resultados es la evidencia del acople entre temperatura y tasas de meteorización a través del pH.

Los resultados obtenidos en el río Azul (concentración y cargas) confirman el concepto de bajas temperaturas–alta meteorización y viceversa (Fig. 5.1.7 y 5.1.8). Los valores de pH mínimos, incluso tres mínimos excepcionales (< 7.0) se obtuvieron en invierno, y los máximos en verano. Durante el deshielo se obtuvo un valor intermedio de 7.44 y no se observaron mínimos extremos propios de las regiones sometidas a precipitaciones ácidas. Como se observa en la Fig. 4.3.7, el pH, aún a una distancia de ligamiento grande, está vinculado a las variables más relacionadas con la meteorización, pero en forma inversa (Fig. 5.1.7). Cabe mencionar al respecto, el registro de valores de pH de hasta 4.38 en precipitaciones invernales Chirrud et al. (1994). Valores de pH inferiores a 7 no son raros en lagos patagónicos de Argentina (Pedrozo et al. 1993; Pizzolon et al. 1995) y Chile (Campos 1984).

Los máximos estivales de pH pueden atribuirse a procesos de fotosíntesis en la comunidad periférica conjuntamente con la mayor longitud del día (18 hs). Los mínimos invernales pueden atribuirse a: 1) las precipitaciones, cuyo pH tendría una media aproximada de 5.10 (Pedrozo et al. 1993), siendo el invierno el período de mayor pluviosidad; 2) mayor producción de CO₂ respiratorio en la comunidad acuática y suelos por la longitud de la noche (15-18 hs); 3) mayor disolución de CO₂ atmosférico por la temperatura baja; y, 4) pulsos de ácidos orgánicos producidos por la descomposición de hojas del bosque decíduo.

Como se discutió en 5.1.7, no debe descartarse la influencia de los ácidos orgánicos y de la lixiviación del iones del material foliar caído durante el otoño, tanto en el bosque alto de Nothofagus pumilio, como en el bosque marginal de Salix sp. y de la vegetación implantada (Populus y otros). El desconocimiento sobre los ciclos biogeoquímicos en los bosques subantárticos, tanto chilenos como argentinos, es casi total (Veblel et al. 1996b). Adjudicar el
descenso del pH a pulsos de ácidos orgánicos requiere información sobre la dinámica de uso de los nutrientes (no sólo en el sentido de P y N) por la vegetación. Estudios extensivos de pequeñas cuencas silícolas de alta montaña han evidenciado relaciones significativas entre Ca, Mg, K, HCO₃, SO₄, Cl y el porcentaje de coníferas (Mosello et al. 1991; Mosello et al 1993).

En resumen, los dos factores de meteorización externos (precipitaciones altas y temperaturas bajas) concurren estacionalmente en la región andino-patagónica y es difícil discriminar la influencia de cada uno de ellos. El análisis de regresión no indica forzosamente causalidad (Kleinmbaum/Kupper 1978, Davis & Keller 1983), pero se utilizó la correlación por rangos de Spearman y el análisis de regresión múltiple (stepwise) con el objeto de obtener una primera estimación del peso respectivo de cada factor sobre las tasas de meteorización.

La Fig. 5.1.8 muestra que hubo correlaciones (–) altamente significativas entre los productos de la meteorización y la temperatura y por otra parte entre el pH y los factores ambientales de meteorización pero se debilitaron considerablemente las correlaciones entre pH y los productos de la meteorización. (Q: log del caudal; PP5d: log de las precipitaciones de los cinco días previos al muestreo; Tmáx5d: temperatura máxima de los cinco días previos). Estas diferencias con respecto a los resultados de los ambientes de alta cuota reportados en (Williams et al. 1996; Koinig et al. 1996; Koinig et al. 1997) se explicaría porque en ellos el efecto de la cobertura, nieve es arealmente mucho más importante que la cuenca en estudio. En la Fig. 5.1.8 b, la correlación más significativa con la temperatura fue la del Cl y del Na; ello indica una probable correlación subyacente con las precipitaciones.

La Tab. 5.1.8. muestra los resultados del análisis de regresión múltiple. Para las precipitaciones y caudal, extremadamente asimétricos, se utilizaron sus logaritmos (base 10). Las variables ambientales seleccionadas explicaron hasta el 68 % de la varianza del Ca, 65 % de Na, 62 % de SiR y 55 % de la alcalinidad. Estas variables, las más indicativas de meteorización, tuvieron los valores máximos de F-parcial, t y nivel de significación con Tmín5 o Tmind. El segundo lugar fue ocupado por el caudal para Ca, TA y K20 y el tercero por PPAd5 para Ca, SiR. Las ecuaciones resultantes pueden utilizarse como modelo predictivo y muestran la importancia de la temperatura en los mismos. Sin embargo, debido a la existencia de fuertes interacciones entre las variables ambientales (Tab. 5.1.8) no tiene mucho sentido asignar causalidad a estos resultados, porque los efectos del caudal y de la temperatura no operan independientemente (Kleimbaum & Kupper 1978). El mecanismo causal indicaría un fuerte control de las precipitaciones sobre el caudal y a menor nivel de significación, la temperatura del día o de los días previos (especialmente las máximas). La temperatura actúa
Fig. 5.1.8. Esquema de correlaciones no paramétricas entre las variables ambientales y las variables relacionadas con el proceso de meteorización en la cuenca del río Azul, considerando el pH como mecanismo de acople entre ambas (arriba) y correlaciones directas (abajo). El número de líneas indica niveles de significación: 1 < .05; 2 < .00; 3 < .000.
Tabla 5.1.8. Correlación por rangos Spearman entre las variables ambientales (se eliminaron las no significativas)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>R</th>
<th>t(N-2)</th>
<th>p-nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZD & PPADD</td>
<td>57</td>
<td>.40</td>
<td>3.234</td>
<td>.002070</td>
</tr>
<tr>
<td>AZD & PPAD5</td>
<td>57</td>
<td>.51</td>
<td>4.350</td>
<td>.000060</td>
</tr>
<tr>
<td>AZD & TMAXD</td>
<td>57</td>
<td>-.30</td>
<td>-2.337</td>
<td>.023132</td>
</tr>
<tr>
<td>AZD & TMAX5</td>
<td>57</td>
<td>-.34</td>
<td>-2.653</td>
<td>.010405</td>
</tr>
<tr>
<td>AZD & TMAX10</td>
<td>57</td>
<td>-.28</td>
<td>-2.194</td>
<td>.032472</td>
</tr>
<tr>
<td>AZD & TMIN5</td>
<td>57</td>
<td>-.26</td>
<td>-1.967</td>
<td>.054246</td>
</tr>
<tr>
<td>AZD & TMIN10</td>
<td>57</td>
<td>-.29</td>
<td>-2.261</td>
<td>.027714</td>
</tr>
<tr>
<td>AZD & TDT5</td>
<td>57</td>
<td>-.17</td>
<td>-1.318</td>
<td>.193100</td>
</tr>
<tr>
<td>AZD & ACQ</td>
<td>57</td>
<td>.60</td>
<td>5.59</td>
<td>.000001</td>
</tr>
<tr>
<td>ACQ & PPAD D</td>
<td>57</td>
<td>.41</td>
<td>3.369</td>
<td>.001382</td>
</tr>
<tr>
<td>ACQ & PPAD 5</td>
<td>57</td>
<td>.40</td>
<td>3.228</td>
<td>.002105</td>
</tr>
</tbody>
</table>

sobre el caudal en formas opuestas; positivamente con el deshielo y negativamente con la forma de las precipitaciones (nieve o agua) en invierno. De aquí que la correlación entre temperatura y caudal haya sido poco significativa.

En conclusión, el patrón emergente en el río Azul puede describirse como aumento del pH, disminución de la escorrentía y disminución de la meteorización en verano y, a la inversa, descenso del pH, aumento de la escorrentía y aumento de las tasas de meteorización en invierno. El hecho de que se incluya la segunda mitad de la primavera con el grupo de verano se explica porque los caudales de Nov/Dic. de 1995 fueron un 50 % inferiores a la media histórica y fueron bajos particularmente en diciembre (Fig. 4.1.2). En la región andino-patagónica tres factores de meteorización, precipitaciones (y pH bajo) y temperaturas mínimas, y caudal concurren acelerando las tasas de meteorización. Por ello los máximos se observaron en invierno. No obstante esta concurrencia, las diferencias en concentración iónica a lo largo del año fueron moderadas.

5.1.9 Coeficientes de exportación de iones principales en la cuenca del R. Azul

El coeficiente de exportación de SiO$_2$, -60.1 kg SiO$_2$ ha$^{-1}$ a$^{-1}$, o, 26.95 kg ha$^{-1}$ a$^{-1}$, fue similar al de otras cuencas silíceas (Tab. 5.1.9). Experimentos de laboratorio con ópalo, plagioclasas, ortoclasa, sin ácidos orgánicos, dieron tasas de disolución de 10^{-11} - 10^{-13} mol SiO$_2$ m$^{-2}$ s$^{-1}$, (6 9.3 - 935 mol SiO$_2$ ha$^{-1}$ a$^{-1}$ 6 0.54 - 54.3 kg SiO$_2$ ha$^{-1}$ a$^{-1}$); los silicatos laminares (caolinita, muscovita), dieron tasas entre 10^{-12} y 10^{-13} mol SiO$_2$ m$^{-2}$ s$^{-1}$ y el olivino entre 10^{-9} y 10^{-10} mol SiO$_2$ m$^{-2}$ s$^{-1}$ (Psenner y Catalán 1994). Los valores del río Azul (124.3 kg SiO$_2$ ha$^{-1}$ a$^{-1}$), se encuentran próximos al extremo inferior del rango de los tectosilicatos. La meteorización
del olivino, no obstante su elevada tasa de meteorización, tendría escasa influencia en la concentración de SiO₂, acorde a su escasa representación porcentual (Fig. 3.9).

El coeficiente de exportación de la sumatoria de cationes fue seis veces superior a al mencionada para cuencas silícas según Psenner y Catalán (1994) (20-100 meq m⁻² a⁻¹), y otros autores recopilados en la Tab. 5.1.9. Este supuesto exceso, se debe principalmente al íon calcio. Es notorio que la Σcaciones (concentración) coincida con la de cuencas silícas (Tab. 5.1.6), mientras que la Σcaciones (cargas) se aproxime más bien al de cuencas carbonácticas. Estas incongruencias evidenciar que dichas relaciones y tasas tienen antes que nada validez regional, para el área donde fueron establecidas.

Tabla 5.1.9.a. Comparación de tasas netas de meteorización (corregidas por aportes atmosféricos) en cuencas silícas con escaso o nulo impacto antrópico (en kg ha⁻¹ a⁻¹).

<table>
<thead>
<tr>
<th></th>
<th>Ref.</th>
<th>Km²</th>
<th>SO₂</th>
<th>T.A.</th>
<th>Cl</th>
<th>SO₄</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Σcat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>1070</td>
<td>60.1</td>
<td>295</td>
<td>7.75</td>
<td>43.1</td>
<td>81.2</td>
<td>10.9</td>
<td>17.2</td>
<td>4.95</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Carrileuf *</td>
<td>1</td>
<td>580</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>225</td>
<td>27.3</td>
<td>21.4</td>
<td>6.01</td>
<td>280</td>
</tr>
<tr>
<td>Hubbard Brook</td>
<td>2</td>
<td><1</td>
<td>36.6</td>
<td>14.8</td>
<td>-0.30</td>
<td>10.5</td>
<td>9.1</td>
<td>2.1</td>
<td>5.3</td>
<td>0.60</td>
<td>17.1</td>
</tr>
<tr>
<td>Cannobino</td>
<td>3</td>
<td>110</td>
<td>50.4</td>
<td>136.7</td>
<td>6.7</td>
<td>29.3</td>
<td>42.1</td>
<td>5.7</td>
<td>17</td>
<td>7.0</td>
<td>71.8</td>
</tr>
<tr>
<td>Montseny</td>
<td>4</td>
<td><10</td>
<td>1.70</td>
<td>4.3</td>
<td>0.2</td>
<td>5.70</td>
<td>17.8</td>
<td>0.20</td>
<td>23.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuencas silícas</td>
<td>5</td>
<td></td>
<td>0.53</td>
<td>0.19</td>
<td>6.5</td>
<td>2.9</td>
<td>5.7</td>
<td>1.18</td>
<td>16.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toce *</td>
<td>6</td>
<td>1547</td>
<td>29.7</td>
<td>548</td>
<td>59.5</td>
<td>504</td>
<td>316</td>
<td>37.4</td>
<td>54.2</td>
<td>24.5</td>
<td>432</td>
</tr>
<tr>
<td>Ríos naturales*</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.1.9.b. Tasas netas de meteorización en la cuenca del río Azul (corregida por precipitaciones s/Chilrad et al. 1994) y otras cuencas (en meq m⁻² a⁻¹; Si-SiO₂ en mM)

<table>
<thead>
<tr>
<th></th>
<th>Ref</th>
<th>Km²</th>
<th>Si</th>
<th>T.A.</th>
<th>Cl</th>
<th>SO₄</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Σcat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>1070</td>
<td>96</td>
<td>483</td>
<td>6.1</td>
<td>81</td>
<td>398</td>
<td>89</td>
<td>68</td>
<td>11</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Carrileuf</td>
<td>1</td>
<td>580</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Hubbard Brook</td>
<td>2</td>
<td>~1</td>
<td>57</td>
<td>5.9</td>
<td>0.85</td>
<td>90</td>
<td>45</td>
<td>17</td>
<td>23</td>
<td>1.5</td>
<td>87</td>
</tr>
<tr>
<td>Cannobino</td>
<td>3</td>
<td>110</td>
<td>179</td>
<td>224</td>
<td>19</td>
<td>61</td>
<td>210</td>
<td>144</td>
<td>74</td>
<td>18</td>
<td>446</td>
</tr>
<tr>
<td>Montseny</td>
<td>4</td>
<td><10</td>
<td>~20</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>57</td>
<td>77</td>
<td>0.5</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Cuencas silícas</td>
<td>5</td>
<td></td>
<td>8</td>
<td>2</td>
<td>32</td>
<td></td>
<td>24</td>
<td>25</td>
<td>3</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Ríos naturales*</td>
<td>6</td>
<td>70</td>
<td>354</td>
<td>56</td>
<td>66</td>
<td>274</td>
<td>115</td>
<td>83</td>
<td>13</td>
<td>485</td>
<td></td>
</tr>
</tbody>
</table>

2. Likens y Bormann 1975. 6 años; 6 cuencas < 1 km²; gneis-cuarzo-monzonita. Forestada. (*) media de 23 años (Likens 1992)
5. Cuencas silícas templadas y boreales. media estimada por Avila y Rodá (1988)
6. Meyer ("). Datos de grandes ríos del mundo.
7. Calderoni & Mosello 1976. 1 año; 104 muestras; rocas silícas > calcáreas.
(*) sin corrección por aportes atmosféricos
La meteorización de aniones y cationes en el río Azul presenta un desbalance algo mayor (7 %) que la sumatoria de las concentraciones, debido a desbalances en la precipitaciones (Tab. 5.1.6). Nótese que las cargas transportadas durante los 4-5 enventos de precipitaciones torrenciales ($\rightarrow 100 \text{ m}^3 \text{ s}^{-1}$) (Tab. 5.1.9) superan a las cargas del resto del año. Este hecho reafirma la necesidad de no perder estos eventos para obtener resultados confiables de carga anual (Preston et al. 1989). Este hecho deberá tenerse en consideración en futuros programas de monitoreo en el río Azul.

