Campylobacter termotolerantes en aves silvestres

Autores/as

DOI:

https://doi.org/10.14409/favecv.2024.23.e0028

Palabras clave:

Campylobacter termotolerante, aves silvestres, salud pública

Resumen

Los Campylobacter termotolerantes (CT) son considerados la causa bacteriana más frecuente de gastroenteritis humana en el mundo. Los CT circulan frecuentemente en aves de corral, siendo éstas la principal fuente de infección para los humanos. El mayor factor de riesgo es la manipulación y el consumo del pollo fresco en el hogar. Asimismo, las aves silvestres han sido frecuentemente reportadas infectadas con CT. Sin embargo, hasta la actualidad no está claro qué rol cumplen en su epidemiología. Este trabajo revisa el conocimiento científico actual sobre CT en aves silvestres. La mayoría de los estudios de CT en aves silvestres se focalizan en ambientes productivos, principalmente, en establecimientos de pollos de engorde, destacándose que la principal especie hallada es Campylobacter jejuni. En menor medida existen estudios en aves silvestres de zonas urbanas y áreas naturales. La prevalencia de CT en aves silvestres parece estar asociada a la familia taxonómica, gremio ecológico y distribución geográfica de las diversas especies de aves. La literatura existente sugiere que las aves silvestres tienen el potencial de cumplir un rol a considerar en la epidemiología de CT, involucrándose en tres aspectos: 1) actuando como reservorios; 2) transportando CT a diferentes distancias; y 3) siendo compartimento donde se puede generar y mantener resistencia antimicrobiana.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Pablo Martín BELDOMENICO, Disease Ecology Laboratory - ICIVET Litoral (UNL-CONICET)

Director of FAVE Sección Ciencias Veterinarias.

Veterinarian, Master in Preventive Veterinary Medicine and PhD.

Carrer investigator with CONICET and Professor at Universidad Nacional del Litoral.

Área de acción en I+D: ecología de enfermedades

Citas

Abdollahpour N, Zendehbad B, Alipour A, Khayatzadeh J. 2015. Wild-bird feces as a source of Campylobacter jejuni infection in children's playgrounds in Iran. Food Control 50: 378-381. DOI: 10.1016/j.foodcont.2014.09.007

Abulreesh HH. 2005. Waterfowl, faecal indicators and pathogenic bacteria in amenity ponds. PhD thesis, University of Hull.

Abulreesh HH, Paget TA, Goulder R. 2004. Water owl and the bacteriological quality of amenity ponds. Journal of Water and Health 2: 183-189. DOI: 10.2166/wh.2004.0016

Achen M, Morishita TY, Ley EC. 1998. Shedding and colonization of Campylobacter jejuni in broilers from day of hatch to slaughter age. Avian Dis. 42: 732-737. DOI: 10.2307/1592708

Allen VM, Ridley AM, Harris JA, Newell DG, Powell L. 2011. Influence of production system on the rate of onset of Campylobacter colonization in chicken flocks reared extensively in the United Kingdom. Br. Poult. Sci. 52: 30-39. DOI: 10.1080/00071668.2010.537306

Allos BM. 2001. Campylobacter jejuni Infections: update on emerging issues and trends. Clin. Inf. Dis. 32:1201-1206. DOI: 10.1086/319760

Anderson J, Horn BJ, Gilpin BJ. 2012. The prevalence and genetic diversity of Campylobacter spp. in domestic ‘backyard’poultry in Canterbury, New Zealand. Zoonoses and Public Health 59: 52-60. DOI: 10.1111/j.1863-2378.2011.01418.x

Antilles N, García-Bocanegra I, Alba-Casals A, López-Soria S, Pérez-Méndez N, Saco M, Cerdà-Cuéllar M. 2021. Occurrence and antimicrobial resistance of zoonotic enteropathogens in gulls from southern Europe. Sci. Total Environ. 763: 143018. DOI: 10.1016/j.scitotenv.2020.143018

Beldomenico P, Uhart M. 2008. Ecoepidemiología de los virus de influenza aviar. FAVE Sección Ciencias Veterinarias 7: 23-40. DOI: 10.14409/favecv.v7i1/2.1467

Blakey J, Stoute S, Crossley B, Mete A. 2019. Retrospective analysis of infectious laryngotracheitis in backyard chicken flocks in California, 2007-2017, and determination of strain origin by partial ICP4 sequencing. J. Vet. Diagn. Invest. 31:350-358. DOI: DOI: 10.1177/1040638719843574

