Potential nitrogen mineralization in soils with sunflower seed husk application

Authors

  • Juan Manuel Martínez Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)
  • Juliana Moisés Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)
  • Matías Ezequiel Duval Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)
  • Ramiro Javier García Universidad Nacional del Sur (UNS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Pablo Postemsky Comisión Investigaciones Científicas (BA)

DOI:

https://doi.org/10.14409/fa.2023.22.e0003

Keywords:

potentially mineralizable N, agroindustrial residue, southwest of Buenos Aires Province, C:N ratio

Abstract

The objective of this study was to evaluate the potential nitrogen (N) mineralization of contrasting soils after the addition of different sunflower seed hulls (CG) (Helianthus annuus L.) doses, an abundant residue of the southwest of Buenos Aires Province (SOB). Long-term aerobic incubations (37 weeks) were performed, using three different soils (0-20 cm) and various CG levels based on their organic N content: 100 (D1), 200 (D2) and 400 (D3) kg N ha-1. Soils differs in granulometric fractions (S1: sand 509 g kg-1; silt 320 g kg-1 and clay 171 g kg-1; S2: sand 351 g kg-1; silt 448 g kg-1 and clay 201 g kg-1; S3: sand 827 g kg-1, silt 107 g kg-1 and clay 66 g kg-1). The CG chemical characteristics: electrical conductivity= 1.6 dS m-1; pH= 5.6; organic matter (MO) = 958 g kg-1; total N= 7.8 g kg-1, C:N ratio = 79. Significant differences were found in potentially mineralizable N (N0) for three soils, whose values were S1>S2>S3; as well as in the mineralization rate (k) (S1 and S3= 0.0036 week-1, S2=0.0056 week-1). Significant interaction was found with the CG contribution and soils, so the contribution was analyzed for each soil. When GC was applied, a positive response was observed on S3 with D1 and D2. For S1 and S2, the application of GC did not increase the potential for N mineralization, however, it had not a detrimental effect on the potential. Dynamics of accumulated N mineralization showed different effects of CG addition with respect to soil type. The CG addition to soil increased the potential N mineralization in the sandy-loam soil, without reducing the potential in the remaining soils, which is why it could be used as an organic amendment under these conditions.

References

Abbasi, M.K., & Khizar, A. 2012. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic–inorganic N sources and their effect on growth and N-uptake in maize. Ecological Engineering, 39, 123-132.

Abbasi, M.K., Hina, M., Khalique, A., & Razaq Khan, S. (2007). Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Communications in Soil Science and Plant Analysis, 38(13-14), 1691-1711.

Alexander, R.A. (1994). Standards and guidelines for compost use. Biocycle, 35(12), 37-41.

Barbaro, L.A., Karlanian, M.A., Imhoff, S., Morisigue, D.E. (2011). Caracterización de la turba subtropical del departamento Islas de Ibicuy (Entre Ríos, Argentina). Agriscientia, 28(2), 137-145.

Blagodatsky, S., Blagodatskaya, E., Yuyukina, T., Kuzyakov, Y. (2010). Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology and Biochemistry, 42, 1275-1283.

Bremner, J.M. (1996). Nitrogen - Total. In: D.L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical Methods (pp. 1085-1121). ASA, SSSA, CSSA, Madison WI.

Bray, R.H., & Kurtz, L.T. (1945). Determination of total, organic and available forms of phosphate in soils. Soil Science, 59, 39-45.

Corbeels, M., Hofman, G., Cleemput, O.V. (2000). Nitrogen cycling associated with the decomposition of sunflower stalks and wheat straw in a Vertisol. Plant Soil, 218, 71–82.doi:10.1023/A:1014904505716.

Curvetto, N.R., Figlas, D., Gonzales, M.R. & Delmastro, S. (2005). Mushroom Growers Handbook 2: Shiitake Cultivation (pp. 127-133). MushWorld, Seoul, Korea.

DeNeve, S., Gaona-Sàez, S., Daguilar, B.C., Sleutel, S., Hofman, G. (2004). Manipulating N mineralization from high N crop residues using on- and off-farm organic materials. Soil Biology and Biochemistry, 36, 127–134.doi: 10.1016/j.soilbio.2003.08.023.