5.1.10 Ideas para una caracterización de sub-regiones hidroquímicas en la Patagonia andina

Los estudios previos sobre hidroquímica han diferenciado tres tipos de ambientes, meseta, cordillera y precordillera o ambientes ecotones en la Patagonia argentina tanto en las aguas subterráneas (Scappini y Orfíla 1982) como en las superficiales (Scappini y Orfíla 1984; Quirós et al. 1986; Drago y Quirós 1996). La disponibilidad de mayores datos especialmente en el área cordillerana, posibilita el intento de establecer en ella, al menos en forma preliminar, sub-regiones o microregiones hidroquímicas. Un antecedente de este enfoque es el trabajo de Vollenweider (1961) para la región insúbrica de los Alpes. Este mapa hidroquímico tendría suma utilidad como esquema de referencia regional; en primer lugar proveerá de estándares regionales y aún locales de calidad del agua, sobre cuya necesidad hacía referencia Meybeck (1995); en segundo lugar como esquema de referencia en estudios geoquímicos y edafológicos. Estas unidades geo-edaf-hidroquímicas están a su vez relacionadas con la topo-climo secuencia de suelos, bien descripta en sus rasgos generales en los trabajos de Colmet-Daage y colaboradores. Este tipo de mapeamiento regional constituye a su vez un esquema de referencia insustituible para la interpretación de la distribución y diversidad de organismos acuáticos (Poff & Ward 1990) y terrestres.

El primer criterio, es sin duda el contenido total de sales disueltas, expresado como conductividad, total de sólidos disueltos o incluso la alcalinidad, que suele correlacionar bien con la conductividad. Estas variables presentan un gradiente Oeste-Este creciente, en consonancia con el gradiente de precipitaciones y evapotranspiración. Los estudios sobre limnología regional han demostrado la importancia de la alcalinidad en la distribución los organismos (Margalef 1983; Psenner y Catalán 1994).

Con pocas excepciones, el espectro iónico de las aguas superficiales de la región andina es de tipo bicarbonato cálcico (Drago y Quirós 1996; Pedrozo el at. 1993; Pizzolon et al.
1994; Pizzolon et al. 1995), al igual que el de sus aguas subterráneas (Scappini & Orfila 1982; Coronato & Del Valle 1989). Las sales sub-dominantes en cambio, presentan una variación espacial importante, sin duda relacionada con la geología y edafología de cada sub-región.

Los cloruros siempre ocupan el tercer lugar entre los aniones, pero los sulfatos, aún en segundo lugar, pueden representar un porcentaje variable entre los aniones. Se han relevado dos áreas sulfato-dominante en ambientes de orden lótico 1. En las nacientes del río Manso, los glaciares del Mte. Tronador reducen la pirita, abundante entre las rocas volcánicas, a un material finamente particulado, fácilmente reaccionable para producir ácido sulfúrico (Chilrud et a. 1994). Probablemente este proceso se repita en otros cursos de primer orden en áreas glaciariizadas con pirita. La laguna Willimanco, situada en la franja ecotonal (a 5 km de la ciudad de Esquel) está alimentada por pequeños afluentes subterráneos, emergentes a unas decenas de metros de la línea de costa. Tanto el contenido total de sales como su espectro iónico sulfato-cálcico dominante (659 μS cm⁻¹ y 200 mg l⁻¹ de SO₄, respectivamente) son anómalos en relación a las aguas vecinas. La geología de la base del cerro R21 no está bien conocida, aunque hay afloramientos importantes de lutitas negras (Pizzolon et al. 1989).

Las relaciones Ca/(Mg+Na+K) y/o Ca/Na discutidas ampliamente es este trabajo, permitirían distinguir ulteriormente otras subregiones hidroquímicas/geoquímicas de norte a sur en la región andina. La elevada proporción de calcio entre los cationes puede considerarse una característica diferencial de la cuenca del Azul, en relación con las inmediatas ubicadas al norte de ella, las cuencas del Manso y del Limay. Los datos de la cuenca del río Manso (Pedrozo et al. 1993) en su mayor parte fueron coincidentes con los de áreas silíceas; con una relación media Na/Ca = 0.63, excluyendo cuatro de sus ambientes; uno de ellos, drena una cuenca muy pequeña; el segundo es el río Manso Superior a la cual se hizo referencia; su elevada concentración de Ca fue explicada por Chilrud et al. (1994). Los otros dos ríos con Ca/Na > 1, fueron el río Villegas (Ca/Na = 1.02) y el río Foyel (Ca/Na=1.30), que drenan cuencas de 100-200 km², de orden lótico 3, adyacentes a la del Azul. La relación Ca/Na del río Quemquemtreu (E1) fue 5.42 y la del río Azul, 5.78 en E5 y 6.05 en E7 (desembocadura); en el río Carrileufú (Cuenca del Futaleufú) fue 4.24 (Pizzolon et al. 1994) y en el río Arrayanes.

La relación Na/Mg resultó útil para diferenciar ambientes en relación con el gradiente este-oeste en la cuenca superior del río Futalaufú. Se verificó un fuerte incremento y predominio del sodio sobre el magnesio (en equivalentes) hacia el este (Pizzolon et al. 1994). La alta relación Na/Mg o Na/divalentes estarían asociadas a la presencia de zeolitas sódicas, que tienen la capacidad de retener cálcio y magnesio, y liberar sodio (Irisarri, com. pers.;
Chiara y Petti 1996). Los minerales de arcilla en general tienen la capacidad de intercambiar cationes desde las laminillas superficiales e internas con el agua de la solución, proceso que tiene mucha importancia para modificar la composición iónica de las aguas (Stumm y Morgan 1981).

Entre las arcillas del suelo, predominan las variedades amorfas o con muy poca estructura, alofán e imogolites. Solamente hacia el este con la aparición de una estación seca marcada los suelos presentan arcillas más cristalinas, halloysita y especialmente montmorillonita (Colnet Daage et al. 1995). El efecto de estas arcillas sobre las aguas superficiales de la región, debe estudiarse ulteriormente. En particular, es importante la presencia de las zeolitas sódicas, cuya propiedad de secuestrar calcio y liberar sodio (Chiara y Petti 1996, Irisarri, com. pers.), podría explicar la proporción elevada de sodio en algunos ambientes andinos v.g. Pizzolon et al. (1994). Los mecanismos explicativos de estas diferencias sólo podrán dilucidarse con ulteriores estudios, especialmente en pequeñas cuencas cuya litología y edafología pueda conocerse con precisión. Las tres cuencas mencionadas presentan características fisiográficas climáticas similares y bajo impacto antrópico. La cuenca del Turbio, no obstante su extensión, es prácticamente monolitológica.
5.2 DINAMICA DE NUTRIENTES

Los nutrientes representan las variables más influídas por la presencia humana y su modalidad de relación con el entorno natural, incluyendo en ello la densidad poblacional, el tratamiento de los deshechos, la actividad silvo-pastoril, agraria, agroindustrial, turística, etc. Se denominan elementos no-conservativos aquellos que han sido seleccionados desde el origen de la vida como constituyentes fundamentales de los organismos, incluyendo el hombre. Elementos conservativos, por el contrario, son aquellos que no han sido seleccionados para la construcción de la biomasa, entre ellos los iones principales, o existen sólo en porcentajes menores o trazas. Sus ciclos pueden conocerse con mayor precisión por medio de modelos imput-output. En la práctica no ha sido fácil separar ambos tipos, por lo que la búsqueda de elementos definidamente conservativos se ha desplazado hacia el silice, y más recientemente, hacia las tierras raras y lantánidos (Negrel et al. 1993; Román Ross et al. 1997). La presencia humana y sus actividades afecta muchos ciclos biogeoquímicos, pero principalmente los del carbono, nitrógeno y fósforo (Stumm y Bacini 1983). Añade además moléculas nuevas a los ecosistemas (Margalef 1997). Este no es el caso en la cuenca del Puelo, donde el grado de antropización es incipiente; es decir, la agricultura y ganadería son principalmente extensivas, con uso muy reducido de fertilizantes y biocidas, como se mencionó en la Sección 3.6. Además, cobran importancia creciente los productos orgánicos conjuntamente con el prestigio de la región como comarca ecológica. Los resultados obtenidos en el río Quemquemtreu mostraron que la presencia del centro urbano (El Bolsón) altera no solo los flujos de nitrógeno y fósforo como se había hipotetizado, sino también los de cationes, usualmente considerados como elementos conservativos (Fig. 4.2.6).

5.2.1 Nutrientes en el sistema Azul-Quemquemtreu

Los valores de N-NO_3 fueron muy inferiores a la media mundial dada por Meybeck para algunos ríos templados no poluidos y tres veces inferiores a la media de los ríos araucanos de Chile (Tab. 5.2.1). Fueron algo superior (si introducimos una corrección por amonio igual al 8 %) a los obtenidos por Pedrozo et al. (1993) en los ríos y lagos de las cuencas del Manso y del Limay (Tab. 5.2.1), situadas inmediatamente al norte de la cuenca del Azul.
En el presente trabajo no se determinó amonio porque en pruebas preliminares resultó indetectable. Por tal motivo DIN equivale solamente a N-(NO$_3$+NO$_2$). Al respecto, Pedrozo et al. (1993) obtuvieron resultados contrastantes si se computan por separado sus datos para las cuencas del Limay y del Manso, representando el N-NH$_4$ el 58 % y 8 % del DIN, respectivamente. Considerando el dato de la cuenca más próxima y semejante a la del Puelo (cuenca del Manso) y el porcentaje medio mundial dado por Meybeck (1982), los valores de DIN del presente estudio estarían subestimados en un 10 %. Este porcentaje no invalida la conclusiones previamente mencionadas.

La media anual de PRS en el río Azul fue extremadamente baja, comparada con otras medias regionales y mundiales, sin embargo, PT fue similar al reportado para otros ríos andino-patagónicos de Argentina (Tab. 5.2.1). Este hecho puede explicarse por la capacidad muy alta de retención de P de los suelos alofánicos (Colmet-Daage et al.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>PRS</th>
<th>DIN</th>
<th>PT</th>
<th>NT</th>
<th>n</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ríos templ. no poluídos</td>
<td>0.30</td>
<td>7-67</td>
<td>94</td>
<td>6</td>
<td>1-30</td>
<td>Meybeck 1982</td>
</tr>
<tr>
<td>Ríos araucanos (Chile)</td>
<td>0.25</td>
<td>39.0</td>
<td>94</td>
<td></td>
<td>1-30</td>
<td>Campos 1986</td>
</tr>
<tr>
<td>9 lagos araucanos (Chile)</td>
<td>2.20</td>
<td>0.65</td>
<td></td>
<td>1-24</td>
<td></td>
<td>Soto y Campos 1995</td>
</tr>
<tr>
<td>11 ríos cuenca del Limay</td>
<td>0.17</td>
<td>0.55</td>
<td>22</td>
<td>1-30</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16 ríos cuenca del Manso</td>
<td>0.15</td>
<td>0.50</td>
<td>0.46</td>
<td>1-24</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Precipitaciones C. Manso</td>
<td>0.03</td>
<td>1.78</td>
<td></td>
<td>6</td>
<td></td>
<td>Pedrozo et al. 1993</td>
</tr>
<tr>
<td>Río Quemquemtreu (E4)</td>
<td>0.33</td>
<td>5.7</td>
<td>50</td>
<td>48</td>
<td></td>
<td>este trabajo</td>
</tr>
<tr>
<td>Río Azul (desemb.)</td>
<td>0.041</td>
<td>0.61</td>
<td>0.28</td>
<td>48</td>
<td></td>
<td>este trabajo</td>
</tr>
<tr>
<td>Lago Puelo (Z eufótica)</td>
<td>0.033</td>
<td>0.54</td>
<td>6</td>
<td>4</td>
<td></td>
<td>este trabajo</td>
</tr>
<tr>
<td>20 lagos andinos (Arg.)</td>
<td>0.16</td>
<td>0.63</td>
<td>0.27</td>
<td>1-12</td>
<td></td>
<td>Pedrozo et al. 1993</td>
</tr>
<tr>
<td>Lago Futaualquen (3 est.)</td>
<td>0.18</td>
<td>0.11</td>
<td>5</td>
<td>15</td>
<td></td>
<td>Pizzolon et al. 1995</td>
</tr>
</tbody>
</table>

1 Promedios anuales de los últimos 2-5 años
2 valor de la mediana
3 N-(NO$_3$+NO$_2$ + NH$_4$)
4 Datos calculados a partir de Pedrozo et al. 1993

1995), suelos que ocupan ¾ partes de la cuenca del río Azul. La adsorción de fósforo implica procesos intercambio de ligandos, reemplazo de silicio estructural y precipitación de compuestos fosfatados, por lo que normalmente es irreversible (Sadzwavka y Carrasco 1985) y por lo tanto acumulativa. Por las propiedades expresadas los suelos alofánicos incluso anulan los efectos de la fertilización artificial.

La hipótesis H.2.2, de los efectos de las descargas de El Bolsón en el río Quemquemtreu, se verificó para NT y PT (Fig. 4.2.7). Notoriamente, los valores de PT
se recuperaron antes de su desembocadura en el Azul, pero los de NT lo hicieron en forma mucho más lenta. Los valores medios de NT y PT en E3, 7.4 y 0.78 μM, respectivamente, fueron los más elevados de toda la cuenca del Azul. Cabe comparar estas cifras con las más bajas de toda el área del lago Maggiore (Italia-Suiza), que fueron 14 y 0.05 μM, respectivamente (Mosello et al. 1995). Por lo tanto, considerando estas referencias, los valores de Meybeck para ríos no poluidos, no puede hablarse de polución ni en la estación supuestamente más poluida del sistema estudiado. Las cargas del Quemquemtreu incrementaron las del Azul inferior, especialmente para NT, aun sin que lo niveles detectados siguen siendo bajos. Meybeck (1984) señala modificaciones de hasta el 200 % para el N-inorgánico y el 300 % para el PRS, por efectos antrópicos en ríos poluidos, situación que ciertamente no es la presente.

Los datos presentados en la Tabla 5.2.1, especialmente el nitrógeno, permiten separar claramente los lagos y ríos de la vertiente occidental de los de la vertiente oriental de Los Andes. Los lagos y ríos chilenos presentan valores medios de nitrógeno tres veces mayores que los de Argentina. Para PRS y PT las diferencias fueron menores. Entre los ambientes de Argentina, la cuenca del Puelo (lago y ríos) se caracterizó por los valores excepcionalmente bajos de PRS, mientras que el lago Futalaufquen, por sus valores excepcionalmente bajos de nitratos (medias de 5 muestreos en primavera-verano). Los resultados de la cuenca del Limay y Manso son particularmente comparables con los de la cuenca del Puelo, por la similitud de técnicas empleadas y por la participación en los ejercicios de intercalibración Aquacon-Med-Bas, de la Unión Europea.

El registro semanal del flujo de nitrógeno a través del río Azul permitió distinguir un período (octubre y noviembre) en el cual la cuenca parece agotar totalmente sus reservas. Los valores más elevados se obtuvieron en invierno (Fig. 4.3.9). El caudal medio mensual de estos meses fue semejante al promedio histórico. Las contribuciones hídricas del Azul y del Quemquemtreu durante estos dos meses fueron muy variables (30 - 80 % de aguas de Ac). Este período es también el período de deshielo (máximo en noviembre) (Fig. 4.1.2) y de reactivación de la vegetación.

¿El agotamiento del nitrógeno en primavera es debido a la absorción por el perifiton y la vegetación acuática o es absorbido por la vegetación terrestre de la cuenca? Probablemente, la respuesta, sea que ambas comunidades contribuyen a la absorción. Las macrofitas son muy escasas en este sistema, que clasificamos como ritron, pero el
perifitón tiene un desarrollo notorio en el río Quemquemtreu aguas abajo de El Bolsón, y en el río Azul inferior (Fig. 5.2.1). Otra respuesta posible, es que el nitrógeno proveniente de las precipitaciones es muy escaso (Pedrozo et al. 1993; Chilrud et al. 1994), siendo por lo tanto absorbido en su mayor parte. De hecho, los datos de este autor evidenciaron más nitrógeno en el agua de las precipitaciones que en las aguas superficiales. En este trabajo se sustenta que el agotamiento del nitrógeno en dicho periodo es consecuencia de la pobreza de nitrógeno en las precipitaciones, de la consecuente escasos en los suelos de la cuenca y de su total absorción por la cubierta forestal y por el perifitón.