Broman T, Palmgren H, Bergstrom S, Sellin M, Waldenstrom J, Danielsson-Tham ML, Olsen B. 2002. Campylobacter jejuni in black-headed gulls (Larus ridibundus): prevalence, genotypes, and influence on C. jejuni epidemiology. J. Clin. Microbiol. 40: 4594-4602. DOI: 10.1128/jcm.40.12.4594-4602.2002

Broman T, Waldenström J, Dahlgren D, Carlsson I, Eliasson I, Olsen B. 2004. Diversities and similarities in PFGE profiles of Campylobacter jejuni isolated from migrating birds and humans. J. Appl. Microbiol. 96: 834-843. DOI: 10.1111/j.1365-2672.2004.02232.x

Bull SA, Allen VM, Domingue G, Jorgensen F, Frost JA, Ure R, Whyte R, Tinker D, Corry JEL, Gillard-King J, Humphrey TJ. 2006. Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl. Environ. Microbiol. 72: 645-652. DOI: 10.1128/AEM.72.1.645-652.2006

Cardenas-Garcia S, Lopez RN, Morales R, Olvera MA, Marquez MA, Merino R. 2013. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Appl. Environ. Microbiol. 79:4985-4992. DOI: 10.1128/AEM.00993-13

Cawthraw S, Ayling R, Nuijten P, Wassenaar T, Newell DG. 1994. Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis. 38: 341-349. DOI: 10.2307/1591960

Cawthraw SA, Newell DG. 2010. Investigation of the presence and protective effects of maternal anti-bodies against Campylobacter jejuni in chickens. Avian Dis. 54: 86-93. DOI: 10.1637/9004-072709-Reg.1

Cerdà-Cuéllar M, Moré E, Ayats T, Aguilera M, Muñoz-González S, Antilles N, Ryan P, González-Solís J. 2019. Do humans spread zoonotic enteric bacteria in Antarctica?. Sci. Total Environ. 654: 190-196. DOI: 10.1016/j.scitotenv.2018.10.272

Chagneau S, Gaucher ML, Fravalo P, Thériault WP, Thibodeau A. 2023. Intestinal colonization of Campylobacter jejuni and its hepatic dissemination are associated with local and systemic immune responses in broiler chickens. Microorganisms. 11: 1677. DOI: 10.3390/microorganisms11071677

Chuma T, Hashimoto S, Okamoto K. 2000. Detection of thermophilic Campylobacter from sparrows by multiplex PCR: the role of sparrows as a source of contamination of broilers with Campylobacter. J. Vet. Med. Sci. 62: 1291-1295. DOI: 10.1292/jvms.62.1291

Clark AG, Bueschkins DH. 1986. Survival and growth of Campylobacter jejuni in egg yolk and albumen. J. Food Prot. 49: 135-141. DOI: 10.4315/0362-028X-49.2.135

Cody A, McCarthy N, Bray J, Wimalarathna H, Colles F, Rensburg MJ, Dingle K, Waldenstöm J, Maiden M. 2015. Wild bird‐associated Campylobacter jejuni isolates are a consistent source of human disease, in Oxfordshire, United Kingdom. Environ. Microbiol. Rep. 7: 782-788. DOI: 10.1111/1758-2229.12314

Colles FM, Dingle KE, Cody AJ, Maiden MCJ. 2008. Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Appl. Environ. Microbiol. 74:3583-3590. DOI: 10.1128/AEM.02491-07

Colles FM, McCarthy ND, Howe JC, Devereux CL, Gosler AG, Maiden MCJ. 2009. Dynamics of Campylobacter colonization of a natural host, Sturnus vulgaris (European starling). Environ. Microbiol. 11: 258-267. DOI: 10.1111/j.1462-2920.2008.01773.x

Craven SE, Stern NJ, Line E, Bailey JS, Cox NA, Fedorka-Cray P. 2000. Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Dis. 44: 715-720. DOI: 10.2307/1593118

Cross PC, Prosser DJ, Ramey AM, Hanks EM, Pepin KM. 2019. Confronting models with data: The challenges of estimating disease spillover. Phil. Trans. R. Soc. B. 374: 20180435. DOI: 10.1098/rstb.2018.0435