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W. (2018). InfoStat, versión 2018. Grupo InfoStat, FCA. Universidad Nacional de Córdoba (Argentina).

Duval, M.E., Martinez, J.M., Galantini, J.A. (2020). Assessing soil quality indices based on soil organic carbon fractions in different long‐term wheat systems under semiarid conditions. Soil Use and Management, 36(1), 71-82.

Galantini, J.A., & Suñer, L. (2008). Soil organic matter fractions: analysis of Argentine soils. Agriscientia, XXV (1), 41-55.

Heal, O.W., Anderson, J.M., Swift, M.J. (1997). Plant Litter Quality and Decomposition: An Historical Overview. In: G. Cadish & K.E. Killer (Eds.). Driven by Nature: Plant Litter Quality and Decomposition. (pp. 3-30).

Hogg, D., Favoino, E., Centemero, M., Caimi, V., Amlinger, F., Devliegher, W., Brinton, W., Antler, S. (2002). Comparison of compost standards within the EU, North America and Australia, The Waste and Resources Action Programme (WRAP), Oxon.

Honeycutt, C.W., Griffin, T.S., Weinhold, B.J., Eghball, B., Albrecht, S.L., Powell, J.M., Woodbury, B.L., Sistani, K.R., Hubbard, R.K., Torbert, H.A., Eigenberg, R.A., Wright, R.J., Jawson, M.D. (2005). Protocols form nationally coordinated laboratory and field research on manure nitrogen mineralization. Communications in Soil Science and Plant Analysis, 36, 2807-2822.

Iglesias-Jiménez, E., Barral, M.T., Marhuenda, F.C. (2008). Indicadores de la estabilidad y madurez del compost. En: J. Moreno & R. Moral (Eds). Compostaje. (pp. 243-283). Ediciones Mundi-Prensa, Madrid.

Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. CRC Press, Boca Raton, EEUU.

Kirchmann, H., & Lundvall, A. (1993) Relationship between nitrogen immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biology and Fertility of Soils, 15, 161–164.

Lal, R. (2004). Carbon sequestration in dryland ecosystems. Environmental Management, 33, 528-544.

Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A. (2006). Quality assessment of composts in the Greek market: the need for standards and quality assurance. Journal of Environmental Management, 80(1), 58-65.

Lazicki, P., Geisseler, D., Lloyd, M. (2020). Nitrogen mineralization from organic amendments is variable but predictable. Journal of Environmental Quality, 49, 483-495.

Martínez, J.M., Galantini, J.A., Duval, M.E. (2018). Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. Journal of Soil Science and Plant Nutrition, 18(1), 73-89.

Martínez, J.M., Galantini, J.A., Duval, M.E., López, F.M. (2017a). Tillage effects on labile pools of soil organic nitrogen and relationships with wheat crop in a semi-humid climate: A long-term field study. Soil and Tillage Research, 169, 71-80.

Martínez, J.M., Galantini, J.A., Duval, M.E. López, F.M., Iglesias, J.O. (2017b). Ajustes en la estimación de carbono orgánico por el método de calcinación en Molisoles del sudoeste bonaerense. Ciencia del Suelo, 35, 181-187.

Martínez, J.M., Galantini, J.A., Landriscini, M.R., López, F.M., Duval, M.E. (2016). Fertilización nitrogenada en trigo de la región subhúmeda: eficiencia del uso del agua y nitrógeno. Ciencia del Suelo 34, 81-92.

Masunga, R.H., Uzokwe, V.N., Mlay, P.D., Odeh, I., Singh, A., Buchan, D., De Neve, S. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185-193.

Moisés, J., Martínez, J.M., Duval, M.E., Iocoli, G., Galantini J.A. (2022). Cáscaras de girasol con diferentes transformaciones como enmiendas orgánicas en trigo. Ciencia del Suelo, en prensa.