Lamentablemente no ha sido posible encontrar estudios sobre los periodos de crecimiento y de absorción de nutrientes en la vegetación del corredor andino-patagónico. Hay muy pocos trabajos de tipo fenológico (Veblen et al. 1996-a). Un trabajo de Rush (1993) indica que el periodo de crecimiento vegetativo para la lenga (Nothofagus pumilio) a 1100 m s.n.m. y a 41 ° S, en Argentina, se inicia en setiembre y se extiende hasta mayo, pero se acorta considerablemente a mayor altura. Mosello et al. (1992) en regiones alpinas de Europa, evidenciaron mediante balances semanales a nivel de cuenca, que el nitrógeno es utilizado por la vegetación, especialmente durante el periodo de crecimiento. Por la misma razón registraban en invierno las concentraciones mayores, hecho que también se verificó en la desembocadura del río Azul.

Los niveles de PRS durante el mismo lapso oscilaron entre 0.03 y 0.07 μM, valores similares a los del resto del año, sin que se evidenciara patrón alguno. Los cocientes N/P medio (o mediana) se aproximaron a 5, con una gran variabilidad a lo largo del periodo estudiado (Tab. 4.3.3). Considerando las medianas, el NOT fue el 73 % del NT y el POT el 75 % del PT. Es decir, el 75 % del N y del P del río Azul se encontraron en la fracción orgánica (disuelta y particulada), con una variabilidad del 150 % durante el estudio (Tab. 4.3.3). El hecho de encontrarse la mayor parte del P en forma orgánica ha sido reportado por diversos autores recopilados en Wetzel (1983, pág. 218), con valores similares a los de este trabajo. La relación entre ambas formas fósforo es importante como indicadora de la velocidad de su reciclado el medio (Margalef 1983, p. 637).

5.2.2. Relaciones entre caudal y concentración
Fig. 5.2.1. Perifitón en el río Azul inferior, aguas abajo de la desembocadura del río Quemquemtreu. Nótese también las colonias de *Nostoc* sp. Foto: L. Pizzolon. Agosto de 1992.
Los datos obtenidos dieron cierto sustento a la hipótesis H.2.1, “lavado de cuenca con las grandes tormentas de fines de verano-otoño”. Los tres registros de caudal superiores a 100 m3 s$^{-1}$, correspondieron a otoño del 95 y otoño del 96, respectivamente. El PT y, parcialmente, NT, confirmaron la hipótesis. En cambio PRS y DIN no mostraron respuesta significativa durante dichos eventos. Estos resultados se relacionan con en comportamiento distinto de las fracciones particuladas y disueltas, en relación con el caudal. Como la fracción disuelta fué en término medio el 25 % de la fracción total (ver 4.3.2), esta puede considerarse como fracción particulada. Aunque algunos autores no han encontrado buenas correlaciones entre nutrientes y caudal (Mosello y De Giuli 1982), para el caso especial de PT muchos han observado valores elevados del coeficiente de correlación (Wang & Evans 1970; Stevens & Smith 1978; Verhoff et a. 1980). Este hecho está ligado a la resuspensión de sedimentos acumulados durante las bajantes, al desprendimiento de perifitones por efectos mecánicos y al aporte de partículas del suelo durante las crecientes. Las partículas de arcilla, que sedimentan rápidamente en flujos bajos, tienen una gran capacidad de adsorción y transporte de P en forma particulada (Golberman 1973). En el caso del río Azul, se encontró correlación significativa entre las fracciones totales de PT y NT (0.54 y 0.34, respectivamente; modelos log-log), pero con coeficientes bajos comparados con los de las referencias arriba mencionadas. Por el contrario de estas, en el río Azul, no se observaron correlaciones significativas entre caudal vs PRS y DIN (Tab. 4.3.5). El nitrato es extremadamente móvil con respecto al dilavamiento (Steven y Smith 1978) y no se adsorbe a las partículas del suelo (Rinaldo et al. 1989). El nitrato de la escorrentía, durante los eventos de precipitaciones copiosas, proviene del horizonte A de los suelos, lo que da lugar a un comportamiento complejo en relación con el caudal superficial durante los eventos torrenciales (Rinaldo et al. 1989). Por esta razón es muy difícil relacionar los niveles de nitrato con parámetros ambientales (Meybeck 1982).

5.2.3. Cargas y coeficientes de exportación

Es importante comparar el flujo de nutrientes en la desembocadura del río Azul (Tab. 4.3.7) con las cargas estimadas a partir de coeficientes específicos tomados de la bibliografía (Tab. 5.2.2). Si las diferencias entre ambos supera el 50 % entonces se debe ser extremadamente cauto en el uso de dichos coeficientes (Vollenweider 1989), pero en caso contrario, significaría que pueden aplicarse aceptablemente para estimar las cargas
en otras cuencas de características similares. Considerando solamente los coeficientes de exportación específicos por habitante y por tipo de animal (Tab. 5.2.3) se obtienen estimaciones cargas de NT y PT 2.3 y 1.8 veces superiores, respectivamente. Esta diferencias serían más marcadas aún si se computan los aportes por precipitaciones y por la escorrentía de fuentes no puntuales (bosques, pastizales, cultivos, áreas denuidadas). Al respecto, Mosello et al. (1981) estimaron la contribución humana para la cuenca del lago Maggiore, indicando que el P proveniente de los suelos era poco significativo respecto del total. Por el contrario para el nitrógeno, los aportes de la cuenca resultaron el 15 % del total (Tab. 5.2.2). Existe una gran variabilidad entre los coeficientes publicados por diferentes autores (Verhoff et al. 1980). Se eligieron aquellos obtenidos en áreas semejantes a la cuenca del Puelo, v.g., evitando aquellos obtenidos en áreas con agricultura intensiva. Así y todo, los resultados obtenidos son suficientes para invalidar la aplicación en la región andino-patagónica de coeficientes de de carga estimados en países desarrollados (O.E.C.D.).

| Tab. 5.2.2 Comparación de coeficientes de exportación específicos |
|-----------------------------|------|-----|------|------|
| | NT | PT | DIN | PRS |
| **Habitantes** (kg hab\(^{-1}\) a\(^{-1}\)) | | | | |
| (1) | | | | |
| (2) | 3.31 | 0.8 | | 0.59 |
| (3) | 3.0-3.8 | 0 | | |
| (4) | 0.36-1.7 | | | |
| **Ganado** (kg cabeza\(^{-1}\) a\(^{-1}\)) |
Equinos (1)	3.84	0.59		
Bovinos (1)	3.51	0.46		
Ovinos (1)	0.46	0.08		

(1) Provini et al. 1978
(2) Mosello et al. 1981
(3) Jorgensen 1989, para cuenca ignea
(4) Verhoff et al. 1980

| Tabla 5.2.3 Estimación de cargas en la cuenca del río Azul mediante coeficientes de exportación específicos |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | Coeficientes (kg individ.\(^{-1}\) a\(^{-1}\)) | Cargas (t a\(^{-1}\)) |
| | NT | PT | DIN | PRS | NT | PT | DIN | PRS |
| Residents | 24500 | 3.0 | 0.8 | 0.59 | 73 | 20 | 14.5 |
| Touristas | 18000 | 3.0 | 0.8 | 0.59 | 54 | 14.4 | 10.6 |
| Bovinos | 4510 | 3.51 | 0.46 | | 15.8 | 2.1 | |
| Equinos | 547 | 3.84 | 0.59 | | 2.1 | 0.3 | |
| Ovinos | 9084 | 0.46 | 0.08 | | 4.2 | 0.7 | |
| **Total estimado** | | | | | 149 | 38 | 25 |
| **Total determ.** | | | | | 79 | 26 | 10 | 2 |

139
Tabla 5.2.4. Comparación de coeficientes de exportación areal de nutrientes (mg m² a⁻¹)

<table>
<thead>
<tr>
<th>Sito</th>
<th>PRS</th>
<th>DIN</th>
<th>PT</th>
<th>NT</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Azul</td>
<td>1.6</td>
<td>8</td>
<td>21</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Ríos templ. no poluidos</td>
<td>0.5-10</td>
<td>10-240</td>
<td></td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Afl. L. Merigozzo (It.)</td>
<td>2-32</td>
<td>300-1500</td>
<td>8-50</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>Afl. L. Maggiore (It.)</td>
<td>8-328</td>
<td>767-2400</td>
<td>22-500</td>
<td>1900-4600</td>
<td>(3)</td>
</tr>
<tr>
<td>Afl. L. Taupo (N.Z.)</td>
<td>189</td>
<td>1073</td>
<td>280</td>
<td>2220</td>
<td>(4)</td>
</tr>
<tr>
<td>Cuencas de EE.UU.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td>Urbanas</td>
<td></td>
<td>30-150</td>
<td>500-800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td>20-70</td>
<td>500-1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosques</td>
<td></td>
<td>10-20</td>
<td>250-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubbard Brook s/perturb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Río Paraná (Sup.)</td>
<td>20</td>
<td>142</td>
<td></td>
<td></td>
<td>(6)</td>
</tr>
<tr>
<td>Cuencas ígneas</td>
<td>0.7-9</td>
<td>130-300</td>
<td></td>
<td></td>
<td>(8)</td>
</tr>
</tbody>
</table>

El coeficiente de exportación areal de N-NO₃ del río Azul (8 kg N km⁻² a⁻¹) fue menor a cualquiera de los valores reportados para diversas partes del mundo (Meybeck 1982). El coeficiente de exportación areal de PRS (1.63 P kg km⁻² a⁻¹) se encontró entre los valores inferiores del rango reportado por Meybeck (0.35 - 10 kg P km⁻² a⁻¹), correspondientes a los ríos sub-árticos (Tab. 5.2.4). Likens y Bormann (1975) encontraron valores de 2 kg km⁻² a⁻¹ de PT en cuencas no perturbadas de Hubbard Brooks. Esta es la única referencia con resultados sensiblemente inferiores a los del río Azul; probablemente puede explicarse por la carga animal y humana existente en la cuenca (Tab. 3.7) y por el grado de deterioro debido a incendios y otros factores (remoción de ribera para obras de defensa, para construcción de caminos, etc.).

En síntesis, los coeficientes de exportación obtenidos en la cuenca del río Azul, al igual que los valores de concentración, se encontraron entre los más bajos de la bibliografía. Este resultado puede explicarse en primer lugar por el grado de desarrollo económico incipiente, con un porcentaje elevado de economías de subsistencia. Los valores bajos de fósforo pueden explicarse por la elevada capacidad de retención por los suelos alofánicos, ya mencionada. Respecto del nitrógeno, los valores bajos tienen explicación en su escasas general en la cuenca (ver 5.3.3 y 5.3.5), por lo que, aún el nitrógeno producido antrópicamente, en gran parte sería fijado en los suelos y por la vegetación.
5.2.4 El nitrógeno como principal nutriente limitante en la Cuenca

El discurso sobre los nutrientes limitantes se ha fundamentado en los ensayos de enriquecimiento y en las proporciones atómicas entre C:N:P encontrados en la biomasa del plancton y en las regresiones P(o N)-Chl a (o biomasa de fitoplancton). La razón atómica de Redfield (1958) 106C:16N:1P (= 42C:7N:1P en peso) fue la primera propuesta para el plancton oceánico. Vollenweider y Harris (1985) demostraron que la razón de Redfield se aplica más al plancton superior a los 75 μm y propusieron la razón 166C:20N:1P (fracción particulada) como más representativa para el fitoplancton de lagos mesotróficos (Harris 1986). Sin embargo, el valor medio de estas razones a lo largo de un año pueden variar considerablemente con el estado trófico del lago y con la tasa de crecimiento (Harris 1986; Sommer 1993). A tasas de crecimiento muy bajas se pueden encontrar relaciones N:P de hasta 50. Estas consideraciones muestran que los rangos de nutrientes de la bibliografía deben considerarse con mucha cautela (Véase también la discusión en 5.3.3). Forsberg et al. (1978) (en Fricker 1980), proporcionaron los límites de referencia de la Tab. 5.2.5.

| Tabla 5.2.5. Límites de referencia para estimar nutrientes limitantes en agua dulce |
|---------------------------------|---|---|---|
| TN/TP | DIN/PRS | Limitante |
| peso | moles | peso | moles | |
| 10 | 22 | 5 | 11 | N |
| 10-17 | 22-37 | 5-12 | | N y/6 P |
| 17 | 37.6 | 12 | 26.5 | P |

En el río Azul, los valores medios anuales (peso) de NT/PT y DIN/PRS fueron 4.5 y 5, respectivamente (Tab. 4.3.3). La primera relación sugiere una clara limitación por nitrógeno. La segunda, teniendo en cuenta que no se computó N-NH₄ en DIN, admitiría el caso de co-limitación. El cociente semanal DIN/PRS, n=42, (Fig.4.3.9) evidenció limitación por nitrógeno en octubre y noviembre; durante el verano y otoño predominaron valores inferiores a 10, que indicarían colimitación y en invierno se se habría verificado limitación por fósforo. En cambio, 43 datos de NT/PT sobre 49, indican limitación por nitrógeno.

En el sistema Azul-Quemquemtreu, el cociente medio anual NT/PT, se encontró en el rango de la N-limitación (~5). Solamente el arroyo Golondrinas –E6, se separó del resto, con un valor ~21, que indicaría P-limitación. La variación temporal del cociente fue muy grande en el río Azul, con datos de neta limitación por P en marzo y mayo (Fig.
Fig. 5.2.2. Telación TN/TP en peso en el siete estaciones de sistema Azul-Quemquemtreu durante seis muestreos bimensuales.

5.2.2). Con excepción del arroyo Golondrinas que mostró el máximo en julio, podemos generalizar una tendencia decreciente desde el verano (máximos) hacia la primavera (mínimos). Particularmente en las estaciones altas del Quemquemtreu, al igual que en el Azul se observó el agotamiento del NT en primavera. El análisis de las relaciones DIN/DIP y NT/PT en la desembocadura del Azul evidenció una estacionalidad muy marcada, con neta limitación por nitrógeno en primavera, extensible probablemente al verano, y probable limitación por fósforo en invierno (Fig. 5.2.3 a y b). Si se considera la relación TN/TP debiera aceptarse la limitación por nitrógeno durante todo el año.
Fig. 5.2.3 Valores medios estacionales de nutrientes (a) y de sus proporciones relativas en la desembocadura del río Azul (b). Valores de referencia de Forsberg et al. (1978) en (b) dados en peso: líneas: (DIN/PRR); flechas: (NT/PT).

5.2.5. El nitrógeno en la cuenca del Puelo

Tamm (1991) distingue entre ecosistemas terrestres N-limitados y ecosistemas N-agotados. Los primeros son aquellos cuya productividad primaria se incrementa si se fertilizan con nitrógeno y los segundos son aquellos que por una causa natural o antrópica han perdido gran parte de su reserva de nitrógeno. El fuego es una de las principales perturbaciones naturales, aceleradas por el hombre, que provocan la perdida de gran parte de la reserva de nitrógeno. El re-inicio de la sucesión se produce con especies fijadoras de nitrógeno, y por lo tanto la reserva de nitrógeno de cada mancha de vegetación depende de su edad. Aunque hay nitrógeno en el material parental de los
suelos, a los efectos prácticos, hay que considerar que el mismo está libre de nitrógeno (Tamm 1991, p. 48) y que todo el que encontramos proviene de la fijación, y una parte menor de las precipitaciones (Tamm 1991, citando a Likens y Borman). La vegetación arbórea ejerce un fuerte control sobre la lixiviación de nutrientes en la cuenca, y esto es particularmente cierto para el nitrato, que en muchos suelos no se adsorbe a los coloides (Tamm 1991; Traen y Stoddard 1995). En la cuenca del Pueblo los incendios han sido recurrentes y el uso silvopastoril de la cuenca está extendido (Somlo et al. 1995).