De la Torre GM, Fecchio A, Bell JA, Campião KM. 2022. Host evolutionary history rather than avian functional traits drives the Plasmodium regional assembly in the Atlantic Forest. Funct. Ecol. 36: 1873-1886. DOI: 10.1111/1365-2435.14090

Debruyne L, Gevers D, Vandamme P. 2005. “Taxonomy of the family Campylobacteraceae”. (pp 1–25) En: Nachamkin I, Blaser MJ, Szymanski CM (eds.). Campylobacter, 3rd. Ed. ASM, Washington, DC. DOI: 10.1128/9781555815554.ch1

Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ, Bolton FE, Maiden MCJ. 2001. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39: 14-23. DOI: 10.1128/jcm.39.1.14-23.2001

Du J, Luo J, Huang J, Wang C, Li M, Wang B, He H. 2019. Emergence of genetic diversity and multi-drug resistant Campylobacter jejuni from wild birds in Beijing, China. Front. Microbiol. 10: 2433. DOI: 10.3389/fmicb.2019.02433

Dudzic A., Urban-Chmiel R., Stępień-Pyśniak D, Dec M, Puchalski A, Wernicki, A. 2016. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons. Br. Poul. Sci. 57: 172-178. DOI: 10.1080/00071668.2016.1148262

Eberhart-Phillips J, Walker N, Garrett N, Bell D, Sinclair D, Rainger W, Bates M. 1997. Campylobacteriosis in New Zealand: results of a case-control study. Journal of Epidemiology & Community Health 51: 686-691. DOI: 10.1136/jech.51.6.686

EFSA. 2010. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. Part A: Campylobacter and Salmonella prevalence estimates. EFSA J. 8: 1503-1602. DOI: 10.2903/j.efsa.2010.1503

EFSA Panel on Biological Hazards (BIOHAZ). 2010. Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 8: 1437. DOI: 10.2903/j.efsa.2010.1437

EFSA. 2011. Panel on Biological Hazards (BIOHAZ): Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 9: 2105. DOI: 10.2903/j.efsa.2011.2105

EFSA. 2010. Scientific report of EFSA: analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. EFSA J. 8: 1503. DOI: 10.2903/j.efsa.2010.1522

El-Tras WF, Holt HR, Tayel AA, El-Kady NN. 2015. Campylobacter infections in children exposed to infected backyard poultry in Egypt. Epidemiol. Infect. 143: 308-315. DOI: 10.1017/S095026881400096X

Espunyes J, Illera L, Dias-Alves A, Lobato L, Ribas MP, Manzanares A, Cerdà-Cuéllar, M. 2022. Eurasian griffon vultures carry widespread antimicrobial resistant Salmonella and Campylobacter of public health concern. Sci. Total Environ. 844: 157-189. DOI: 10.1016/j.scitotenv.2022.157189

European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA J. 16: e05500.

Facciolà A, Riso R, Avventuroso E, Visalli G, Delia SA, Laganà P. 2017. Campylobacter: from microbiology to prevention. J. Prev. Med. Hyg. 58: E79-E92.

Fernandez H. 1988. Species and biotype distribution of thermotolerant Campylobacter in animal reservoirs in Southern Chile. Rev. Inst. Med. Trop. São Paulo 30: 357-360. DOI: 10.1590/S0036-46651988000500005

Fernandez H, Gesche W, Montefusco A, Schlatter R. 1996. Wild birds as reservoir of thermophilic enteropathogenic Campylobacter species in southern Chile. Mem. Inst. Oswaldo Cruz 91: 699-700. DOI: 10.1590/S0074-02761996000600007

Ferreira-Junior FC, de Angeli Dutra D, Silveira P, Pacheco RC, Witter R, de Souza Ramos DG. 2018. A new pathogen spillover from domestic to wild animals: Plasmodium juxtanucleare infects free-living passerines in Brazil. Parasitology 145:1949-1958. DOI: 10.1017/S003118201800077X

French NP, Midwinter A, Holland B, Collins-Emerson J, Pattison R, Colles F, Carter P. 2009. Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children's playgrounds. Appl. Environ. Microbiol. 75: 779-783. DOI: 10.1128/AEM.01979-08

Gabriele-Rivet V, Fairbrother JH, Tremblay D, Harel J, Côté N, Arsenault J. 2016. Prevalence and risk factors for Campylobacter spp., Salmonella spp., Coxiella burnetii and Newcastle disease virus in feral pigeons (Columba livia) in public areas of Montreal, Canada. Can. J. Vet. Res. 80: 81-85.

