El estrés salino en melón (Cucumis melo L.) es aliviado parcialmente con el tratamiento de semillas con melatonina, modificando parámetros fisiológicos y bioquímicos
DOI:
https://doi.org/10.14409/fa.2024.23.e0027Palabras clave:
crecimiento inicial, melatonina exógena, germianción, especies reactivas al oxigeno, estres salinoResumen
La melatonina (N-acetil-5-metoxitriptamina) es una molécula con una reportada importancia en el incremento de la tolerancia a varios tipos de estrés. El presente estudio investiga el efecto del tratamiento de semillas de melón (Cucumis melo L.) con soluciones de melatonina (0, 10, 50 y 100 μM) en dos duraciones (6 y 12 h) sobre la germinación y el crecimiento inicial de plantas de melón en estrés salino. La germinación bajo estrés salino (14 dS m-1 CE) experimentó una disminución, la cual se revirtió luego del tratamiento de las semillas con melatonina, llegando al 80% con soluciones 10 y 50 μM. Luego, considerando las plantas creciendo en estrés salino (8 dS m-1 CE), se obtuvieron las mejores respuestas de crecimiento y fisiológicas y bioquímicas (potencial hídrico del xilema, contenido hídrico relativo de las hojas, clorofila total, viabilidad de las raíces, prolina, contenido de malondialdehído, actividad peroxidasa y catalasa) en plantas provenientes del tratamiento de semillas con 50 μM. No se observaron cambios a nivel anatómico. Los resultados sugieren que la melatonina puede aliviar el efecto del estrés salino durante la germinación de las semillas y el crecimiento temprano de las plantas. Hay una respuesta dosis dependiente.
Citas
References
Ahmad, S., Muhammad, I., Wang, G. Y., Zeeshan, M., Yang, L., Ali, I., & Zhou, X. B. (2021). Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology, 21(1), 1–14.
Altaf, M. A., Shahid, R., Ren, M.-X., Naz, S., Altaf, M. M., Khan, L. U., Tiwari, R. K., Lal, M. K., Shahid, M. A., & Kumar, R. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11(2), 309.
Anjum, N. A., Sharma, P., Gill, S. S., Hasanuzzaman, M., Khan, E. A., Kachhap, K., Mohamed, A. A., Thangavel, P., Devi, G. D., & Vasudhevan, P. (2016). Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 23(19), 19002–19029.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77.
Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science, 24(1), 38–48.
Arnao, M. B., & Hernández-Ruiz, J. (2020). Is phytomelatonin a new plant hormone? Agronomy, 10(1), 95.
Arnao, M. B., & Hernández Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 46(1), 58–63.
Asociation, I. S. T. (2022). International Rules for Seed Testing. In International Rules for Seed Testing.
Azizi, F., Amiri, H., & Ismaili, A. (2022). Melatonin improves salinity stress tolerance of Phaseolus vulgaris L. cv. Pak by changing antioxidant enzymes and photosynthetic parameters. Acta Physiologiae Plantarum, 44(4), 40.
Bai, Y., Xiao, S., Zhang, Z., Zhang, Y., Sun, H., Zhang, K., Wang, X., Bai, Z., Li, C., & Liu, L. (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 8, e9450.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
Castañares, J. L., & Bouzo, C. A. (2019). Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Horticultural Plant Journal, 5(2), 79–87.
Cavalcanti, F. R., Oliveira, J. T. A., Martins‐Miranda, A. S., Viégas, R. A., & Silveira, J. A. G. (2004). Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt‐stressed cowpea leaves. New Phytologist, 163(3), 563–571.
Chen, Q., Qi, W. bo, Reiter, R. J., Wei, W., & Wang, B. min. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166(3), 324–328. https://doi.org/10.1016/j.jplph.2008.06.002
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867.
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862.
Cui, G., Zhao, X., Liu, S., Sun, F., Zhang, C., & Xi, Y. (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry, 118, 138–149.
Dai, L., Li, J., Harmens, H., Zheng, X., & Zhang, C. (2020). Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry, 149, 86–95.
Dawood, M. G., & El-Awadi, M. E. (2015). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana, 20(2), 223–235.
Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., Hussain, M., Liu, S., & Qiu, D. (2019). Melatonin mediates enhancement of stress tolerance in plants. International Journal of Molecular Sciences, 20(5), 1040.
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, y C. W. (2011). InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL Http://Www. Infostat. Com. Ar, 8, 195–199.