En los últimos años se ha fundamentado el concepto de saturación de nitrógeno. Estudios comparativos de cuencas, relacionados con el problema de la acidificación han evidenciado que a medida que aumenta el contenido de nitrógeno y azufre en las precipitaciones, aumenta el sulfato en la escorrentía, pero los nitratos continúan inalterados, al menos por cierto tiempo. Cuando la demanda forestal de nitrato y amonio se satisface, recién entonces comienzan a verificarse incrementos en la escorrentía (Traen y Stoddard 1995). Stoddard (1994) propuso que la lixiviación de nitrógeno hacia las aguas superficiales se produce en estadios, los cuales corresponden a estadios similares en los ecosistemas terrestres, descriptos por otros autores. Fundamentalmente se trata de una clasificación de las cuencas por las características de sus precipitaciones (Tab. 5.2.6). A tal efecto se ha propuesto diversos valores de nitrógeno en la precipitaciones como valor crítico de saturación, siendo 1 mg N m⁻² a⁻¹ el más aceptado.

Los datos presentados permiten concluir que la cuenca del Azul se encuadra en los extremos más bajos del Estadio 0 de saturación de nitrógeno, afirmación que es extensible a toda la cuenca del lago Pueblo. Las únicas mediciones de nutrientes en precipitaciones (Pedrozo et al. 1993; Chilrud et al. 1994) son coherentes con dicha clasificación.

<table>
<thead>
<tr>
<th>Estadio</th>
<th>Criterio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadio 0</td>
<td>> 3 meses (est. de crecimiento) con NO₃ < 3 μeq l⁻¹ y picos < 20 μeq l⁻¹</td>
</tr>
<tr>
<td>Estadio 1</td>
<td>1-2 meses en la est. de crecimiento con NO₃ < 3 μeq l⁻¹, O > 3 meses en la est. crecim. con NO₃ < 3 μeq l⁻¹ y picos > 20 μeq l⁻¹</td>
</tr>
<tr>
<td>Estadio 2</td>
<td>Ningún mes con NO₃ < 3 μeq l⁻¹ y > 3 meses en la est. de crecimiento con NO₃ < 50 μeq l⁻¹</td>
</tr>
<tr>
<td>Estadio 3</td>
<td>< 3 meses con NO₃ < 50 μeq l⁻¹</td>
</tr>
</tbody>
</table>

Tabla 5.2.6. Criterios para establecer los estadios de saturación de nitrógeno en sitios con muestras frecuentes (no inferior a mensuales) (Traen y Stoddard 1995)
5.2.6 ¿Puede considerarse la N-limitación como un patrón regional?

La pregunta es relevante en relación con el manejo ambiental y con el control de los procesos de eutrofización, que aunque puntuales, tienen lugar en diversos ambientes de Patagonia. Aparentemente en estadios prístinos, los lagos glaciales estarían limitados por nitrógeno y en estado de ultraoligotrofía, y con el avance de la frontera antrópica, irían pasando hacia la oligotrofia (y mesotrofia) (Soto y Campos 1995) y muchas veces hacia la limitación por fósforo.

Dos trabajos, en cambio, destacaron el fósforo como principal factor limitante. Quirós (1989), en un muestreo de verano, a 0.5 m de profundidad en lagos y embalses de Patagonia, encontró que la varianza de Chla explicada por PT era apenas superior a la explicada por NT. Estos resultados se obtuvieron con métodos amperométricos (electrodos iones-selectivos). El NT se calculó por suma del Norg método de Kjeldahl, determinado el amonio resultante con electrodo Orion 95-10. El nitrato (20 % del NT en promedio) se estimó con un electrodo Orion D7 93-07. Estimaciones posteriores con métodos espectrofotométricos han dado frecuentemente resultados discordantes. Estas discordancias pueden deberse a: errores analíticos; muestreos realizados en diferentes estaciones del año; cambios en la concentración de nutrientes a través del tiempo.
Díaz y Pedrozo (1996), con bioensayos de enriquecimiento realizados con la fracción de fitoplancton > 10 μ en 11 lagos ubicados entre 39 y 41°S, encontraron que el número de lagos limitados por N era solamente el 30% de ellos. Dicha metodología, obligatoria debido a la concentración extremadamente baja de fitoplancton en dichos lagos, tiene el inconveniente de excluir la fracción del mismo más activa metabólicamente (Ruggiu et al. 1979; Rai 1982). El fitoplancton de red no fue considerado entre las metodologías revisadas por Elser et al. (1990). Por este motivo, y por la gran diferencia de escalas entre los sistemas in vitro y el lago real, es muy difícil extrapolrar a las conclusiones de los primeros a los segundos (Schindler 1971). Por lo tanto no constituyen de por sí una prueba en contra de la hipótesis del nitrógeno como principal factor limitante.

En ambientes de cordillera, se ha evidenciado una fuerte N-limitación en primavera (L. Futa laufquen, L. Puelo, L. Epuyén), mientras que en ambientes del ecotono (lago Rosario, laguna Willimanco) se pasaría de una N-limitación en primavera a una P-limitación en verano otoño (Pizzolon et al. 1995; Pizzolon 1991, este trabajo; Pizzolon et al. 1992; Arias y Pizzolon, 1998). En síntesis, este análisis preliminar es suficiente para señalar que la información disponible no permite generalizar acerca de la limitación por nitrógeno en ambientes acuáticos de la Patagonia Argentina, tanto por su diversidad de metodologías y enfoques como por sus conclusiones. Se requieren ulteriores estudios durante ciclos anuales completos incluyendo los efectos de la biota.

Si la limitación por nitrógeno en ambientes acuáticos es un hecho cierto, debiera tener como correlato la escasez de nitrógeno en los suelos de la cuenca y la consecuente limitación del crecimiento de la vegetación terrestre. Algunos estudios dispersos permiten sostener este punto de vista. Bartsch y Rapp (1995), estudiaron la regeneración de lenga en sitios equivalentes a las cabeceras del río Quemquemtreu, a 1100 m s.n.m. y 900 mm de precipitación anual, en suelos derivados de cenizas volcánicas. El estudio abarcó solo dos meses en verano. Encontraron buena disponibilidad de nutrientes en el suelo (C, N, Ca, Mg y K), pero el análisis del contenido foliar indicaba escasez de nitrógeno. López Cepero y Lutz (1995) realizaron ensayos de fertilización (N,P,K) en un vivero ubicado a 400 km al norte del área de estudio, a 1200 m s.n.m., con 750 mm de precipitaciones anuales y suelos derivados de cenizas. El P era fijado en su mayor parte por los coloides amorfos del suelo. El tratamiento con nitrógeno produjo diferencias significativas en el crecimiento. En la zona semiárida, Mazzarino et al (1996) observaron
que la disponibilidad de nitrógeno en los suelos era inversa al porcentaje de cobertura por hierbas y arbustos. Mientras más reducida la canopia por efecto del pastoreo ovino, menor era la reserva de nitrógeno del suelo, tanto en forma iónica como en biomasa microbiana.

La N-limitación es una constante de los suelos áridos, sometidos a frecuentes factores de erosión (M. Bertiller, com. pers.), como así también de todo suelo en formación, pobre en materia orgánica y en nitrógeno. Recientes avances en el conocimiento de *Nothofagus* y de otras especies de la flora andino-patagónica (*Austrocedrus*) han evidenciado asombrosas adaptaciones anatómicas y fisiológicas que les permiten crecer en suelos denudados o colonizando la roca apenas descubierta por el retroceso glaciar, o creciendo sobre derrumbios. *N. pumilio* sobrevive a coladas de lava desarrollando un nuevo sistema de raíces laterales cercanas a la nueva superficie en las que se observan ectomicorrhizas (Veblen et al. 1996-a, p. 321). Armesto et al. (1992) han hipotetizado que la habilidad potencial de colonización de las diferentes especies de *Nothofagus* puede relacionarse con la tolerancia diferencial a los bajos contenidos de nitrógeno en los esqueléticos suelos glaciales. Estos avances así como también los estudios antes mencionados de Bartsch y Rapp (1995), López Cepero y Lutz (1995) y Mazzarino et al. (1996) permiten sustentar que la limitación del crecimiento vegetal es un rasgo regional de Patagonia, al menos en los ambientes prístinos, sean de meseta o de cordillera.
5.3 EL LAGO PUELO COMO AMBIENTE INTEGRADOR

5.3.1 Heterogeneidad espacial en la cuenca

El lago Puelo y sus tributarios principales presentan una disposición espacial particularmente apropiada para probar hipótesis como las propuestas (H3 y H4). En efecto, los ríos Turbio, Epuyén y Azul desembocan en el lago Puelo en extremos casi opuestos. Representan a su vez subcuencas con notorias diferencias naturales y antrópicas (Tab. 3.7). Las subcuencas del río Epuyén y Turbio han sido estudiadas con un esquema de monitoreo de menor intensidad que la del río Azul, por lo cual los resultados obtenidos sólo permiten una caracterización preliminar de las mismas.

La geología, orden lóctico y características hidrológicas de cada subcuenca son diferentes. La boca de los ríos brindan una perspectiva de las mismas (Fig. 5.3.1, a, b y c). La granulometría del material depositado indica el grado de torrencialidad del curso y la representación porcentual de los distintos tipos de rocas en el material arrastrado se relaciona con el porcentaje de cada una de ellas en la cuenca. El grado de torrencialidad es máxima para el Azul y mínimo para el Epuyén. La composición de los clastos del Azul es muy heterogénea: granitos, dioritas, andesitas, cuarzos, etc. El Turbio presenta un tamaño de canto rodado muy homogéneo, generalmente menor de 5 cm y además muy homogéneos desde el punto de vista litológico (granito gris). Se trata de una gran cuenca (730 km²) prácticamente monolitológica, compuesta por granitoides; con sólo unas pocas decenas de pobladores y sin vías de acceso terrestre. Es la subcuenca que más conserva las características primigenias; sufrí un incendio importante en 1994. El río Epuyén por su parte, presenta una gran lengua de limos y arenas que gana terreno hacia el Lago. Es es menos torrecial, probablemente debido a que El Hoyo es una zona deprimida (Cordón et al. 1993), de modo que el último tramo recto del río (El Hoyo-lago Puelo) tiene una pendiente muy escasa y sin la energía para arrastrar materiales mayores que arenas. La composición litológica de sus depósitos es desconocida, pero probablemente sea tan heterogénea como la del río Azul. No existen glaciares en su cuenca. Se conocen depósitos calcáreos de escasa relevancia areal, ubicados dentro del égido urbano de Epuyén. Esta cuenca es la más afectada por los incendios forestales del último decenio. Los resultados de los muestreos estacionales realizados no fueron suficientes para establecer claramente el patrón de aportes de nutrientes desde cada
Fig. 5.3.1.a. Arriba: Materiales depositados algunos kilómetros aguas arriba de la desembocadura del río Azul. Abajo: Materiales depositados en la desembocadura del río Turbio; al fondo se observa el cerro Plataforma. Foto: L. Pizzolon.
subcuenca, excepto la del Azul. Algunos resultados (abril) confirmarían la hipótesis de trabajo respecto del impacto cero en el río Turbio, "intermedio" en el Epuyén y "alto" en el Azul, mientras que otros (octubre/noviembre) ubican al río Epuyén en primer lugar.

5.3.2 Heterogeneidad horizontal en el lago Puelo

El gradiente de turbidez, es un hecho frecuente en los lagos elongados con alimentación de origen glaciar en uno de sus extremos (Maglione et al. 1973 y otros). En el caso del lago Puelo, alimentado desde tres extremos opuestos se verifica una situación intermedia. El río Turbio, que drena la subcuenca con mayor porcentaje de áreas glacializadas, aportando gran cantidad de sedimentos glaciares en el extremo sur del Lago. El río Azul, con menor porcentaje de áreas glacializadas, aporta también harina glacial. A lo largo del eje principal del Lago se va produciendo la decantación diferencial del material aportado principalmente por el Turbio. Los aportes del Azul, con menor porcentaje de áreas glacializadas, pueden crear un gradiente opuesto al anterior, desde PI (Fig. 4.4.2). Se trata de un lago con transparencia considerablemente menor que la del L. Futalaufquen (Pizzolon et al. 1995), debido a que está controlada por la proximidad de glaciares, sin ningún otro cuerpo lacustre intermedio (Pizzolon et al. 1994; Pizzolon & Arias 1997). La composición iónica resultó muy homogénea en relación con los aportes de los respectivos afluentes (Fig. 4.4.3), hecho que resalta la capacidad de mezcla del lago.

Los datos de nutrientes, posibilitan afirmar que existe cierta inducción de heterogeneidad espacial en el Lago como consecuencia de los aportes de sus tres ríos principales. Este hecho se hizo evidente durante el periodos de crecida de los ríos (diciembre). En otros momentos (abril, agosto) predominaron los procesos de mezcla, encontrándose una gran homogeneidad horizontal. Estas diferencias espaciales se deben a las características geoquímicas e hidrológicas de las subcuenças drenadas por los ríos Azul, Epuyén y Turbio. La intensidad de los vientos y los periodos de bajo aporte hídrico explican los procesos de homogeneización. Las características morfométricas contribuyen también, retardando la mezcla en PII. Por el contrario, los vientos dominantes del este tienden a homogeneizar PIII, PZ y PII. Sólo el brazo Epuyén podría señalarse como un subambiente diferente en ciertas situaciones.
5.3.3 Nutrientes limitantes en el lago Puelo

Las concentraciones de nitrógeno y fósforo del lago Puelo fueron semejantes a las del río Azul, si consideramos sólo las de los estratos fóticos (DIN ~3 μg l⁻¹) (Fig. 4.4.6). Desde los 50 metros hacia el fondo los valores de DIN resultaron sensiblemente mayores (media ~ 18 μg l⁻¹). Este patrón clinógrado negativo (Fig. 4.4.5) sugiere el consumo del nitrógeno inorgánico en el epilimnion. Perfiles similares se obtuvieron en el Lago Futalauquen (Pizzolon et al. 1994). En los principales afluientes, el PRS no mostró diferencias significativas en abril; sí, en cambio, el nitrógeno inorgánico. La razón DIN/PRS promedio a 0.5 m de profundidad en la estación central del lago fue 0.7 (en peso); 46 a 50 m, 170 a 100 m y 120 a 160 m. Estos valores, considerando los límites dados por Forsberg et al. (1978), muestran que en las aguas superficiales y hasta cierta profundidad hay una clara limitación de la productividad por nitrógeno. En cuanto a las estaciones I, II y III, llama la atención el valor de nitrógeno de I (abril/94), que duplica el de II y III. Las muestras integradas en el estrato fótico en PI, PII y PIII tuvieron relaciones DIN/PRS < 3, excepto en el mes de setiembre, en el que dicha relación, > 150 en los tres sitios, sugiere fuertemente P-limitación.

Los perfiles heterógrados de DIN en el lago Puelo (n=4) evidenciaron un patrón de agotamiento en los estratos fóticos, excepto en invierno (Fig. 4.4.5). Sin embargo considerando las concentraciones medias en toda la columna (Tab. 4.4.2), la relación DIN/PRS fue 65 (P-limitación). La relación media DIN/PRS en la zona fótica de los extremos del Lago (n=4) fue 8.2, o 10, si corregimos por la falta de datos de amonio, valor que se encuentra en el rango de co-limitación. Entre los afluientes (n=6) sólo el Turbio evidenció un valor bajo de DIN/PRS (2.3). Para el caso del Azul y del Epuyén la relación fue 5.7 y 5, respectivamente, valores que indicarían N-limitación o, co-limitación. Pizzolon et al. (1995) encontraron perfiles de DIN heterógrados también el el lago Futalauquen, donde la correlación con la biomasa del fitoplancton destacó el papel del nitrógeno como limitante.