García-Peña FJ, Llorente MT, Serrano T, Ruano MJ, Belliure J, Benzal J. 2017. Isolation of Campylobacter spp. from three species of Antarctic penguins in different geographic locations. EcoHealth 14: 78–87. DOI: 10.1007/s10393-016-1203-z

Gilchrist P. 2005. Involvement of free-flying wild birds in the spread of the viruses of avian influenza, Newcastle disease and infectious bursal disease from poultry products to commercial poultry. World’s Poult. Sci. J. 61:198–214. DOI: 10.1079/WPS200451

Griekspoor P, Hansbro PM, Waldenström J, Olsen B. 2015. Campylobacter jejuni sequence types show remarkable spatial and temporal stability in Blackbirds. Infect. Ecol. Epidemiol. 5: 28383. DOI: 10.3402/iee.v5.28383

Guirado P, Paytubi S, Miró E, Iglesias-Torrens Y, Navarro F, Cerdà-Cuéllar M, Madrid C. 2020. Differential distribution of the wlaN and cgtB genes, associated with Guillain-Barré syndrome, in Campylobacter jejuni isolates from humans, broiler chickens and wild birds. Microorganisms 8: 325. DOI: 10.3390/microorganisms8030325

Gylfe Å, Olsen B, Straševičius D, Marti Ras N, Weihe P, Noppa L, Bergström S. 1999. Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faeroe Islands. J. Clin. Microbiol. 37: 890-896. DOI: 10.1128/jcm.37.4.890-896.1999

Hald B, Skov MN, Nielsen EM, Rahbek C, Madsen JJ, Wainø M, Madsen M. 2015. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms. Acta Veterinaria Scandinavica 58: 1-10. DOI: 10.1186/s13028-016-0192-9

Hald B, Skovgård H, Pedersen K, Bunkenborg H. 2008. Influxed insects as vectors for Campylobacter jejuni and Campylobacter coli in Danish broiler houses. Poult. Sci. 87: 1428-1434. DOI: 10.3382/ps.2007-00301

Herman L, Heyndrickx M, Grijspeerdt K, Vandekerchove D, Rollier I. 2003. Routes for Campylobacter contamination of poultry meat: Epidemiological study from hatchery to slaughterhouse. Epidemiol. Infect. 131: 1169-1180. DOI: 10.1017/S0950268803001183

Hermans D, Pasmans F, Messens W, Martel A, Van IF, Haesebrouck F, Rasschaert G, Heyndrckx M, Pasmans F. 2012. Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonotc. Dis. 12: 89-98. DOI: 10.1089/vbz.2011.0676

Hubálek Z. 2004. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40: 639-659. DOI: 10.7589/0090-3558-40.4.639

Hughes L, Bennett M, Coffey P, Elliott J, Trevor R, Richard CJ, Lahuerta-Marin A, Leatherbarrow AH, McNiffe K, Norman D, Williams NJ, Chantrey J. 2009. Molecular epidemiology and characterization of Campylobacter spp. isolated from wild bird populations in Northern England. Appl. Environ. Microbiol. 75: 3007-3015. DOI: 10.1128/AEM.02458-08

Jacobs‐Reitsma WF, Kan CA, Bolder NM. 1994. The induction of quinolone resistance in Campylobacter bacteria in broilers by quinolone treatment. Lett. Appl. Microbiol.19: 228-231. DOI: 10.1111/j.1472-765X.1994.tb00950.x

Jacobs-Reitsma WF, van der Giessen AW, Bolder NM, Mulder RWAW. 1995. Epidemiology of Campylobacter spp. at two Dutch broiler farms. Epidemiol. Infect. 114: 413-421. DOI: 10.1017/S0950268800052122

Jennings JL, Sait LC, Perrett CA, Foster C, Williams LK, Humphrey TJ, Cogan TA. 2011. Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis in chickens. Vet. Microbiol. 149: 193-199. DOI: 10.1016/j.vetmic.2010.11.005

Johansson H, Ellstrom P, Artursson K, Berg C, Bonnedahl J, Hansson I. 2018. Characterization of Campylobacter spp. isolated from wild birds in the Antarctic and Sub-Antarctic. PLoS ONE 13: e0206502. DOI: 10.1371/journal.pone.0206502

Jones K. 2005. Flying hazards: birds and the spread of disease. Microbiol. Today 32: 174-178.