Ding, F., Liu, B., & Zhang, S. (2017). Exogenous melatonin ameliorates cold-induced damage in tomato plants. Scientia Horticulturae, 219, 264–271.
Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H. W., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography‐mass spectrometry. Journal of Pineal Research, 18(1), 28–31.
Eisa, E. A., Honfi, P., Tilly-Mándy, A., & Mirmazloum, I. (2023). Exogenous Melatonin Application Induced Morpho-Physiological and Biochemical Regulations Conferring Salt Tolerance in Ranunculus asiaticus L. Horticulturae, 9(2), 228.
Erdal, S. (2019). Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Reports, 38(8), 1001–1012.
Fan, J., Xie, Y., Zhang, Z., & Chen, L. (2018). Melatonin: a multifunctional factor in plants. International Journal of Molecular Sciences, 19(5), 1528.
FAOSTAT. (2023). Crops. Crops. https://www.fao.org/faostat/es/#data/QCL
Fedotova, M. V. (2019). Compatible osmolytes-bioprotectants: is there a common link between their hydration and their protective action under abiotic stresses? Journal of Molecular Liquids, 292, 111339.
Fleta‐Soriano, E., Díaz, L., Bonet, E., & Munné‐Bosch, S. (2017). Melatonin may exert a protective role against drought stress in maize. Journal of Agronomy and Crop Science, 203(4), 286–294.
Geilfus, C.-M. (2018). Chloride: from nutrient to toxicant. Plant and Cell Physiology, 59(5), 877–886.
Gopalakrishnan, V., Burdman, S., Jurkevitch, E., & Helman, Y. (2022). From the lab to the field: combined application of plant-growth-promoting bacteria for mitigation of salinity stress in melon plants. Agronomy, 12(2), 408.
Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10(5), 630.
Hailu, B., & Mehari, H. (2021). Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. J. Natural Sci. Res, 12(3), 1–10.
Han, Q.-H., Huang, B., Ding, C.-B., Zhang, Z.-W., Chen, Y.-E., Hu, C., Zhou, L.-J., Huang, Y., Liao, J.-Q., Yuan, S., & Yuan, M. (2017). Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings. Frontiers in Plant Science, 8(May), 1–14. https://doi.org/10.3389/fpls.2017.00785
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326.
Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35(3), 627–634.
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.
Hernández, I. G., Gomez, F. J. V., Cerutti, S., Arana, M. V., & Silva, M. F. (2015). Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiology and Biochemistry, 94, 191–196. https://doi.org/10.1016/j.plaphy.2015.06.011
Hniličková, H., Hnilička, F., Orsák, M., & Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment, 65(2), 90–96.
Hoagland, D. R., & Arnon, D. I. (1950). The Water-Culture Method for Growing Plants without Soil. California Agricultural Experiment Station, 51, 914–916.
Huang, C. H., Zong, L., Buonanno, M., Xue, X., Wang, T., & Tedeschi, A. (2012). Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. European Journal of Agronomy, 43, 68–76.
Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture, 13.
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46. https://doi.org/10.1016/j.jplph.2015.12.011
Ibrarullah, H. U. R., Jilani, M. S., Gurmani, A. R., & Ullah, K. (2019a). Toleranca Response of muskmelon genotypes against salinity. Pak. J. Agri. Sci, 56(1), 63–70.
Ibrarullah, H. U. R., Jilani, M. S., Gurmani, A. R., & Ullah, K. (2019b). Tolerance response of muskmelon genotypes against salinity. Pak. J. Agri. Sci, 56(1), 63–70.
Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., Khan, A., Kang, S.-M., & Lee, I.-J. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants, 13(4), plab026.
Jin, X., Liu, T., Xu, J., Gao, Z., & Hu, X. (2019). Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 19(1), 48.
Kamiab, F. (2020). Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 43(10), 1468–1484.
Khan, M. N., Zhang, J., Luo, T., Liu, J., Rizwan, M., Fahad, S., Xu, Z., & Hu, L. (2019). Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products, 140, 111597.
Khanna-Chopra, R., Semwal, V. K., Lakra, N., & Pareek, A. (2019). 5 Proline–A Key Regulator Conferring Plant Tolerance to Salinity and Drought. In Plant Tolerance to Environmental Stress: Role of Phyto Protectants.
Kołodziejczyk, I., Dzitko, K., Szewczyk, R., & Posmyk, M. M. (2016). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. Journal of Plant Physiology, 193, 47–56. https://doi.org/10.1016/j.jplph.2016.01.012
Kołodziejczyk, I., & Posmyk, M. M. (2016). Melatonin-a new plant biostimulator? Journal of Elementology, 21(4), 1187–1198.