En síntesis, tanto en la desembocadura del Azul (n=49), como en 7 estaciones del sistema Azul-Quemquemtreu (n=42), como en el lago Puelo (n=24), indicaron concentraciones muy bajas o indetectables de nitrógeno y que este elemento era potencialmente limitante, especialmente durante los meses de primavera. En el sistema Azul-Quemquemtreu, solamente el arroyo Golondrinas escapa a esta aseveración. El lago Puelo, por otro lado, pareciera retener una reserva de DIN importante por debajo
de los 50 metros. Sin embargo estos resultados se basan solo en cuatro muestreos, por lo que deben tomarse con cautela.

Es importante tener presente las objeciones al uso del concepto de nutrientes limitantes formuladas por Harris y otros. El concepto de nutriente limitante ha sido uno de los conceptos más frecuentemente usados en ecología, pero en forma muy acrítica (Harris 1986, p. 137; Sommer 1993). Se basa en la ley del mínimo de Liebig y puede representarse con diversas expresiones matemáticas que tienen en común mostrar la producción como función asintótica de la concentración de un nutriente del medio (Margalef 1983, p.452). Uno de los errores más frecuentes es relacionar directamente concentración de nutrientes y tasa de crecimiento algal, mientras que lo que realmente se necesita conocer es el contenido total del nutrientes en el sistema y su tasa de recambio en el mismo. El fósforo puede reciclarse 20 veces más rápido que el nitrógeno. El dato de concentración no es de por si una prueba de si un nutriente es limitante o no (Harris 1986, p. 137; Sommer 1993; Margalef 1997). Las poblaciones han evolucionado en relación a la disponibilidad de diversos elementos químicos y la interacción entre organismo-entorno da por resultado la composición media actual de las aguas. Algunos elementos parecen limitantes en situaciones definidas y para determinados grupos de organismos (Margalef 1993, p. 115). Esto es lo que revelan los cultivos en batch, pero de aquí a los ecosistemas reales la distancia es muy grande. En estos raramente se llega a un agotamiento; la respuesta de la comunidad es mucho más compleja que la de una población in vitro. El enriquecimiento afecta a toda la cadena trófica y lo que los modelos de la OECD han ignorado frecuentemente han sido las relaciones empíricas P-heterótrofos y sus implicancias para las relaciones P-clorofila (Sommer 1997). Las pocas situaciones en que se podría hablar de detención del crecimiento por agotamiento severo de un nutriente son aquellas en que se produce una floración con dominancia de una sola especie. El concepto de nutriente limitante deriva de una concepción de los ecosistemas como sistemas en equilibrio. Pero estos, y el fitoplancton incluido, evolucionan en una dinámica del no-equilibrio (Harris 1986). El concepto de nutriente limitante probablemente sea solo una ilusión, aunque tal vez útil en la práctica del manejo de ecosistemas (Margalef 1993). Puede concluirse en fin, que la evidencia más sólida de la limitación por nitrógeno no son tanto las porciones N:P, sino los perfiles verticales que muestran el agotamiento del nitrógeno en los estratos fóticos. Estos perfiles, son indicativos del cese de la floración primaveril del fitoplancton, tal como se encontró en el
los datos requeridos, SD, Chla y TP, u otros similares, pero que requieren de un mayor número de variables.

Los límites dados por Vollenweider (1968), Fricker (1980) no discriminan entre oligotrofia y ultra-oligotrofia, detalle que indica que en las áreas más desarrolladas el problema crítico era más bien el pasaje de la oligotrofia a la mesotrofia y de este a la eutrofia. Vollenweider y Kerekes (1981) distinguieron oligotrofia de ultra-oligotrofia en base a la concentración media anual de PT, para incluir los lagos de áreas prístinas de Canadá. De acuerdo al modelo probabilístico propuesto por estos autores (Fig. 5.3.1) y a

Fig. 5.3.1 Condiciones tróficas del lago Puelo (en PZ y en PI) expresadas en términos probabilísticos (5 categorías tróficas) para la concentración media anual de PT, según el diagrama de Vollenweider Kerekes (1981),

![Diagrama de distribución trófica](image)

los datos obtenidos en 1994, el lago Puelo se clasifica en la categoría de los ultraoligotróficos y el extremo norte del lago (PI) tiene una categoría intermedia entre oligotrófico y ultraoligotrófico. El TSI (trophic state index, Carlson) del lago Puelo dio valores de 25 para la clorofila y el disco de Secchi y 4 para PT, en una escala que va de 0 para la oligotrofia hasta 100 para la eutrofia. Cabe señalar que se basa en muy pocos valores de clorofila, y por lo tanto la media anual no estaría bien representada. Por otra parte como se vió, el disco de Secchi está influenciado por los sedimentos glaciares en
suspensión, por lo que ambos valores parecen estar sobreestimados. El valor de TSI=4 en base a PT, representa mejor el estado trófico de este Lago. Si consideramos la media de TP encontrada en PI (la estación de influencia del río Azul), entonces se tiene un TSI = 9, que es el valor mayor encontrado en el lago para PT.

La concentración media anual de DIN, PRS, NT y PT (Tab. 4.4.2), la categoría intermedia entre ultraoligotrófico y oligotrófico, y el TSI de 9 obtenidos en PI, no obstante lo reducido de la base de datos, evidenciaron la influencia incipiente de la subcuenca más antropizada (río Azul), por comparación con los valores de la estación central (PZ). No obstante el tiempo de residencia del agua relativamente breve (Tw = 1 año) y la ubicación relativamente favorable en relación al emisario, los nutrientes y los ensayos preliminares con perifitón, sustentan la hipótesis de la heterogeneidad trófica (H3.1).

Quirós et al. (1986) encontraron valores de 2.5 μg l⁻¹ PT, 0.23 μg l⁻¹ Chl equivalente y 7 m DS, en un muestreo único de fines de verano. Estos datos están en el rango de los determinados durante el presente estudio y por sí sólo no justifican inferir cambio trófico alguno en el último decenio. Lamentablemente se extraviaron durante el envío para su determinación y recuento todas las muestras de fitoplancton. Con ello se pierde la posibilidad de comparaciones con datos previos. Ferrario (1975) describió con un objetivo taxonómico 175 especies de diatomeas, la mayor parte planctónicas. En la década siguiente, Izaguirre et al (1990) encontraron en el lago Puelo la menor densidad total de fitoplancton estival (> 25 μm) entre 20 lagos patagónicos, y el análisis de agrupamiento lo ubicó junto al lago Menéndez, uno de los más ultraoligotróficos de la cuenca del Futaleufú (Pizzolon et al. 1991).
5.4 CALIDAD DEL AGUA EN LA CUENCA DEL PUELO

El término “calidad del agua” define un conjunto de atributos subjetivos relacionados con (1) la modificación de la composición química del agua natural (2) la relevancia de la composición química con respecto a los usos humanos (Meybeck 1996). Como resultado de la presión nacional e internacional la vigilancia de los ríos es una tarea en constante crecimiento, habiéndose definido ya en el presente más de 100 descriptores de calidad del agua. Obviamente, la selección de tales descriptores deberá hacerse de acuerdo a las características de cada ambiente y de su entorno socio-económico. Los indicadores bacteriológicos se encuentran entre los primeros y más ampliamente utilizados.

5.4.1 Bacteriología sanitaria en el sistema Azul-Quemquemtreu

Las variables bacteriológicas (Tab. 4.2.1) presentaron valores medios que no superaron los de la normativa provincial y nacional para aguas de uso múltiple, incluso aquellos obtenidos en la estación E3, inmediatamente aguas abajo de la ciudad de El Bolsón. Sin embargo se produjeron picos en cualquiera de las estaciones, sin que ello permita definir un patrón determinado.

Los valores de coliformes de los ríos Azul y Quemquemtreu no superaron los máximos aceptables (100 bact. ml⁻¹) ni los tolerables (500 bact. ml⁻¹) definidos en la Ley 1503, de Protección de las Aguas y de la Atmósfera de la Provincia de Chubut, para usos en abastecimiento de agua potable sujeto a potabilización, recreativo y balneario, navegación deportiva y pesca, y para la vida acuática en general. Solamente las estaciones E3 y E4 presentan medianas de CT que superaron el máximo aceptable. El muestreo de marzo sobrepasó los límites aceptables y tolerables en la mayor parte de las estaciones estaciones. En comparación con otros estudios en ambientes patagónicos las concentraciones también resultaron bajas (Tab. 5.4.1).

| Tabla 5.4.1. Bacteriología sanitaria en algunos arroyos y ríos patagónicos. |
|--------------------------|---|---|---|---|----------------------------------|
| **N°** | **Cholila. A°. Las Minas** | **Esquel. A°. Esquel** | **Neuquén. R. Neuquén** | **Playa Nireco, L. N. Huapi** | **El Bolsón. R. Quemq.** |
| **ufc/100 ml** | --- | 980x10⁴ | 3200 | 600 |
| **CF** | 1670 | 10⁴ | 550 | 70 |
| **CT** | 6200 | 11x10⁴ | 1100 | 370 |
| **IAC** | 4520 | --- | --- | 160 |

(1) media geométrica de los meses de mayor uso (febrero - marzo)
El análisis de agrupamiento entre variables en el sistema Azul-Quemquemtreu (Fig. 4.2.9) mostró que las variables bacteriológicas, están vinculadas principalmente a la temperatura. Sólo CF e IAC presentaron cierta correlación con NT, mientras que ninguna tuvo correlación significativa con PT. Todas correlacionaron positivamente con Temp. y K (Tab. 5.4.2). Al igual que en el estudio realizado en el sistema Esquel-Percy (Pizzolon et al. 1992), en el sistema Azul-Quemquemtreu, CF correlacionó significativamente con pH y TA.

Tabla 5.4.2. Coeficientes de correlación por rangos de Spearman entre las variables bacteriológicas y físicas y químicas en el sistema Azul-Quemquemtreu. Se incluyeron solamente los más significativos.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Temp. pH</th>
<th>K</th>
<th>NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAM</td>
<td>.39</td>
<td>.34</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>.40</td>
<td>.31</td>
<td>.31</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>.34</td>
<td>.31</td>
<td>.49</td>
<td>.28</td>
</tr>
<tr>
<td>IAC</td>
<td>.38</td>
<td></td>
<td>.27</td>
<td></td>
</tr>
</tbody>
</table>

La falta de correlación con los nutrientes, indicarían que ambos, nutrientes y bacterias, provienen de fuentes diferentes y entran al sistema de modo independiente y no por un mismo vertido cloacal, como ocurre en el Aº. Esquel (Pizzolon et al. 1992) o en el Aº. Las Minas (Pizzolon et al. 1996). Los máximos y mínimos respectivos no tuvieron lugar en los mismos sitios; es decir, que en este sistema no se diferenció un patrón de contaminación tan claro como en el Aº. Esquel; v.g. CT es prácticamente igual en todo el curso del río Quemquemtreu. Los resultados obtenidos son coherentes con el entorno natural y urbano del área de estudio. El río Quemquemtreu posee un caudal superior en un orden de magnitud al del Aº. Esquel; El Bolsón posee una planta de tratamiento de líquidos cloacales, con un porcentaje de la población conectada muy inferior al de la ciudad de Esquel (20% vs. >80%, respectivamente); los efluentes cloacales tratados se infiltran en campos vecinos y no llegan al curso del río, mientras que en el Aº. Esquel hay un aporte puntual de efluentes crudos en el sitio de desembocadura de la cloaca mayor.
La mayor parte del poblamiento urbano de El Bolsón y toda la zona rural utilizan letrinas.

Si bien es difícil establecer un patrón confiable de contaminación bacteriana con muestras bimensuales, pueden extraerse algunas conclusiones provisionales:

1. Considerando las medianas, la mayor carga de BAM y CT bacteriana se encuentra en E4, y las de CF e IAC en E3. Se había hipotetizado el tramo E3-E4 como tramo de autodepuración. Pero también puede considerarse como un tramo de impacto por su poblamiento en constante crecimiento. Es decir los resultados no confirman totalmente la hipótesis H2.2. El valor extremo de BAM, se encontró en E6, probablemente como producto de excreción de las macrofitas.

2. El análisis temporal respalda la hipótesis del incremento de la polución como consecuencia de las presencias transitorias (turismo). De hecho, los máximos (muy superiores a los valores del resto del año) se verificaron en marzo, es decir sobre el final de la temporada turística.

3. La entrada de la carga bacteriana a los cursos de agua se producen principalmente desde fuentes no puntuales. Por aportes difusos desde letrinas, a través de los acuíferos; por escorrentía superficial y lavado de suelos durante lluvias torrenciales; por lavado de heces de animales depositadas en las riberas.

La ausencia de una descarga puntual de efluentes no tratados plantea el problema de la llegada al río la carga bacteriana. Se acepta sin discusión que las coliformes se reproducen solamente en el tracto digestivo de animales superiores (Branco 1984), por lo que el modelado de la concentración de coliformes en ríos sólo tiene en cuenta un factor de dilución/dispersión y un factor de decaimiento o mortalidad de la población. Las curvas de decaimiento están en relación con temperatura y con la insolación (Wilkinson et al. 1993). Estos autores han revisado los antecedentes sobre la dinámica de las coliformes en arroyos y ríos. El número de coliformes durante eventos de crecientes está ligado a la resuspensión de sedimentos y a la inundación de niveles sucesivos de la franja litoral. La fuente de microorganismos es finita, agotándose en sucesivos eventos.

La relación con los sedimentos ha sido largamente ignorada, pero es evidente que hay un proceso de acumulación de bacterias en períodos de bajo flujo y viceversa. Los grandes máximos bacterianos encontrados en el sistema Azul-Quemquemtreu al final del periodo estival podrían explicarse por esta acumulación, tanto en el lecho del río como en los suelos de la cuenca. En este sentido las variables bacteriológicas debieran haber
correlacionado bien con PT, cuyo flujo también está ligado a los sedimentos. En este estudio solo se obtuvo una correlación significativa con NT.

Cómo entran las bacterias al río en un sistema donde no hay una descarga puntual es una pregunta relevante para el caso del Quemquemtreu. La relación entre el vertido de efluentes y la concentración en el río no es directa, precisamente por la existencia de reservorios, en especial los relacionados con las partículas de detritus. Los reservorios terrestres pueden ser muy importantes en ambientes con abundante ganadería extensiva. Téngase presente que los animales merodean muchas veces en las cercanías de los cursos de agua, sea para abrevar o para encontrar pasturas tiernas, por lo que no es infrecuente encontrar áreas de pisoteo llenas de estiércol. El camping libre que tiene lugar en la región, puede constituir también un reservorio importante de coliformes en los meses estivales.

La influencia de las aguas subterráneas no puede desestimarse porque forman parte de un mismo sistema de flujo, solo que lo hacen a diferente velocidad. Ward (1989, 1992) ha enfatizado la multidimensionalidad de los ríos y entre ellos la dimensión vertical, es decir las interconexiones con el acuífero. La interconexión entre letrinas, acuífero, y flujo superficial (o bombeo de agua) no es descartable como lo demuestran los casos de hepatitis verificados con cierta frecuencia (Pizzolon 1995).

En síntesis todos estos factores explican las grandes oscilaciones de los datos bacteriológicos respecto de las variables físicas y químicas. Su distribución y frecuencia estaría más ligada a la dinámica del material particulado llevado por los ríos, que en este trabajo ha sido considerada en forma indirecta. El análisis de estreptococos fecales en el futuro, permitiría discriminar los aportes bacterianos humanos de los aportes animales (Davis et al. 1995).

5.4.2 Otros indicadores de calidad del agua

Ninguno de los valores del espectro iónico, pH, conductividad o nutrientes presentó aspectos observables desde el punto de vista de la calidad del agua para uso humano y para la vida acuática, según los límites de Baudo et al. (1978). El contenido de sales se incrementó en 1/3 entre E2 y E3 por efectos del centro urbano, pero sin alcanzar valores de riesgo, y volviendo en E4 a los valores de E1.