Jurinović L, Duvnjak S, Humski A, Ječmenica B, Taylor LT, Šimpraga B, Kompes G. 2023. Genetic diversity and resistome analysis of Campylobacter lari isolated from Gulls in Croatia. Antibiotics 12: 1310. DOI: 10.3390/antibiotics12081310

Kaino K, Hayashidani H, Kaneko K, Ogawa M. 1988. Intestinal colonization of Campylobacter jejuni in chickens. Jpn. J. Vet. Med. 50: 489-494. DOI: 10.1292/jvms1939.50.489

Kerry KR, Riddle MJ. 2009. (pp. 1-10). Health of Antarctic wildlife: an introduction. En: Health of Antarctic Wildlife: A Challenge for Science and Policy. Springer, Berlin, Heidelberg DOI: 10.1007/978-3-540-93923-8_1

Koenraad PM, Jacobs-Reitsma WF, van der Laan T, Beumer RR, Rombouts FM. 1995. Antibiotic susceptibility of Campylobacter isolates from sewage and poultry abattoir drain water. Epidemiol. Infect. 115: 475-483. DOI: 10.1017/S0950268800058635

Krawiec M, Woźniak-Biel A, Bednarski M, Wieliczko A. 2017. Antimicrobial susceptibility and genotypic characteristic of Campylobacter spp. isolates from free-living birds in Poland. Vector-Borne Zoonotic Dis. 17: 755-763. DOI: 10.1089/vbz.2017.2116

Leotta G, Vigo G, Giacoboni G. 2006. Isolation of Campylobacter lari from seabirds in Hope Bay, Antarctica. Pol. Polar Res. 27: 303-308.

Levesque S, Fournier E, Carrier N, Frost E, Arbeit RD, Michaud S. 2013. Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection. PLoS ONE. 8: e83731. DOI: 10.1371/journal.pone.0083731

Levin RE. 2007. Campylobacter jejuni: a review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol. 21:271-347. DOI: 10.1080/08905430701536565

Marotta F, Janowicz A, Di Marcantonio L, Ercole C, Di Donato G, Garofolo G, Di Giannatale E. 2020. Molecular characterization and antimicrobial susceptibility of C. jejuni isolates from Italian wild bird populations. Pathogens 9: 304. DOI: 10.3390/pathogens9040304

Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O’Farrelly C. 2009. Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 61: 101-110. DOI: 10.1007/s00251-008-0346-7

Meerburg BG, Schoelitsz B. 2018. (pp. 263-267). Biosecurity: methods to reduce contact risks between vectors and livestock. En: Pests and vector-borne diseases in the livestock industry. Wageningen Academic Publishers. DOI: 10.3920/978-90-8686-863-6_15

Meroz M, Samberg Y. 1995. Disinfecting poultry production premises. Revue Scientifique et Technique (OIE) 14: 273-291. DOI: 10.20506/rst.14.2.839

Messens W, Herman L, De Zutter L, Heyndrickx M. 2009. Multiple typing for the epidemiological study of contamination of broilers with thermotolerant Campylobacter. Vet. Microbiol. 138: 120-131. DOI: 10.1016/j.vetmic.2009.02.012

Migura-Garcia L, Ramos R, Cerdà-Cuéllar M. 2017. Antimicrobial resistance of Salmonella serovars and Campylobacter spp. isolated from an opportunistic gull species, yellow-legged gull (Larus michahellis). J. Wildl. Dis. 53: 148-152. DOI: 10.7589/2016-03-051

Mohamed YI. 2014. Occurrence of Campylobacter in wild bird and chickens and ducks in selected Malaysian farms. Masters thesis, Universiti Putra Malaysia.

Mohan V, Stevenson M, Marshall J, Fearnhead P, Holland BR, Grant H, French NP. 2013. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand. Microbiology Open 2: 659–673. DOI: 10.1002/mbo3.102

Mohan V. 2015. Faeco-prevalence of Campylobacter jejuni in urban wild birds and pets in New Zealand. BMC Res. Notes 8:1. DOI: 10.1186/1756-0500-8-1

Moore JE. 2001. Bacterial dormancy in Campylobacter: abstract theory or cause for concern? Int. J. Food Sci. Tech. 36:593-600. DOI: 10.1046/j.1365-2621.2001.00508.x