Korkmaz, A., DEĞER, Ö., Szafrańska, K., KÖKLÜ, Ş., KARACA, A., YAKUPOĞLU, G., & Kocacinar, F. (2021). Melatonin effects in enhancing chilling stress tolerance of pepper. Scientia Horticulturae, 289, 110434.
Kumudini, B. S., & Patil, S. V. (2019). Role of plant hormones in improving photosynthesis. Photosynthesis, Productivity and Environmental Stress, 215–240.
Larraburu, E. E., & Llorente, B. E. (2015). Azospirillum brasilense enhances in vitro rhizogenesis of Handroanthus impetiginosus (pink lapacho) in different culture media. Annals of Forest Science, 72(2), 219–229.
Lei, K., Sun, S., Zhong, K., Li, S., Hu, H., Sun, C., Zheng, Q., Tian, Z., Dai, T., & Sun, J. (2021). Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. Ecotoxicology and Environmental Safety, 220, 112241.
Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. Journal of the American Chemical Society, 80(10), 2587.
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592.
Liu, J., Shabala, S., Zhang, J., Ma, G., Chen, D., Shabala, L., Zeng, F., Chen, Z., Zhou, M., & Venkataraman, G. (2020). Melatonin improves rice salinity stress tolerance by NADPH oxidase‐dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant, Cell & Environment, 43(11), 2591–2605.
Lopez Del Egido, L., Navarro-Miró, D., Martinez-Heredia, V., Toorop, P. E., & Iannetta, P. P. M. (2017). A spectrophotometric assay for robust viability testing of seed batches using 2, 3, 5-triphenyl tetrazolium chloride: using Hordeum vulgare L. as a model. Frontiers in Plant Science, 8, 747.
Luna, C., Garcia‐Seffino, L., Arias, C., & Taleisnik, E. (2000). Oxidative stress indicators as selection tools for salt tolerance. Plant Breeding, 119(4), 341–345.
Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., Ahmad, A., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225.
Miller, R. O. (1997). Determination of dry matter content of plant tissue: gravimetric moisture. In Handbook of reference methods for plant analysis (pp. 64–65). CRC Press.
Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: current status and future perspectives in plant science. Frontiers in Plant Science, 6, 1230.
Oliveira, C. E. da S., Steiner, F., Zuffo, A. M., Zoz, T., Alves, C. Z., & Aguiar, V. C. B. de. (2019). Seed priming improves the germination and growth rate of melon seedlings under saline stress. Ciência Rural, 49.
Oloumi, H. (2022). Melatonin; Growth regulator and strong antioxidant in plants. Journal of Plant Process and Function, 1, 37–54.
Pandey, A. K., Ghosh, A., Rai, K., Fatima, A., Agrawal, M., & Agrawal, S. B. (2019). Abiotic Stress in Plants: A General Outline. In Approaches for Enhancing Abiotic Stress Tolerance in Plants (pp. 1–46). CRC Press.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075.
Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126–140.
Pinheiro, D. T., Delazari, F., Nick, C., Mattiello, E. M., Cunha, D., & dos Santos Dias, F. (2019). Emergence and vegetative development of melon in function of the soil salinity. Aust J Crop Sci, 13, 458–464.
Posmyk, M. M., Bałabusta, M., Wieczorek, M., Sliwinska, E., & Janas, K. M. (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research, 46(2), 214–223. https://doi.org/10.1111/j.1600-079X.2008.00652.x
Rady, M. M., Taha, R. S., & Mahdi, A. H. A. (2016). Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress. South African Journal of Botany, 102, 221–227.
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci, 17(1), 34–40.
Salah, S. M., Yajing, G., Dongdong, C., Jie, L., Aamir, N., Qijuan, H., Weimin, H., Mingyu, N., & Jin, H. (2015). Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Scientific Reports, 5, 1–14.
Sarabi, B., Bolandnazar, S., Ghaderi, N., & Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry, 119, 294–311.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
Shabala, S., & Munns, R. (2017). Salinity stress: physiological constraints and adaptative mechanism. In S. Shabala (Ed.), Plant stress physiology (2nd ed., pp. 24–63). CAB International.
Shabala, S., Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61(5), 839–853.
Shafiee, H., Haghighi, M., Farhadi, A., & Ehteman, M. (2019). The effect of salinity on physiological, biochemical and anatomical characteristics of different varieties of melon. Journal of Plant Process and Function, 8(33), 325–338.