La comunidad de macroinvertebrados bentónicos, estudiada con el mismo esquema de monitoreo empleado en el sistema Azul-Quemquemtreu, proporcionó
resultados que complementan los descriptos. La estación con mayor riqueza específica fue E1. La menor riqueza específica se observó en el Azul, no vinculada a problemas de calidad de aguas, sino a la torrencialidad de este curso y a la consecuente inestabilidad del sustrato (Miserendino 1997a). El índice biótico de calidad de aguas IAP (Miserendino y Pizzolon 1992; Pizzolon et al. 1992) dio valores de 10 en E1 y valores muy cercanos a 10 en todas las estaciones del Quemquemtreu. En el río Azul fueron algo inferiores (>8), pero como se acaba de mencionar, no relacionables con problemas de calidad del agua notorios (Pizzolon et al. 1997). Dichos valores están lejos de indicar perturbaciones graves como las observadas en el sistema Esquel-Percy (Pizzolon et al. 1992). En síntesis, tampoco la comunidad de macroinvertebrados revela, en un primer análisis, perturbaciones importantes. Las densidades máximas se ubicaron en E2 y E3 (Miserendino 1997), hecho que estaría indicando alguna forma de enriquecimiento orgánico, no obligatoriamente relacionado con impactos antrópicos. Desde E3 hasta su desembocadura el curso del Quemquemtreu está cubierto por salicáceas, que aportan abundante material en otoño.
5.5. PERSPECTIVAS

Los balances de masa bien fundamentados teóricamente pueden producir modelos biogequímicos unificados de considerable valor explicativo y predictivo en problemas relacionados con las precipitaciones ácidas, tasas de regeneración del bosque, manejo territorial y de ecosistemas, e historia geoquímica y geomórfica de la superficie terrestre (Velbel 1985). Los resultados discutidos en ese trabajo presentan en perspectiva la posibilidad de su utilización en el manejo integrado de cuencas forestadas de Patagonia, al mismo tiempo que plantean la necesidad de ulteriores estudios. La posible utilización de los mismos con fines de gestión territorial y manejo integrado de cuencas forestadas, no debe olvidar en ningún momento que se basan en sólo un año de muestreo. Los balances de nutrientes reflejan un conjunto de fenómenos que presentan una gran variabilidad interanual (Likens 1992). “Solamente estudios ecológicos a largo plazo proveerán datos biogequímicos confiables para el planeamiento paisajístico” (Likens & Bormann 1975). Aplicar a la gestión territorial las conclusiones de los primeros años de un estudio de ciclos biogequímicos puede producir resultados bastante equivocados si no ecológicamente dañinos (Likens y Borman 1975). La experiencia de Hubbard Brooks demostró que se requieren cinco años de monitoreo para que las líneas de tendencia alcancen un nivel de probabilidad < 0.05 (Likens 1992). Se discuten brevemente las principales tipos de perturbaciones que pueden inducir variaciones interanuales. Algunas son producidas por factores de cambio global, cuyos efectos abarcan la totalidad del planeta y otras, son de origen local o regional.

Cargas químicas en relación con la variabilidad climática interanual

El hidrograma del año de estudio presentó notorias diferencias con el hidrograma mensual histórico (Fig.. 4.1.2). Es este un motivo importante por el cual los datos obtenidos no pueden tomarse como una característica constante de la cuenca.

El calentamiento anómalo de las masas oceánicas y la atmósfera en el Pacífico sud-tropical (ENSO) es una fuente de perturbaciones climáticas e hidrológicas también en la región andino-patagónica (Moyano y Dente 1997). Estas se suman a los efectos del calentamiento global, que altera la precipitación y la evapo-transpiración a escala regional (Moyano y Seoane 1997). Oscilaciones interanuales en las precipitaciones tienen su correlato en las tasas de meteorización; en los periodos más húmedos aumenta la meteorización de los silicatos como se ha evidenciado recientemente (Quade et al.)
1997). Es posible también que los aportes de nutrientes e iones principales, estén en dependencia del porcentaje de precipitaciones provenientes del Pacífico del Atlántico.

En los años recientes se ha incrementado el número de evidencias acerca de la influencia de la temperatura ambiente sobre el pH, independientemente de los problemas de emisión de gases contaminantes a la atmósfera. Koinig et al. (1996) y Sommaruga-Wograth et al. (1997) evidenciaron que el aumento de temperatura de 1 °C entre 1985 y 1995 provocó un incremento de la acidez en lagos de altura en los Alpes. Corroboraron este hecho mediante el análisis de sedimentos y registros térmicos de los últimos 200 años. El calentamiento actuaría disminuyendo el período de cobertura por nieve, incrementando la actividad biológica y por consiguiente, los procesos de meteorización. A períodos más cálidos incremento del pH y viceversa.

Incendios forestales

Otra fuente de perturbación han sido y continuan siendo los incendios forestales intencionales. Una somera revisión de los antecedentes en esta cuenca muestra que la colonización desde principios de siglo fué especialmente agresiva respecto de la cobertura forestal. Steffen (1909) señalaba los extensos incendios en los primeros años del siglo y B. Willis (1914) describía pocos años después el resultado de los mismos:

"Han sido destruidas las selvas de ambos lados de El Bolsón y por todo el Valle Nuevo (Río Azul). Desparramados aquí y allá quedan unos cuanto cipreses en las laderas del Piltriquitrón. Donde quiera que hay bastante suelo una densa vegetación de arbustos ha reemplazado la antigua selva. La selva fué incendiada con el objeto de crear terrenos de pastoreo, y su destrucción fué sucedida por el acostrumbrado acrecentamiento de abustos y yerbas de que se alimentan los vacunos. En las inmediaciones de El Bolsón se han aprovechado los pastos con exceso y las laderas de las montañas se hallan gravemente desvastadas ... toda la selva inferior (del río Azul) hasta el valle ha sido incendiada y los lados de las montañas se encuentran recubiertos de arbustos" (B. Willis 1914).

Los incendios que se extinguen por lluvias intensas dan lugar a una pérdida importante de cationes y nutrientes del suelo, además de los perdidos en formas de ceniza, humo y gases. Los incendios producen parches de diferentes estadios sucesionales en las cuencas forestadas. En la cuenca del Puelo, la cantidad de parches en estadios relativamente tempranos es mayor que la esperable en condiciones naturales.
Uso del suelo y procesos de eutrofización

Soto y Campos (1995) sugieren que el estado trófico original de los lagos patagónicos de Chile era la ultraoligotrofia. Pero las prácticas de deforestación, la introducción de la agricultura y de la ganadería, ya desde la colonización alemana en el siglo pasado, introdujeron cambios importantes en las cuencas, que se tradujeron como pérdida de la capacidad de retención de nutrientes. En las últimas décadas se agregaron el uso de fertilizantes, la acuicultura, el incremento demográfico y el turismo. Los autores mencionados hacen particular referencia a la degradación de la vegetación de la ribera de los lagos, por su capacidad de retención de nutrientes. Por todo ello los lagos araucanos corren el riesgo de pérdida de su estado de oligotrofia. De hecho se mencionan diversos síntomas (floraciones de cianobacterias en bahías y presencia bastante común de algunas especies de microalgas indicadores de mesotrofia y aún de eutrofia en algunos de ellos (Campos 1984; Soto y Campos 1995).

No es posible encontrar una contraparte de lo que ocurre en las cuencas lacustres chilenas en los grandes lagos de origen glaciar de la vertiente oriental de Los Andes. El patrón de uso de la tierra es notoriamente diferente y, un aspecto que requeriría de un ulterior estudio, es la pendiente media de las cuencas lacustres. Los lagos argentinos se encuentran enclavados en profundos valles glaci-fluviales, con laderas abruptas, poco aptas para su colonización; en gran parte de su perímetro no existen playas. El paisaje de los grandes lagos chilenos es mucho más suave, con grandes extensiones favorables para la agricultura y la ganadería. Un segundo factor, es que la mayor parte del área de los lagos argentinos se encuentra bajo jurisdicción de la Administración de Parques Nacionales (Parques Lanín, Nahuel Huapi, Lago Puelo y Los Alerces). Esta dependencia, desde su creación en 1940, ha puesto barreras en muchos casos eficaces al deterioro de las cuencas. La ganadería extensiva se limitó al área periférica de cada Parque (Veblen 1996).

Introducción de especies exóticas

La creciente pinificación en el área de los bosques nativos, no deja de tener consecuencias para los ambientes acuáticos. El reemplazo de las especies nativas por diversas especies de coníferas incrementa el flujo de taninos hacia las cubetas lacustres, con notorios cambios en sus propiedades ópticas y trama trófica (Soto y Campos 1995)
Estudios ulteriores

Veblen et al. (1996-b), en su reciente revisión sobre Nothofagus, concluyen que el desconocimiento sobre sus ciclos biogeoquímicos en Argentina y Chile es casi total. La interpretación del agotamiento del nitrógeno solo será posible con estudios en los que se establezcan los periodos anuales de crecimiento y de absorción de nutrientes de los rodados más característicos del bosque andino-patagónico (Nothofagus pumilio, N. dombeyii, N. antarctica, Austrocedrus chilensis). Tales estudios deberán llevarse a cabo en pequeñas cuencas (1 - 10 km²) cuya estructura geológica, edafológica y vegetal pueda conocerse y cuatificarse con precisión. La concentración de esfuerzos en una misma cuenca pueden producir resultados mucho más importantes para el conocer el funcionamiento de los ecosistemas andino-patagónicos, que los mismos esfuerzos dispersos en sitios diferentes.

Desde el punto de vista conceptual, es importante verificar el papel de las cenizas volcánicas como material parental de los procesos de meteorización en relación al de las rocas basales, aspecto no dilucidado al presente, excepto por un primer aporte de Pedrozo & Chilrud (1998) publicado estando este trabajo en impresión. La importancia relativa de las precipitaciones y de la temperatura sobre la intensidad de los procesos de meteorización, mediados por cambios de pH, también requiere de ulteriores estudios.

El comportamiento particular de las fracciones totales de nitrogeno y fósforo, en particular durante los eventos de crecientes, evidenció la importancia del material particulado. Debe incluirse en futuros estudios la determinación del total de sólidos en suspensión, variable que ha cobrado suma importancia en el diagnostico del grado de impacto antrópico en una cuenca (Walling & Webb 1992; Meybeck 1996).
6. CONCLUSIONES

Considerando los objetivos y las hipótesis de trabajos propuestas en 1.3 y 1.4, los resultados discutidos permiten concluir que:

Dinámica de los iones principales

- El espectro iónico de las aguas de la cuenca del Puelo fué de tipo bicarbonato cálcico, sub-tipo sulfato magnésico o sodico, con una conductividad media entre 28 y 129 μS cm⁻¹. La concentración media de sales disueltas en el río Azul fué ~1000 μeq l⁻¹, los máximos se obtuvieron en invierno y los mínimos en primavera, observándose un efecto de dilución en relación con el caudal. Se acepta H1.2.

- El río Epuyén, la subcuenca más oriental, mostró la mayor conductividad, seguida por el río Azul y en tercer lugar, por el río Turbio, la más occidental. Los ríos Azul y Quemquemtreu tuvieron una representación porcentual de los distintos iones muy similar, pero la conductividad del segundo duplicó a la del primero. Estos resultados confirmaron que el concepto de gradiente Este-Oeste para Patagonia, es correcto aún en distancias reducidas.

- El análisis factorial evidenció que K₂O, TA, Ca, Mg, Na y SiR correlacionaron altamente con el factor I, relacionado principalmente con la meteorización de silicatos. La sumatoria de cationes, la correlación entre sílice y sumatoria de cationes y otras relaciones iónicas, indicaron que la meteorización de los silicatos es la principal fuente de las sales disueltas en la cuenca del río Azul (H1). Sin embargo, la dominancia de calcio entre los cationes (> 80.0% en equivalentes) es propia más bien de la meteorización de rocas carbonácticas. Se discuten diversos mecanismos explicativos de este hecho, v.g. el efecto de la presencia de un pequeño porcentaje de rocas calcáreas, la meteorización preferencial de las plagioclasas cálcicas y la formación incongruente de minerales secundarios con sustracción selectiva de algunos iones.

- La temperatura del aire y el caudal fueron los factores ambientales registrados que regularon las tasas de meteorización. Las variables ambientales influyeron sobre la tasa de meteorización a través del pH. Dichos factores determinaron una estacionalidad acentuada, con máximos de carga en invierno y en ocasiones de lluvias torrenciales; en este caso, los picos estarían producidos también por procesos de lixiviación de suelos. Fué imposible discriminar en condiciones de campo el
efecto de cada uno de dichos factores (caudal y temperatura) por separado, para lo cual se requieren ulteriores trabajos en condiciones experimentales.

- No fué posible discriminar el efecto de los suelos volcánicos sobre la composición química de las aguas superficiales, planteado en este trabajo como el principal material parental sobre el que actúan los procesos de meteorización, debido a la similitud mineralógica de suelos y rocas precuaternarias. Se requieren para ello ulteriores estudios in situ en pequeñas cuencas, y en modelos experimentales.

Flujos de nutrientes

- Los nutrientes mostraron concentraciones extremadamente bajas (medianas de 6.5 y 1.3 mg m⁻³ de DIN y PRS, respectivamente, en el río Azul). La fracción particulada de ambos, N y P, representó el 75 % de la fracción total, proporción esperable para ambientes oligotróficos.

- El nitrógeno en la cuenca del río Azul presentó valores, -concentración y coeficiente de exportación, inferiores a los más bajos reportados en la literatura internacional. La cuenca se encontró el Estadio 0/4 de saturación de nitrógeno (Stoddard 1994), propio de ambientes en los cuales el aporte de N-atmosféricos es escaso, siendo totalmente absorbido por la cobertura vegetal.

- La concentración de fósforo reactivo soluble del río Azul fue un orden de magnitud inferior a la de cuencas equivalentes del hemisferio norte. Los factores determinantes de estas diferencias fueron el uso escaso de fertilizantes, la existencia de una planta de tratamiento de efluentes de la ciudad de El Bolsón (cuyos efluentes tratados no vuelven al río) y especialmente la alta capacidad de retención de los suelos alofánicos (Sadzawka, A & A. Carrasco. 1985; Colmet-Daage et al. 1995; Irisarri, com. pers.).

- La concentración de fósforo total del río Azul superior (E5) fue tres veces inferior a la del Quemquemtreu (E4). El predominio de suelos Fulvudands Typics en la cuenca del río Azul y de Vitriixerands Molics en la cuenca del Quemquemtreu, sería determinante de dicha diferencia, además de la densidad de habitantes y de la carga animal. Los primeros tienen el máximo porcentaje de retención de P entre los Andisols (80-100 %), hacía el este este porcentaje disminuye.

- El muestreo semanal en el río Azul, evidenció patrones estacionales de funcionamiento de la cuenca, entre los que sobresale el agotamiento de los nitratos
en primavera y sus valores mínimos en verano, período de reactivación y de crecimiento vegetal, respectivamente. Este resultado constituye un hallazgo experimental importante, no previsto en el planteamiento inicial del trabajo. La verificación de la hipótesis propuesta al respecto requiere estudios sobre los ciclos biogeoquímicos en cuencas forestadas, cuyo conocimiento en el Hemisferio Sur es muy escaso o inexistente (Veblen et al. 1996b).

- Se confirmaron las predicciones sobre la temporalidad del impacto (H2.1). Los pulsos de PT verificados a fines de verano y otoño, en coincidencia con lluvias torrenciales, actuaron a modo de lavado de suelos. Unos pocos eventos de estos porporcionaron una carga de TP equivalente a la del resto del período de estudio. La carga bacteriana mostró una estacionalidad más marcada aún, verificándose los máximos también al final de la temporada turística.

- La distribución espacial del impacto antrópico (H2.2) quedó evidenciada en el sistema Azul-Quemquemtreu, por los valores de TN y TP máximos en E3, es decir, aguas abajo de la ciudad de El Bolsón. En E4 se recuperaron los valores de TP, pero los de TN continuaron altos. Los datos bacteriológicos, sin reflejar claramente un patrón espacial de contaminación presentaron máximos en E3 y E4. Desde el punto de vista bacteriológico y del TN, el tramo inferior del río Quemquemtreu, no funcionó como tramo de autodepuración, tal como se había predicho (H2.2). Esta conclusión se basa solamente en seis muestreos durante el año, por lo que debe considerarse como una primera aproximación.