Moré E, Ayats T, Ryan PG, Naicker PR, Keddy, KH, Gaglio D, Cerda-Cuellar M. 2017. Seabirds (Laridae) as a source of Campylobacter spp., Salmonella spp. and antimicrobial resistance in South Africa. Environ. Microbiol. 19: 4164-4176. DOI: 10.1111/1462-2920.13874

Nesbit EG, Gibbs P, Dreesen DW, Lee MD. 2001. Epidemiologic features of Campylobacter jejuni isolated from poultry broiler houses and surrounding environments as determined by use of molecular strain typing. Am. J. Vet. Res. 62: 190-194. DOI: 10.2460/ajvr.2001.62.190

Newell DG, Wagenaar JA. 2000. Poultry infections and their control at the farm level. (pp. 497-510). En: Nachamkin I, Blaser MJ (eds.) Campylobacter 2nd. Ed. Washington, D.C. USA.

Newton, I. 1998. Population limitation in birds. Ed. Elsevier. Academia Press, London. 597 pp.

Newton, I. 2003. The speciation and biogeography of birds. Ed. Elsevier Science. Academic Press. London. 667 pp.

Nylen G, Dunstan F, Palmer SR, Andersson Y, Bager F, Cowden J, Ruutu P. 2002. The seasonal distribution of Campylobacter infection in nine European countries and New Zealand. Epidemiol. Infect. 128: 383-390. DOI: 10.1017/S0950268802006830

O’Leary MC, Harding O, Fisher L, Cowden J. 2009. A continuous common-source outbreak of cam-pylobacteriosis associated with changes to the preparation of chicken liver pâté. Epidemiol. Infect. 137: 383-388. DOI: 10.1017/S0950268808001003

Oluwayelu DO, Todd D, Olaleye DO. 2008. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria: research communication. Onderstepoort. J. Vet. Res. 75:353-357.

Phiri BJ, French NP, Biggs PJ, Stevenson MA, Reynolds AD, Garcia JC, Hayman, DTS. 2021. Microbial contamination in drinking water at public outdoor recreation facilities in New Zealand. J. Appl. Microbiol. 130: 302-312. DOI: 10.1111/jam.14772

Pokamunski S, Kass N, Borochovich E, Marantz B, Rogol M. 1986. Incidence of Campylobacter spp. in broiler flocks monitored from hatching to slaughter. Avian Pathol. 15: 83-92. DOI: 10.1080/03079458608436268

Ramos R, Cerdà-Cuéllar M, Ramírez F, Jover L, Ruiz X. 2010. Influence of refuse sites on the prevalence of Campylobacter spp. and Salmonella serovars in seagulls. Appl. Environ. Microbiol. 76: 3052-3056. DOI: 10.1128/AEM.02524-09

Ridley AM, Morris VK, Cawthraw SA, Ellis-Iversen J, Harris JA, Kennedy EM, Allen VM. 2011. Longitudinal molecular epidemiological study of thermophilic Campylobacter on one conventional broiler chicken farm. Appl. Environ. Microbiol. 77: 98-107. DOI: 10.1128/AEM.01388-10

Ridley AM, Toszeghy MJ, Cawthraw SA, Wassenaar TM, Newell DG. 2008. Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine. J. Appl. Microbiol. 105: 95-104. DOI: 10.1111/j.1365-2672.2008.03759.x

Rossler E, Olivero C, Soto LP, Frizzo LS, Zimmermann J, Rosmini MR, Zbrun MV. 2020. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int. J. Food Microbiol. 326: 108641. DOI: 10.1016/j.ijfoodmicro.2020.108641

Sensale M, Cuomo A, Dipineto L, Santaniello A, Calabria M, Menna L F, Fioretti A. 2006. Survey of Campylobacter jejuni and Campylobacter coli in different taxa and ecological guilds of migratory birds. Ital. J. Anim. Sci. 5: 291-294. DOI: 10.4081/ijas.2006.291

Shaughnessy RG, Meade KG, Cahalane S, Allan B, Reiman C, Callanan JJ, O’Farrelly C. 2009. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet. Immunol. Immunopathol. 132: 191-198. DOI: 10.1016/j.vetimm.2009.06.007

Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A. 2010. Host association of Campylobacter genotypes transcends geographic variation. Appl. Environ. Microbiol. 76: 5269-5277. DOI: 10.1128/AEM.00124-10

Sibley CG, Monroe BL. 1990. Distribution and taxonomy of birds of the world. Yale University Press, New Haven, Conn.

