Propuesta de una dosis de marbofloxacina para el tratamiento de infecciones asociadas a Escherichia coli en cabras de tres semanas de vida

  • Antonella DELL'ELCE
  • Sofía MENEGUEZ
  • Rocío CASTROMAN
  • Antonela ANADÓN
  • Ana FERRER
  • Anahí LÓPEZ
  • Nerea RUIZ
  • Marcos BOTTO
  • Víctor CANDIOTI
  • Enrique FORMENTINI
Palabras clave: marbofloxacina, Escherichia coli, cabras
  • Ingresos a esta página - 0 veces.
  • Galeras de PDF descargadas - 0 veces.

Resumen

Se estimó una dosis de marbofloxacina (MFX) para tratar infecciones gastrointestinales asociadas a Escherichia coli en cabras de tres semanas de vida. La farmacodinamia de MFX sobre E. coli se evaluó in vitro estimando las concentraciones inhibitoria mínima (CIM), bactericida mínima (CBM) y preventiva de mutantes (CPM). Marbofloxacina se administró en cabras de tres semanas de edad por vía subcutánea a una dosis de 2 mg/kg. Los parámetros farmacocinéticos se estimaron mediante análisis no compartimental. La dosis de MFX capaz de proteger al 95% de una población se calculó considerando la distribución poblacional de los parámetros farmacocinéticos. La eficacia de MFX se evaluó con la relación entre el área bajo la curva y la CPM (ABC/CPM) con un valor de corte de 22 h. Los resultados mostraron que la dosis estimada de MFX para alcanzar la remisión clínica de infecciones gastrointestinales causadas por E. coli y prevenir la emergencia de cepas resistentes en el 95% de una población de cabras de tres semanas de vida fue de 3,179 mg/kg, que a los fines prácticos se fijó en 3,5 mg/kg.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmad I, Huang L, Hao H, Sanders P, Yuan Z. 2016. Application of PK/PD modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BioMed Res. Int. 2016: 5465678.

Albarellos GA, Montoya L, Landoni MF. 2005. Pharmacokinetics of marbofloxacin after single intravenous and repeat oral administration to cats. J. Vet. Pharmacol. Ther. 170: 222-229.

Aliabadi FS, Lees P. 2002. Pharmacokinetics and pharmacokinetic / pharmacodynamic integration of marbofloxacin in calf serum, exudate and transudate. J. Vet. Pharmacol. Therap. 25: 161-174.

Barbour A, Scaglione F, Derendorf H. 2010. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int. J. Antimicrob. Agents. 35: 431-438.

Bateman, H. 1910. The solution of a system of differential equations occurring in the theory of radioactive transformations. Proc. Cambridge Philos. Soc. 15: 423-427.

Bedotti D, Rossanigo E. 2011. Manual de reconocimiento de enfermedades del caprino; Diagnóstico de las enfermedades más comunes en la región centro oeste del país. Ed. INTA, Anguil, La Pampa, Argentina. 27 pp.

Blondeau JM. 2009. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach. Vet. Dermatol. 20: 383-396.

Blot SI, Pea F, Lipman J. 2014. The effect of pathophysiology on pharmacokinetics in the critically ill patient-concepts appraised by the example of antimicrobial agents. Adv. Drug Deliver. Rev. 20: 3-11.

Burgess DS. 1999. Pharmacodynamic principles of anti-microbial therapy in the prevention of resistance. Chest. 115: 19S-23S.

Canut Blasco A, Aguilar Alfaro L, Cobo Reinoso J, Giménez Mestre MJ, Rodríguez-Gascón A. 2015. Análisis farmacocinético - farmacodinámico en microbiología: herramienta para evaluar el tratamiento antimicrobiano. Enferm. Infec. y Micr. Cl. 33: 48-57.

CLSI (Clinical and Laboratory Standards Institute). 2008. Development of in vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents; Approved guideline. 3rd Edition, Document M37-A3, Volume 28, Number 7. Wayne, Pennsylvania USA.

de la Rosa Carbajal S. 2013. Sistemas de producción caprina de carne en el nordeste argentino. En: Memorias primer congreso argentino de producción caprina. La Rioja, Argentina. Pp. 4-16.