- La presión antrópica sobre la cuenca pareciere tener escasa incidencia sobre los ciclos de los nutrientes; de hecho, al menos para PT, lo valores de las estaciones altas del Quemquemtreu (E1 y E2) se recuperaron en aguas abajo, antes de su desembocadura en el río Azul (E4). La cobertura forestal parece ser más importante que el impacto humano en el control de los flujos de nutrientes en la cuenca del Puelo. Sin embargo, los mencionados picos otoñales de NT y PT pueden indicar el grado de perturbación global en la cuenca (porcentaje de áreas de forestadas, de áreas incendiadas, de terrenos cultivados, remoción de riachuelos por rectificación de cauces, corte de taludes para la construcción de caminos, etc.). En este sentido, la comparación de cargas entre los ríos Azul y Turbio durante algunas crecencias brindaría resultados altamente ilustrativos. La determinación del total de sólidos en suspensión, es una variable de sumo valor indicativo al respecto, que no debería soslayarse en futuros estudios.
Estimación de cargas

- Debido al patrón complejo de mezcla de aguas de los ríos Azul y Quemquemtreu, no se obtuvieron buenas correlaciones entre concentración y caudal en la desembocadura del Azul. A medida que se homogeneizaba la base de datos (eliminación sucesiva de fechas con máximos aportes hídricos relativos del Quemquemtreu) se obtuvieron coeficientes de correlación entre caudal y concentración sensiblemente más elevados.

- Por tal motivo, se seleccionó un modelo basado en las medias ponderadas, cuyos resultados se suponen aceptables debido a que la base de datos utilizada se ajustó a los requisitos del mismo. Dichos resultados se compararon con los de modelos matemáticos similares, obteniéndose diferencias del ± 10 %.

El lago Puelo como ambiente integrador
de las características naturales y antrópicas de la cuenca

- Se verificó el gradiente de conductividad e iones principales predicho para los afluentes del lago Puelo, E>A>T (H3). Pero el mismo tuvo poca incidencia en generar subambientes en el Lago. P1, PII y PIII mostraron valores bastante homogéneos debidos al predominio de procesos de circulación y mezcla horizontal que afectan a todo el Lago. La influencia de los respectivos tributarios se registra en un área restringida cercana a su desembocadura, siendo el brazo Epuyén el que más se diferencia químicamente del resto del Lago. La turbidez de origen glacial, aportada principalmente por el río Turbio, parece generar un gradiente más estable a lo largo del eje principal del Lago. En síntesis, la heterogeneidad en el espectro iónico de las principales afluentes no indujo una heterogeneidad similar apreciable en los respectivos extremos del Lago.

- No se verificó el gradiente Azul>Epuyén>Turbio predicho para los nutrientes (hipótesis H4). Es probable que los datos obtenidos, basados en un número muy escaso de muestras, no reflejen la realidad; los ríos presentan una gran variabilidad química, por lo que para obtener medias confiables se necesitaría un número mayor de muestras. En cambio, las concentraciones de PRS en P1, PII y PIII otorgaron un soporte experimental preliminar (test de Student significativo al 70 % de probabilidad) al gradiente P1> PII y PIII hipotetizado.
• De acuerdo al modelo probabilístico de Volleweider y Kerekes (1981) el lago Puelo se ubica entre los ultraoligotróficos. El extremo del lago bajo influencia del río Azul clasificó en una categoría intermedia entre ultraoligotrófico- oligotrófico, estimada según el mismo modelo el TSI (Carlson trophic state index) (9/100). Esta evidencia preliminar, permite dar una respuesta afirmativa a la hipótesis de la influencia incipiente del río Azul sobre el lago.

Nutrientes limitantes

• Además de algunas relaciones N:P extremadamente bajas, los perfiles verticales de DIN y PRS en el lago Puelo, evidenciaron el agotamiento del nitrógeno en los estratos fóticos y el papel de este nutrient como limitante de la productividad primaria. Dichos perfiles explicarían el cese de la floración primaveral del fitoplancton, tal como se encontró en otros lagos andinos (Pizzolon et al. 1995). Sin embargo, este trabajo demostró la importancia del efecto de dilución de los estratos superiores del lago. En efecto, el gran volumen de aguas N-agotadas que entra en primavera, puede ser mucho más importante que el consumo por el fitoplancton para explicar la desaparición de las reservas invernales de nitrógeno. Este hallazgo está indicando que la limitación por nitrógeno afecta primero a los ecosistemas terrestres y en segundo lugar, al fitoplancton lacustre. La discusión sobre los nutrientes limitantes debe considerar la cuenca como unidad de análisis. Las aproximaciones y metodologías utilizadas hasta el presente en la estimación de los nutrientes limitantes en ambientes andino-patagónicos han ignorado este aspecto, que es particularmente significativo en los lagos con tiempo de recambio del agua rápido (tw ~ 1 año).

• Las tasas DIN:PRS y NT:PT mostraron una estacionalidad muy marcada, tal que es plausible pensar en una probable limitación por fósforo en invierno, una fuerte limitación por nitrógeno en primavera y verano, pasando por dos períodos de colimitación.

• Independientemente de la necesidad de mayores estudios, puede sostenerse que la limitación de la productividad primaria por nitrógeno, es una característica de muchos ambientes andino-patagónicos prístinos, tanto terrestres como acuáticos.
7. RESUMEN

La cuenca del lago Puelo (3040 km²) está ubicada en la vertiente oriental de los Andes a 42 °S y desagua en el Océano Pacífico a través del río Puelo (Chile). Entre 1994 y 1996 se estudió su hidroquímica con especial énfasis en la subcuenca del río Azul, la más habitada. En su desembocadura, se determinó semanalmente pH, conductividad, alcalinidad, iones principales, sílice y nutrientes: nitritos + nitratos, fósforo reactivo soluble, nitrógeno total y fósforo total (DIN, PRS, NT y PT, respectivamente). En seis estaciones en el sistema Azul-Quemquemtreu se determinaron bimensualmente NT, PT y coliformes totales y fecales. El lago Puelo y sus afluentes principales (Azul, Epuén y Turbio) se muestearon estacionalmente.

Todas las aguas analizadas fueron de baja conductividad (30 - 120 µS cm⁻¹) y de tipo bicarbonato calcico (70 – 80 % en equivalentes). La elevada correlación entre sílice y cationes y otras relaciones iónicas, indicaron que los silicatos fueron la principal fuente de iones solubles. Sin embargo, la relación Ca/(Mg+Na+K) > 80 % sugería la meteorización de rocas carbonáticas. Puesto que los suelos y rocas de la cuenca están constituidos por minerales mesosilícos-ácidos, se discutieron las siguientes explicaciones: el efecto de pequeñas áreas con carbonatos, la meteorización preferencial de la anortita y la formación de minerales secundarios y reemplazo de iones. No fue posible discriminar la importancia relativa de los suelos y de las rocas pre-cuaternarias como material parental de los procesos de meteorización. La alcalinidad y cationes oscilaron estacionalmente en correlación con la temperatura del aire, precipitaciones y caudal. Es probable que las tasas de meteorización hayan sido controladas por los factores ambientales a través de cambios en el pH del suelo.

Los nutrientes se encontraron en concentraciones extremadamente bajas. Las cargas de PRS y TP correlacionaron con el caudal (r² = 0.83 y 0.78; linear y polinomial de segundo grado, respectivamente). Se obtuvieron diferencias de un orden de magnitud entre el coeficiente específico de exportación de PRS estimado y el observado. Se explicó esta diferencia por la alta capacidad de retención de fosfato de los suelos volcánicos, que cubren el 75 % de la cuenca. El DIN del río Azul mostró un inesperado agotamiento durante la estación de crecimiento. Según el concepto saturación de nitrógeno (Stoddard 1994) la cuenca estaba en el estadio 0/4, en el cual la mayor parte del nitrato de la precipitaciones es absorbido por el bosque Sub-Antártico. Los valores máximos de NT y PT se encontraron aguas abajo de El Bolsón, e indicaron niveles de
polución bajos, confirmados por los análisis bacteriológicos. Sin embargo, los pulsos de NT, PT y coliformes durante las crecientes de fin de verano, pueden estar relacionados con el turismo y el uso del suelo en el área de la cuenca.

Según el esquema de Vollenweider y Kerekes (1981) el lago Puelo se clasificó como ultra-ligotróficos. Las fuerzas de mezcla horizontal homogeneizaron los aportes de los tres tributarios principales, no obstante su heterogeneidad química. Sin embargo, la concentración de PRS fue más alta en el extremo norte del lago (p< 0.70), debido a la influencia del río Azul. La relación N/P tuvo una estacionalidad muy marcada, tal que fue posible considerarse un período de limitación por fósforo en invierno (si esto puede tener algún sentido) y otro de limitación por nitrógeno en primavera-verano, pasando por dos periodos de co-limitación. La reserva invernal de nitrógeno del lago Puelo no se consumió en primavera solamente por el fitoplancton, como se había supuesto en estudios previos en lagos similares, sino también (y probablemente, principalmente) por el efecto de dilución producido por la entrada de un gran volumen de agua cuyo nitrógeno ha sido consumido en el bosque.
8. SUMMARY

The Lake Puelo watershed (3040 km²) is located at the East Side of the Andes (Argentina), at 42° S and discharges to the Pacific Ocean through Puelo River (Chile). Its hydrochemistry was studied between 1994 and 1996, especially in the most inhabited sub-basin, the Azul River. Weekly samples were collected at the Azul River mouth to determine pH, conductivity, total alkalinity, major ions, silica and nutrients: nitrates+nitrites, soluble reactive phosphorus, total nitrogen and total phosphorus (DIN, PRS, TN and TP, respectively). The TN, TP and total and faecal coliforms were bimonthly sampled at six stations along the Azul-Quemquemtreu system. Some physical and chemical variables were seasonally sampled on Puelo Lake and its main inlets (Azul, Epuyén, Turbio).

All analyzed waters showed low conductivity (between 28 and 129 µS cm⁻¹) and their ionic spectrum were composed mainly (70-80 % equivalent basis) of calcium bicarbonate. A high correlation between silica and cations, as well as other ionic relations, showed that silicates were the main source of soluble ions. However, the Ca/(Mg+Na+K) ratio (> 80 %) suggested the weathering of carbonatic rocks. Because the watershed geology and soils are dominated by mesosilicic-acid rocks, the following explanations were discussed: the effect of small areas with carbonates, the preferential weathering of anortita and the synthesis of secondary minerals and ion substitution. It was not possible to assess the relative importance of soils and pre-quaternary rocks as parental material in the weathering processes. Cations and total alkalinity showed a notorious seasonality and were correlated with air temperature, precipitations and discharge. Weathering rates seemed to be controlled by environmental factors through changes in pH. Peaks of cation loads during floodings could be explained by soil leaching, probably related with the surface of disturbed areas by human activities.

Nutrients were found in extremely low concentrations. The PRS and TP loads were well correlated with discharge (r² = 0.83 y 0.78; linear and polynomial of second degree, respectively) and the DIN load did not correlated significantly. Difference of an order of magnitude was obtained between the estimated and the observed PRS specific export coefficient. This difference was explained by the high phosphorus retention capacity of volcanic soils, which cover 75 % of the basin. The DIN concentrations in the Azul River showed an unexpected depletion during the growing season. Accordingly to the nitrogen saturation concept (Stoddard 1994) the Azul watershed was
in stage 0/4, meaning that most of the DIN from rain and snow was being absorbed by
the Sub-Antarctic forest. The highest TN and TP concentrations were found near El Bolsón City; their values indicated a low level of pollution, confirmed by the coliforms analyses. However, the strong TP, TN and coliforms pulses during flooding at the end of summer could be related with the tourism and watershed soil use.

According to Vollenweider and Kerekes (1981) Puelo Lake was classified as
ultra-oligotrophic. Horizontal mixing forces homogenized the inputs from the three
main inlets, despite their strong chemical differences. However, the PRS concentration
was higher on the northern end of the Lake (p = .70), because of the influence of the
Azul River. The N/P ratio showed a strong seasonality, so that it was possible to
consider a winter period P-limited (if this may have some meaning), a spring-summer
period N-limited and two periods of co-limitation. The winter N-pool in the epilimnion
of Puelo Lake was not depleted in spring by phytoplankton alone as it was supposed in
previous studies, but also (and probably mainly) by the dilution effect due to the input
of a great volume of waters whose DIN has been uptaken by the forest.
9. BIBLIOGRAFÍA

Environmental Committee), Lacar’97, San Martin de Los Andes, Argentina. Resúmen, 4 pp.

10. ANEXOS

Anexo 1. Siglas utilizadas más frecuentemente

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac%</td>
<td>((q\text{Ac}/q\text{Ad})\times100)</td>
</tr>
<tr>
<td>Chl a</td>
<td>clorofila a</td>
</tr>
<tr>
<td>DIN</td>
<td>nitrógeno inorgánico disuelto ((N-\left(NO_3+NO_2+NH_4\right)))</td>
</tr>
<tr>
<td>OD</td>
<td>oxígeno disuelto ((\text{mg} ; l^{-1}))</td>
</tr>
<tr>
<td>OD%</td>
<td>saturación de OD ((%))</td>
</tr>
<tr>
<td>K20</td>
<td>conductividad específica a 20 °C ((\mu S ; cm^{-1}))</td>
</tr>
<tr>
<td>NT</td>
<td>nitrógeno total</td>
</tr>
<tr>
<td>PAR</td>
<td>radiación fotosintéticamente activa ((\mu E ; m^{-2} ; s^{-1}))</td>
</tr>
<tr>
<td>PPd</td>
<td>precipitaciones en el día de muestreo</td>
</tr>
<tr>
<td>PP5d</td>
<td>valor medio de las precipitaciones de los 5 días previos al muestreo</td>
</tr>
<tr>
<td>PP10d</td>
<td>valor medio de las precipitaciones de los 10 días previos al muestreo</td>
</tr>
<tr>
<td>PRS</td>
<td>fósforo reactiva soluble</td>
</tr>
<tr>
<td>PT</td>
<td>fósforo total</td>
</tr>
<tr>
<td>Q(6q)</td>
<td>caudal ((m^3 ; s^{-1}))</td>
</tr>
<tr>
<td>qAc</td>
<td>caudal del río Azul corregido (\text{sin los aportes del Quemquemtreu})</td>
</tr>
<tr>
<td>qAd</td>
<td>caudal total del río Azul (\text{en la desembocadura} = q\text{Ac} + q\text{Q})</td>
</tr>
<tr>
<td>qQ</td>
<td>caudal del río Quemquemtreu</td>
</tr>
<tr>
<td>SiR</td>
<td>silice reactiva ((\text{Si-SiO}_2))</td>
</tr>
<tr>
<td>TA</td>
<td>alcalinidad total</td>
</tr>
<tr>
<td>Tmáx5d</td>
<td>temperatura máxima de los 5 días previos al muestreo</td>
</tr>
<tr>
<td>Tmin5d</td>
<td>temperatura mínima de los 5 días previos al muestreo</td>
</tr>
<tr>
<td>Tmind</td>
<td>temperatura mínima del día de muestreo</td>
</tr>
</tbody>
</table>
x0 2. Estadística descriptiva de los resultados obtenidos en cuatro estaciones del río Quenquemtreu y en la desembocadura del río Azul (N: número de muestras; SD: desvío estándar; CV: coeficiente de variación).