Sippy R, Sandoval-Green CM, Sahin O, Plummer P, Fairbanks WS, Zhang Q, Blanchong JA. 2012. Occurrence and molecular analysis of Campylobacter in wildlife on livestock farms. Vet. Microbiol. 157: 369-375. DOI: 10.1016/j.vetmic.2011.12.026

Stern NJ, Fedorka-Cray P, Bailey JS, Cox NA, Craven SE, Hiett KL, Mead GC. 2001. Distribution of Campylobacter spp. in selected US poultry production and processing operations. J. Food Protection 64: 1705-1710. DOI: 10.4315/0362-028X-64.11.1705

Taff CC, Weis AM, Wheeler S, Hinton MG, Weimer BC, Barker CM, Jones M, Logsdon R, Smith WA, Boyce WM, Townsend AK. 2016. Influence of host ecology and behavior on Campylobacter jejuni prevalence and environmental contamination risk in a synanthropic wild bird species. Appl. Environ. Microbiol. 82:4811- 4820. DOI: 10.1128/AEM.01456-16

Tresierra-Ayala A, Bendayan ME, Bernuy A, Espinoza F, Fernandez H. 1995. Carriage of the classical thermotolerant Campylobacter in healthy domestic animals from Eastern Peru. Rev. Inst. Med. Trop. 37: 537-539. DOI: 10.1590/S0036-46651995000600011

Tresierra-Ayala Á, Espinoza-Campos F, Bendayán Acosta ME, Donayre M, Fernández, H. 2006. La fauna silvestre de la Amazonía peruana, un potencial reservorio de Campylobacter jejuni subsp. jejuni y Campylobacter coli. Folia Amazónica 15: 117-122. DOI: 10.24841/fa.v15i1-2.229

Vandamme, P. 2000. “Taxonomy of the family Campylobacteraceae”. (pp. 3–27). En: Namchamkin I, Blaser MJ (eds.) Campylobacter. Ed. Washington, DC. DOI: 10.1128/9781555815554.ch1

Vandamme P, Dewhirst FE, Paster BJ, On SL. 2015. Campylobacteraceae. Bergey's Manual of Systematics of Archaea and Bacteria, 1-3.

Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F. 2008. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet. Microbiol. 130: 285-297. DOI: 10.1016/j.vetmic.2007.11.027

Waldenström J, Griekspoor P. 2014. Ecology and host association in Campylobacter in wild birds. (pp 265-284). En: Sheppard SK (ed), Campylobacter Ecology and Evolution. Caister Academic Press, Norfolk.

Waldenstrom J, Broman T, Carlsson I, Hasselquist D, Achterberg RP, Wagenaar JA, Olsen, B. 2002. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol. 68: 5911-5917. DOI: 10.1128/AEM.68.12.5911-5917.2002

Wassenaar TM, Wagenaar JA, Rigter A, Fearnley C, Newell DG, Duim B. 2002. Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbial. Lett. 212: 77-85. DOI: 10.1111/j.1574-6968.2002.tb11248.x

Williams LK, Fonseca BB, Humphrey TJ. 2016. Campylobacter jejuni in poultry: a commensal or a pathogen? En: Fonseca B, Fernandez H, Rossi D (eds.) Campylobacter spp. and Related Organisms in Poultry: Pathogen-Host Interactions, Diagnosis and Epidemiology. Ed. Springer. Switzerland. Pp. 75-87. DOI: 10.1007/978-3-319-29907-5

WHO (World Health Organization). 2020. Campylobacter. Disponible: https://www.who.int/es/news-room/fact-sheets/detail/campylobacter

Young KT, Davis LM, DiRita VJ. 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5: 665-679. DOI: 10.1038/nrmicro1718

Zbrun MV, Romero-Scharpen A, Olivero C, Zimmermann JA, Rossler E, Soto LP, Signorini ML. 2017. Genetic diversity of thermotolerant Campylobacter spp. isolates from different stages of the poultry meat supply chain in Argentina. Revista Argentina de Microbiología. 49: 235-241. DOI: 10.1016/j.ram.2017.03.003

Gorrión

Descargas

Publicado

04/05/2024

Cómo citar

SALUZZO, M., SARAVIA-PIETROPAOLO, M. J., FRIZZO, L., & BELDOMENICO, P. M. (2024). Campylobacter termotolerantes en aves silvestres. FAVE Sección Ciencias Veterinarias, (23), e0028. https://doi.org/10.14409/favecv.2024.23.e0028