Ding H, Li Y, Chen Z, Rizwan-Ul-Haq M, Zeng Z. 2010. Plasma and tissue cage fluid pharmacokinetics of marbofloxacin after intravenous, intramuscular, and oral single-dose application in pigs. J. Vet. Pharmacol. Ther. 33: 507-510.

Drusano GL. 2007. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin. Infect. Dis. 45: S89-S95.

Dong Y, Zhao X, Domagala J, Drlica K. 1999. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob. Agents. Chemother. 43: 1756-1758.

El Garch F, Kroemer S, Galland D, Morrissey I, Woehrle F. 2017. Survey of susceptibility to marbofloxacin in bacteria isolated from diseased pigs in Europe. Vet. Rec. 180: 591.

EMEA. 1996. Marbofloxacin Summary Report (1). EMEA/MRL/079/96-Final. http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_- Report/2009/11/WC500014864.pdf

EMEA. 1999. Marbofloxacin, Summary report (2). EMEA/MRL/693/99-Final. https://www.ema.europa.eu/en/documents/mrl-report/marbofloxacin-summary-report-2-committee-veterinary-medicinal-products_en.pdf

EMA. 2016. Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antimicrobial medicinal products. EMA/CHMP/594085/2015. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-pharmacokinetics-pharmacodynamics-development-antimicrobial-medicinal-products_en.pdf.

Fina BL, Lombarte M, Rigalli A. 2013. Investigación de un fenómeno natural: ¿Estudios in vivo, in vitro o in silico? Actual. Ost. 9: 239-240.

García Rodríguez J, Cantón R, García Sánchez J, Gómez-Lus M, Martínez Martínez L, Rodríguez-Avial C, Vila J. 2001. Métodos especiales para el estudio de la sensibilidad a los anti-microbianos. En: Procedimientos en Microbiología Clínica. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Primera Edición. España. Pp. 1-38.

Gimenez A. 2012. ¿Qué es un meta-análisis? y ¿Cómo leerlo? Biomed. 7: 16-27.

Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. 2008. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22: 633-648.

Gray Z, Patricelli A, Dell’Elce A, Presa Rossa C, Ramírez E, Formentini E. 2017. Effect of the bovine serum and persister cells on the efficacy of enrofloxacin and ciprofloxacin against a strain of Escherichia coli. Rev. Med. Vet. Toulouse. 168: 173-182.

Haritova AM, Rusenova NV, Parvanov PR, Lashev LD, Fink Gremmels J. 2006. Integration of pharmacokinetic and pharmacodynamic indices of marbofloxacin in turkeys. Antimicrob. Agents Ch. 50: 3779-3785.

Ismail M, El-Kattan YA. 2007. Comparative pharmacokinetics of marbofloxacin in healthy and Mannheimia haemolitica infected calves. Res. Vet. Sci. 82: 398-404.

Le Cam. 1986. The central limit theorem around 1935. Stat. Sci. 1: 78-96.

Lei Z, Liu Q, Xiong J, Yang B, Yang S, Zhu Q, Li K, Zhang S, Cao J, He Q. 2017. Pharmacokinetic and Pharmacodynamic Evaluation of Marbofloxacin and PK/PD Modeling against Escherichia coli in Pigs. Front. Pharmacol. 21: 542.

Li P, Fan Y, Wang Y, Lu Y, Yin Z. 2015. Characterization of plasma protein binding dissociation with online SPE-HPLC. Sci. Rep. 5: 14886.

Lüders C, Baroni EE, Rubio S, De Lucas JJ, Díaz DC, San Andrés MI. 2012. Pharmacokinetic behavior and pharmacokinetic / pharmacodynamic indices of marbofloxacin after intravenous, subcutaneous, and intramuscular administrations in buffalo calves (<10 days old). J. Vet. Pharmacol. Therap. 35: 301-304.

Mehvar R. 2005. Role of protein binding in pharmacokinetics. Am. J. Pharm. Educ. 69: 1526.

Nielsen EI, Friberg LE. 2013. Pharmacokinetic -pharmacodynamic modeling of antibacterial drugs. Pharmacol. Rev. 65: 1053-1090.

Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. 2006. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J. Antimicrob. Chemother. 57: 1116-1121.

Olofsson SK, Cars O. 2007. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin. Infect. Dis. 45: S129-36.

Patricelli P, Dell’ Elce A, Weidmann C, Ramírez E, Presa Rossa C, Aguirre MS, Cadoche L, Formentini E. 2016. Actividad antibacteriana in vitro de ciprofloxacina sobre una cepa autóctona de Escherichia coli: efecto del pH sobre su potencia y efecto de la persistencia bacteriana sobre su modo de acción. FAVE Sección Ciencias Veterinarias 15: 38-47.

Patricelli P, Ramírez E, Presa Rossa C, Dell’ Elce A, Formentini E. 2017. Efecto de la persistencia bacteriana sobre la eficacia de enrofloxacina y ciprofloxacina frente a una cepa de Escherichia coli. FAVE Sección Ciencias Veterinarias 16: 30-38.

Rossanigo C. 2013. Enfermedades caprinas de la región centro oeste de la Argentina. Memorias Primer congreso Argentino de Producción Caprina. La rioja, Argentina, Agosto 2013. Pp. 79-92.

Schneider M, Vallé M, Woehrlé F, Boisramé B. 2004. Pharmacokinetics of marbofloxacin in lactating cows after repeated intramuscular administrations and pharmacodynamics against mastitis isolated strains. J. Dairy Sci. 87: 202-211.

Sidhu PK, Landoni MF, Aliabadi FS, Lees P. 2010. PK-PD integration and modeling of marbofloxacin in sheep. Res. Vet. Sci. 88: 134-141.

Siroski P, Russi N, Ortega H, Formentini E. 2015. In vitro evaluation of synergistic activity between ciprofloxacin and broad snouted caiman serum against Escherichia coli. Res. Vet. Sci. 98: 98-105.

Tohamy MA, El-Gendy AAM. 2013. Some pharmacokinetic aspects and bioavailability of marbofloxacin in foals. J. Basic. Appl. Sci. 2: 46-50.

Toutain PL, Bousquet-Mélou A, Martinez M. 2007. AUC/MIC: a PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J. Antimicrob. Chemoth. 60: 1185-1188.

Vallé M, Schneider M, Galland D, Giboin H, Woehrlé F. 2012. Pharmacokinetic and pharmacodynamic testing of marbofloxacin administered as a single injection for the treatment of bovine respiratory disease. J. Vet. Pharmacol. Therap. 35: 519-528.

Waxman S, Rodríguez C, González F, De Vicente ML, San Andrés MI, San Andrés MD. 2001. Pharmacokinetic behavior of marbofloxacin after intravenous and intramuscular administration in adult goats. J. Vet. Pharmacol. Ther. 24: 375-378.

Waxman S, San Andres MD, Gonzalez F, San Andres MI, De Lucas JJ, Rodriguez C. 2004. Age-related changes in the pharmacokinetics of marbofloxacin after intravenous administration in goats. J. Vet. Pharmacol. Therap. 27: 31-35.

Wetzstein HG, 2005. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob. Agents. Ch. 49: 4166-4173.

Xu L, Wang H, Yang X, Lu L. 2013. Integrated pharmacokinetics / pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance. BMC Vet. Res. 25: 126.

Yu X-Q, Wilson AGE. 2010. The role of pharmacokinetic and pharmacokinetic / pharmacodynamic modeling in drug discovery and development. Future Med. Chem. 2: 923-928.

Zhang Y, Huo M, Zhou J, Xie S. 2010. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 99: 306-314.

Publicado
2019-11-29
Cómo citar
DELL’ELCE, A., MENEGUEZ, S., CASTROMAN, R., ANADÓN, A., FERRER, A., LÓPEZ, A., RUIZ, N., BOTTO, M., CANDIOTI, V., & FORMENTINI, E. (2019). Propuesta de una dosis de marbofloxacina para el tratamiento de infecciones asociadas a Escherichia coli en cabras de tres semanas de vida. FAVE Sección Ciencias Veterinarias, 18(2), 55-67. https://doi.org/10.14409/favecv.v18i2.8739