<table>
<thead>
<tr>
<th>Est. 1</th>
<th>Temp</th>
<th>pH</th>
<th>K20</th>
<th>SO4</th>
<th>Cl</th>
<th>SiO3</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US/cm</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Media</td>
<td>10.8</td>
<td>7.7</td>
<td>79</td>
<td>5.54</td>
<td>0.60</td>
<td>3.87</td>
<td>10.5</td>
<td>1.67</td>
<td>1.96</td>
<td>0.55</td>
</tr>
<tr>
<td>Mediana</td>
<td>10.3</td>
<td>7.7</td>
<td>78</td>
<td>5.61</td>
<td>0.61</td>
<td>3.99</td>
<td>10.6</td>
<td>1.67</td>
<td>2.13</td>
<td>0.52</td>
</tr>
<tr>
<td>Max</td>
<td>16.0</td>
<td>8.0</td>
<td>100</td>
<td>6.21</td>
<td>0.65</td>
<td>4.20</td>
<td>13.0</td>
<td>2.40</td>
<td>2.51</td>
<td>0.81</td>
</tr>
<tr>
<td>Mín</td>
<td>5.0</td>
<td>7.3</td>
<td>63</td>
<td>4.73</td>
<td>0.51</td>
<td>3.44</td>
<td>7.0</td>
<td>0.86</td>
<td>1.05</td>
<td>0.40</td>
</tr>
<tr>
<td>SD</td>
<td>3.9</td>
<td>0.2</td>
<td>13</td>
<td>0.63</td>
<td>0.06</td>
<td>0.31</td>
<td>2.35</td>
<td>0.54</td>
<td>0.61</td>
<td>0.16</td>
</tr>
<tr>
<td>CV</td>
<td>36</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>32</td>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Est. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Mediana</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Mín</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>CV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Est. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Mediana</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Mín</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>CV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Est. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Mediana</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Mín</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>CV</td>
</tr>
</tbody>
</table>
Anexo 3a. Espectro iónico del río Azul durante 1995-6 en base a muestreos semanales.

<table>
<thead>
<tr>
<th>PH</th>
<th>K2O</th>
<th>TA</th>
<th>SO4</th>
<th>Cl</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>SiR</th>
<th>An</th>
<th>Cat</th>
<th>a/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>µS/cm</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td>µM</td>
<td>µeq/l</td>
<td>µeq/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observaciones</td>
<td>54</td>
<td>48</td>
<td>53</td>
<td>54</td>
<td>51</td>
<td>54</td>
<td>52</td>
<td>57</td>
<td>54</td>
<td>55</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Media</td>
<td>7.3</td>
<td>47</td>
<td>399</td>
<td>68</td>
<td>16.3</td>
<td>336</td>
<td>77</td>
<td>57</td>
<td>9.1</td>
<td>79</td>
<td>483</td>
<td>479</td>
</tr>
<tr>
<td>Mediana</td>
<td>7.4</td>
<td>48</td>
<td>390</td>
<td>68</td>
<td>16.4</td>
<td>342</td>
<td>74</td>
<td>60</td>
<td>7.7</td>
<td>75</td>
<td>471</td>
<td>476</td>
</tr>
<tr>
<td>Max</td>
<td>7.9</td>
<td>63</td>
<td>546</td>
<td>115</td>
<td>21.7</td>
<td>459</td>
<td>123</td>
<td>90</td>
<td>33.5</td>
<td>120</td>
<td>636</td>
<td>681</td>
</tr>
<tr>
<td>Mín</td>
<td>6.6</td>
<td>33</td>
<td>245</td>
<td>23</td>
<td>10.7</td>
<td>200</td>
<td>38</td>
<td>0</td>
<td>4.9</td>
<td>49</td>
<td>321</td>
<td>280</td>
</tr>
<tr>
<td>Desv. Std.</td>
<td>0.26</td>
<td>8.8</td>
<td>76.4</td>
<td>18</td>
<td>2.7</td>
<td>69.2</td>
<td>21</td>
<td>21</td>
<td>5.7</td>
<td>18</td>
<td>85</td>
<td>104</td>
</tr>
<tr>
<td>Cv%</td>
<td>4</td>
<td>19</td>
<td>19</td>
<td>27</td>
<td>17</td>
<td>21</td>
<td>27</td>
<td>36</td>
<td>62</td>
<td>22</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

Anexo 3b. Espectro iónico del río Azul durante 1995-6 en base a muestreos bimensuales

<table>
<thead>
<tr>
<th>Río Azul</th>
<th>Temp</th>
<th>pH</th>
<th>K2O</th>
<th>SO4</th>
<th>Cl</th>
<th>SiO3</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Si</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>µS/cm</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>µM</td>
<td>µeq/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Media</td>
<td>9.7</td>
<td>7.5</td>
<td>53</td>
<td>3.5</td>
<td>0.6</td>
<td>2.5</td>
<td>7.2</td>
<td>1.1</td>
<td>1.4</td>
<td>0.3</td>
<td>90</td>
<td>459</td>
</tr>
<tr>
<td>Mediana</td>
<td>10.5</td>
<td>7.4</td>
<td>52</td>
<td>3.4</td>
<td>0.6</td>
<td>2.3</td>
<td>6.9</td>
<td>1.1</td>
<td>1.4</td>
<td>0.3</td>
<td>82</td>
<td>453</td>
</tr>
<tr>
<td>Max</td>
<td>14.0</td>
<td>7.9</td>
<td>62</td>
<td>4.4</td>
<td>0.7</td>
<td>3.2</td>
<td>9.0</td>
<td>1.4</td>
<td>2.0</td>
<td>0.4</td>
<td>114</td>
<td>596</td>
</tr>
<tr>
<td>Min</td>
<td>5.0</td>
<td>7.1</td>
<td>46</td>
<td>2.8</td>
<td>0.6</td>
<td>2.1</td>
<td>5.7</td>
<td>0.9</td>
<td>1.0</td>
<td>0.2</td>
<td>76</td>
<td>380</td>
</tr>
<tr>
<td>SD</td>
<td>3.9</td>
<td>0.3</td>
<td>7</td>
<td>0.7</td>
<td>0.1</td>
<td>0.5</td>
<td>1.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.1</td>
<td>17</td>
<td>78</td>
</tr>
<tr>
<td>CV</td>
<td>40</td>
<td>3</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>19</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

188
Anexo 4. Composición química de los minerales dominantes en la cuenca del río Azul

<table>
<thead>
<tr>
<th>Fósicos (claros, Ca, Na, K)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortoclasa (ortosa)</td>
<td>KAlSi₃O₈</td>
</tr>
<tr>
<td>Albita</td>
<td>NaAlSi₃O₈</td>
</tr>
<tr>
<td>Oligoclasa</td>
<td>3</td>
</tr>
<tr>
<td>Andesina Na₀.₅Ca₀.₅₃Al₁._₅Si₂.₅O₈</td>
<td>70-90 % albita; 10-30 % anortita</td>
</tr>
<tr>
<td>Anortita</td>
<td>CaSi₃Al₂O₈</td>
</tr>
<tr>
<td>Muscovita</td>
<td>3</td>
</tr>
<tr>
<td>Cuarzo</td>
<td>SiO₂</td>
</tr>
<tr>
<td></td>
<td>1,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Máficos (oscuros, Fe, Mg)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipersteno o bronceita (pírexeno)</td>
<td>Si₂O₅(FeMg)₂</td>
</tr>
<tr>
<td>Augita (pliroxeno)</td>
<td>(Si,Al₂O₄(Ca,Na)(Mg, Fe²⁺, Fe³⁺, Al)</td>
</tr>
<tr>
<td>Hornblenda (anfibol)</td>
<td>SiO₆(Mg,Ca)</td>
</tr>
<tr>
<td>Biotita</td>
<td>KMg₃AlSi₇O₂₀(OH)₂</td>
</tr>
<tr>
<td>Olivina</td>
<td>SiO₆(Mg,Fe)</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alteritas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sericita</td>
<td>(Mg,Fe)₃(AlFe₂⁺+³(OH)₂Si₃O₁₀)</td>
</tr>
<tr>
<td>Clorita</td>
<td>(Ni,Mg)SiO₃₃nH₂O</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arcillas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alolán</td>
<td>Al₂O₃.1.₅SiO₂.₂.₅H₂O</td>
</tr>
<tr>
<td>Imogolita</td>
<td>(SiO₂₃)Al₄(OH)₈</td>
</tr>
<tr>
<td>Halloysita</td>
<td>3</td>
</tr>
<tr>
<td>Montmorillonita</td>
<td>Al₂O₃.₄SiO₂.₂H₂O</td>
</tr>
<tr>
<td>Calolinita</td>
<td>(SiO₂₃)Al₄(OH)₈</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Anexo 5. Serie de las plagioclases

<table>
<thead>
<tr>
<th>(Albita)</th>
<th>NaAlSi₃O₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligoclasa</td>
<td>70-90 % albita; 10-30 % anortita</td>
</tr>
<tr>
<td>Andesina Na₀.₅Ca₀.₅Al₁._₅Si₂.₅O₈</td>
<td>50-70 % albita; 30-50 % anortita</td>
</tr>
<tr>
<td>Labradorita</td>
<td>30-50 % albita; 50-70 % anortita</td>
</tr>
<tr>
<td>Bytownita</td>
<td>10-30 % albita; 70-90 % anortita</td>
</tr>
<tr>
<td>(Anortita)</td>
<td>CaSi₃Al₂O₈</td>
</tr>
</tbody>
</table>
Anexo 5. Análisis de regresión múltiple entre variables hidroquímicas y ambientales. Las variables ambientales fueron: log AZD, ACQ (porcentaje del caudal del Azul con respecto del Quemquermetre), log PPd, log (PP5d+1), log (PP10d+1), Tmind, Tmin5, Tmin10, Tmáx, Tmáx5, Tmáx10, Δt5 (Tmáx-Tmin, medias durante los últimos 5 días), Δt10.

Calcio

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>632.94</td>
<td>36.42</td>
<td>17.38</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.LGQAD</td>
<td>-134.36</td>
<td>26</td>
<td>5.06</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.ACQ</td>
<td>3.43</td>
<td>15</td>
<td>8.88</td>
<td>0.0003</td>
</tr>
<tr>
<td>log(A21.PPAD_5+1)</td>
<td>-17.2</td>
<td>22</td>
<td>3.64</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TMIND</td>
<td>-9.36</td>
<td>75</td>
<td>1.08</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.68 SE= 38.96 MAE= 29.89 DurbinWat= 1.632 53 observ. 4 val. perdidos; F: 30.5

Cationes Divalentes

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>765.28</td>
<td>49.78</td>
<td>15.37</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.LGQAD</td>
<td>-149.12</td>
<td>22</td>
<td>-4.10</td>
<td>0.0002</td>
</tr>
<tr>
<td>A21.ACQ</td>
<td>3.55</td>
<td>11.8</td>
<td>2.94</td>
<td>0.0051</td>
</tr>
<tr>
<td>log(A21.PPAD_5+1)</td>
<td>-23.44</td>
<td>20</td>
<td>-4.66</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TMIND</td>
<td>-11.77</td>
<td>7</td>
<td>-7.98</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.64 SE= 53.23 MAE= 40.67 DurbinWat= 1.380 52 observ. 5 val. perd. F: 23.8

Silice reactiva soluble

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>125.89</td>
<td>8.51</td>
<td>14.80</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.LGQAD</td>
<td>-14.16</td>
<td>7</td>
<td>-2.71</td>
<td>0.0091</td>
</tr>
<tr>
<td>log(A21.PPAD_D+1)</td>
<td>-2.62</td>
<td>28</td>
<td>-3.50</td>
<td>0.0010</td>
</tr>
<tr>
<td>A21.TMIN5</td>
<td>-2.38</td>
<td>50</td>
<td>-7.94</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.62 SE= 10.87 MAE= 8.67 DurbinWat= 1.499 55 observ. 2 val. perd. F: 30.5

Alcalinidad total

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>446.82</td>
<td>37.53</td>
<td>11.91</td>
<td>0.0000</td>
</tr>
<tr>
<td>log(A21.PPAD_5+1)</td>
<td>-19.72</td>
<td>16</td>
<td>-3.98</td>
<td>0.0002</td>
</tr>
<tr>
<td>A21.TMIND</td>
<td>-8.17</td>
<td>40</td>
<td>-6.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TD5</td>
<td>7.54</td>
<td>6</td>
<td>2.50</td>
<td>0.0158</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.55 SE= 51.50 MAE= 40.37 DurbinWat= 1.759 55 observ. 2 val. perd.; F: 22
pH

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>F</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>7.22</td>
<td>0.134</td>
<td>53.50</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>log(A21.PPAD_5+1)</td>
<td>-0.04</td>
<td>5.0</td>
<td>0.019</td>
<td>-2.24</td>
<td>0.0296</td>
</tr>
<tr>
<td>A21.TMAX5</td>
<td>0.01</td>
<td>5.2</td>
<td>0.006</td>
<td>2.29</td>
<td>0.0265</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.30 SE= 0.22 MAE= 0.157 DurbWat= 1.833
53 observ. 4 val. perd. F: 12.

Cloruro

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>F</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>19.21</td>
<td>0.60</td>
<td>31.81</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>A21.TMIN10</td>
<td>-0.33</td>
<td>31</td>
<td>0.06</td>
<td>-5.53</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.37 SE= 2.167 MAE= 1.72 DurbWat= 1.771
51 observ. 6 val. perd. F: 31

Conductividad

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>F</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>68.84</td>
<td>5.33</td>
<td>12.91</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>A21.LGQAD</td>
<td>-13.54</td>
<td>22</td>
<td>2.89</td>
<td>-4.69</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TMIN5</td>
<td>-1.25</td>
<td>51</td>
<td>0.18</td>
<td>-7.11</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TDT10</td>
<td>1.08</td>
<td>9</td>
<td>0.36</td>
<td>2.97</td>
<td>0.0047</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.54 SE= 5.82 MAE= 4.34 DurbWat= 1.627
49 observations fitted, forecast(s) computed for 8 missing val. of dep. var.

Sodio

<table>
<thead>
<tr>
<th>Variable independiente</th>
<th>coef.</th>
<th>F</th>
<th>s.e.</th>
<th>t-value</th>
<th>nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>116.85</td>
<td>8.79</td>
<td>13.30</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>A21.LGQAD</td>
<td>-20.75</td>
<td>11</td>
<td>6.37</td>
<td>-3.26</td>
<td>0.0020</td>
</tr>
<tr>
<td>A21.ACQ</td>
<td>0.87</td>
<td>17</td>
<td>0.21</td>
<td>4.06</td>
<td>0.0002</td>
</tr>
<tr>
<td>log(A21.PPAD_5+1)</td>
<td>-4.39</td>
<td>25</td>
<td>0.89</td>
<td>-4.95</td>
<td>0.0000</td>
</tr>
<tr>
<td>A21.TMIN5</td>
<td>-2.48</td>
<td>90</td>
<td>0.26</td>
<td>-9.50</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-SQ. (ADJ.) = 0.65 SE= 9.49 MAE= 7.21 DurbWat= 1.552
54 observ. 3 val. perd. F: 25
Anexo 7. Fijación de nitrógeno atmosférico. Arriba: colonias verrugas (5-10 mm) de Nostoc sp. cianofíceas epílticas en afluentes del río Azul. Foto L. Pizzolon, Marzo de 1995. Abajo: Gomniera sp., de frondes de hasta más de 1 m de diámetro, a la orilla de afluentes del Azul, crece a la orilla de muchos arroyos andinos. Pionera en la colonización de áreas desprovistas de nitrógeno. Posee cianofíceas fijadoras simbiontes.
Anexo 8. Uso del suelo. **Arriba:** Vista del valle del Quenquenrcu hacia el norte, entre las últimas estribaciones del cordón Piltriquirión (derecha) y de la Loma del Medio (izquierda); al fondo el Cordón Serrucho Sur y valles del río Los Terneros (derecha) y Los Repollos (izquierda). **Abajo:** Vista hacia el sur de la localidad de El Hoyo (Pcia. de Chubut). En primer plano, paraje Golondrinas (nótese la superficie importante de forestaciones con especies exóticas, a la derecha de la ruta Nro. 249). Al frente Co. Pirque, a la derecha, lago Epuyén y a la izquierda, valle del río Epuyén. Fotografías aéreas, abril de 1998, L. Pizzolon.