Shalaby, O. A. E.-S., & El-Messairy, M. M. (2018). Humic acid and boron treatment to mitigate salt stress on the melon plant. Acta Agriculturae Slovenica, 111(2), 349–356.
Sharif, R., Xie, C., Zhang, H., Arnao, M. B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M. A., & Chen, P. (2018). Melatonin and its effects on plant systems. Molecules, 23(9), 2352.
Siddiqui, M. H., Alamri, S., Al-Khaishany, M. Y., Khan, M. N., Al-Amri, A., Ali, H. M., Alaraidh, I. A., & Alsahli, A. A. (2019). Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. International Journal of Molecular Sciences, 20(2), 353.
Singh, S., & Bharati, L. K. (2016). Cultivation and bioprospecting of perennial cucurbits. In M. Pessarakli (Ed.), Handbook of cucurbits. Growth,cultural practices and physiology (pp. 95–108). CRC.
Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561–13578.
Suárez-Hernández, Á. M., Vázquez-Angulo, J. C., Grimaldo-Juárez, O., Duran, C. C., González-Mendoza, D., Bazante-González, I., & Mendoza-Gómez, A. (2019). Production and quality of grafted watermelon in saline soil. Horticultura Brasileira, 37(2), 215–220.
Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306–312.
Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. FAO.
Tedeschi, A., Lavini, A., Riccardi, M., Pulvento, C., & d’Andria, R. (2011). Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality. Agricultural Water Management, 98(9), 1329–1338.
Ulas, F., Aydın, A., Ulas, A., & Yetisir, H. (2019). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European Journal of Sustainable Development, 8(1), 201–210.
Wei, J., Li, D., Zhang, J., Shan, C., Rengel, Z., Song, Z., & Chen, Q. (2018). Phytomelatonin receptor PMTR 1‐mediated signaling regulates stomatal closure in Arabidopsis thaliana. Journal of Pineal Research, 65(2), e12500.
Wei, L., Zhao, H., Wang, B., Wu, X., Lan, R., Huang, X., Chen, B., Chen, G., Jiang, C., & Wang, J. (2022). Exogenous melatonin improves the growth of rice seedlings by regulating redox balance and ion homeostasis under salt stress. Journal of Plant Growth Regulation, 41(6), 2108–2121.
Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S., & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695–707. https://doi.org/10.1093/jxb/eru392
Wu, X., Ren, J., Huang, X., Zheng, X., Tian, Y., Shi, L., Dong, P., & Li, Z. (2021). Melatonin: Biosynthesis, content, and function in horticultural plants and potential application. Scientia Horticulturae, 288, 110392.
Wu, Y., Gao, Q., Huang, S., & Jia, S. (2019). Enhancing salt tolerance in melon by exogenous application of melatonin and Ca2+. Pak. J. Bot, 51(3), 781–787.
Xiao, S., Liu, L., Wang, H., Li, D., Bai, Z., Zhang, Y., Sun, H., Zhang, K., & Li, C. (2019). Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PloS One, 14(6), e0216575.
Yasuor, H., Yermiyahu, U., & Ben-Gal, A. (2020). Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agricultural Water Management, 242, 106362.
Yu, Y., Deng, L., Zhou, L., Chen, G., & Wang, Y. (2022). Exogenous melatonin activates antioxidant systems to increase the ability of Rice seeds to germinate under high temperature conditions. Plants, 11(7), 886.
Zhan, H., Nie, X., Zhang, T., Li, S., Wang, X., Du, X., Tong, W., & Song, W. (2019). Melatonin: A small molecule but important for salt stress tolerance in plants. International Journal of Molecular Sciences, 20(3), 709.
Zhang, H. J., Zhang, N., Yang, R. C., Wang, L., Sun, Q. Q., Li, D. B., Cao, Y. Y., Weeda, S., Zhao, B., Ren, S., & Guo, Y. D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269–279. https://doi.org/10.1111/jpi.12167
Zhang, H., & Zhang, Y. (2014). Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions. Journal of Pineal Research, 57(2), 131–146.
Zhang, Y. P., Xu, S., Yang, S. J., & Chen, Y. Y. (2017). Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate–glutathione and proline metabolism in melon seedlings (Cucumis melo L.). The Journal of Horticultural Science and Biotechnology, 92(3), 313–324.
Zörb, C., Geilfus, C., & Dietz, K. (2019). Salinity and crop yield. Plant Biology, 21, 31–38.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 FAVE Sección Ciencias Agrarias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.