Moisés, J., Martínez, J.M., Duval, M.E., Iglesias, J.O., Galantini J.A. (2018). Transformaciones de la cáscara de girasol y potencialidad de uso como enmiendas orgánicas. En Actas: XXVI Congreso Argentino de la Ciencia del Suelo, Tucumán, Argentina.

Mulvaney, R.L. (1996). Nitrogen-Inorganic forms. In: D.L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical Methods (pp. 1123-1184). ASA, SSSA, CSSA, Madison WI.

Myers, R.J.K., Palm, C.A., Cuevas. E., Gunatilleke, I.U.N., Brussaard, M. (1994). The synchronisation of nutrient mineralisation and plant nutrient demand. In: P.L. Woomer, & M.J. Swift (Eds). The biological management of tropical soil fertility. (pp. 81-116). Wiley, Chichester.

Reddy, K.C., Reddy, S.S., Malik, R.K., Lemunyon, J.L., Reeves, D.W. (2008). Effect off five-year continuous poultry litter use in cotton production on soil major nutrients. Agronomy Journal, 100, 1047–1055. doi:10.2134/agronj2007.0294.

Ros, G.H., Temminghoff, E.J.M., Hoffland, E. (2011). Nitrogen mineralization: a review and meta‐analysis of the predictive value of soil tests. European Journal of Soil Science 62(1), 162-173.

Sainz Rozas, H., Echeverria, H.E., Angelini, H. (2011). Niveles de carbono orgánico y pH en suelos agrícolas de la región pampeana y extrapampeana argentina. Ciencia del Suelo, 29, 29-37.

Soil Survey Staff. (2010). Keys to Soil Taxonomy, 11th ed. USDA-Natural Resources 22. Conservation Service, Washington, DC.

Sommers, L.E., & Nelson, D.D.W. (1972). Determination of total phosphorus in soil. Soil Science Society of American Proceeding, 36, 902-904.

Stanford, G., & Smith, S. (1972). Nitrogen mineralization potentials of soils. Soil Science Society of American Proceedings 36, 465-472.

Thomas, B.W., Sharifi, M., Whalen, J.K., Chantigny, M.H. (2015). Mineralizable nitrogen responds differently to manure type in contrasting soil textures. Soil Science Society of American Journal, 79, 1396-1405.

Tian, G., Granato, T.C., Cox, A.E., Pietz, R.I., Carlson C.R., Abedin, Z. (2009). Soil carbon sequestration resulting from long-term application of biosolids for land reclamation. Journal of Environmental Quality, 38, 61-74.

USEPA, 1993. Standards for the use or disposal of sewage sludge. Federal Register, 58 (32), 9248-9415.

Viglizzo, E.F., Frank, F.C., Carreño, L.V., Jobaggy, E.C., Pereyra, H., Clatt, J., Pincen, D., Ricard, M.F. (2011). Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology 17, 959–973.

Wang, W.J., Smith, C.J., Chen, D. (2003). Towards a standardised procedure for determining the potentially mineralisable nitrogen of soil. Biology and Fertility of Soils 37, 362-374.

Webb, J., Sørensen, P., Velthof, G., Amon, B., Pinto, M., Rodhe, L., Salomon, E., Hutchings, N., Burczyk, P., Reid, J. (2013). An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency. Advances in Agronomy 119, 371-441.

Wen, G., Inanaga, S., Schoenau, J.J., Charles, J.L. (2003). Efficiency parameters of nitrogen in hog and cattle manure in the second year following application. Journal of Plant Nutrition and Soil Science 166, 490-498.

Zibilske, L.M., Clapham, W.M., Rourke, R.V. (2000). Multiple applications of paper mill sludge in an agricultural system: Soil effects. Journal of Environmental Quality, 29, 1975-1981.

Published

2023-04-16

How to Cite

Martínez, J. M., Moisés, J., Duval, M. E., García, R. J., & Postemsky, P. (2023). Potential nitrogen mineralization in soils with sunflower seed husk application. FAVE Sección Ciencias Agrarias, 22, e0003. https://doi.org/10.14409/fa.2023.22.e0003

Issue

Section

Especial Suelos