Changes in soil properties and its influence on macrofauna in crop sequences including cover crops
DOI:
https://doi.org/10.14409/fa.2024.23.e0029Keywords:
soil habitat, macroinvertebrates, physical-mechanical condition, soil health indicatorsAbstract
The objectives of this study were to evaluate the effects of cover crops (CC) and crop sequences on some soil properties and macrofauna abundance; and the influence of these properties on the presence of the main macroinvertebrates’ families. We worked on an experiment installed in Zavalla (Santa Fe) which treatments included CC of vetch and triticale before maize and soybean, respectively, and two treatments of fallow with the same cash crops. Samplings were done after CC (Mcc-b) and cash crops (Mf) cycles. Among edaphic properties, particulate organic carbon registered an increase in sequences with CC, while mechanical penetration resistance and water stable aggregates percentage showed short term variations that were linked with CC´s root development, particularly after vetch suppression. Changes in the abundance of macrofauna were associated with edaphic conditions generated by the treatments. In Mcc-b there was a differentiation between samples of both CC, and between them and fallow ones, while in Mf samples which included CC showed more favorable edaphic conditions in relation with fallow ones. Finally, CC leaded the presence of macrofaunal organisms from different trophic groups due to the coverage generated and the input of food resources.
References
Ahmed, N., & Al-Mutairi, K. A. (2022). Earthworms effect on microbial population and soil fertility as well as their interaction with agricultural practices. Sustainability, 14, 7803. https://doi.org/10.3390/su14137803
Al-Maliki, S., Al-Taey, D. K. A., & Al-Mammori, H. Z. (2021). Earthworms and eco-consequences: considerations to soil biological and plant function: A review. Acta Ecologica Sinica, 41, 512-523. https://doi.org/10.1016/j.chnaes.2021.02.003
Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility. A handbook of methods (2da. Ed.). CAB International.
Argañaraz, C. I., Rubio, G. D., Rubio, M., & Castellarini, F. (2020). Ground-dwelling spiders in agroecosystems of the Dry Chaco: a rapid assessment of community shifts in response to land use changes. Biodiversity, 21(3), 125-135. https://doi.org/10.1080/14888386.2020.1831605
Bedano, J. C., Domínguez, A., Arolfo, R., & Wall, L. C. (2016). Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with and without soil types. Soil and Tillage Research, 158, 100-109. http://doi.org/10.1016/j.still.2015.12.005
Bedano, J. C., Vaquero, F., Domínguez, A., Rodríguez, M. P., Wall, L., & Lavelle, P. (2019). Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina. Acta Oecologica, 98, 14–24. https://doi.org/10.1016/j.actao.2019.05.003
Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
Blanco-Canqui, H., & Jasa, P. J. (2019). Do grass and legume cover crops improve soil properties in the long term? Soil & Water Management & Conservation, 83, 1181-1187. https://doi.org/10.2136/sssaj2019.02.0055
Blanco-Canqui, H., & Ruis, S. J. (2020). Cover crops impacts on soil physical properties: a review. Soil Science Society of America Journal, 84, 1527-1576. https://doi.org/10.1002/saj2.20129
Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380, 133-151. https://doi.org/10.1007/s11104-014-2079-8
Borror, D. J., Triplehorn, C. A., & Johnson, N. F. (1992). An introduction to the study of insects. Sunders College Publishing.
Cabrera, G. (2012). La macrofauna edáfica como indicador biológico del estado de conservación/perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes, 35(4), 349-364.
Cambardella, C., & Elliot, E. (1992). Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777-783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
Castiglioni, M., & Behrends Kraemer, F. (2019). Short-term effect of cover crops on aggregate stability assessed by two techniques. Ciencia del Suelo, 37(2), 298-314. http://www.suelos.org.ar/publicaciones/Volumen37n2/9-Pag%20298-314%20%23452.pdf
Chahal, I., Vyn, R. J., Mayers, D., & Van Eerd, L. L. (2020). Cumulative impact of cover crops on soil carbon sequestration and profitability in a temperate humid climate. Scientific Reports, 10, 13381. https://doi.org/10.1038/s41598-020-70224-6
Chanatásig-Vaca, C. I., Huerta, E., Rojas, P., Ponce-Mendoza, A., Mendoza, J., Morón, A., van der Wal, H., & Dzib-Castillo, B. B. (2011). Efecto del uso de suelo en las hormigas (Formicidae: Hymenoptera) de Tikinmul, Campeche, México. Acta Zoológica Mexicana, 27, 41-61. https://www.scielo.org.mx/pdf/azm/v27n2/v27n2a16.pdf
Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of different soil carbon determination methods. Critical Reviews in Plant Science, 28, 164-178. https://doi.org/10.1080/07352680902776556
Crotty, F. V., & Stoate, C. (2019). The legacy of cover crops on the soil habitat and ecosystem services in a heavy clay minimum tillage rotation. Food and Energy Security, 8, e00169. https://doi.org/10.1002/fes3.169
Curry, J. P., & Schmidt, O. (2007). The feeding ecology of earthworms – A review. Pedobiologia, 50, 463-477. https://doi.org/10.1016/j.pedobi.2006.09.001
Di Rienzo, J. A., Macchiavelli, R. E., & Casanoves, F. (2011). Modelos lineales mixtos. Aplicaciones en InfoStat (1a. Ed.). Grupo InfoStat, UNC.
https://www.researchgate.net/publication/283491350_Modelos_lineales_mixtos_aplicaciones_en_InfoStat
Di Rienzo, J. A., Macchiavelli, R. E., & Casanoves, F. (2017). Modelos lineales generalizados mixtos. Aplicaciones en InfoStat (1a. Ed.). Grupo InfoStat, UNC.
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2020). InfoStat (Versión 2020). Córdoba: Centro de Transferencia InfoStat. https://www.infostat.com.ar/
Duval, M. E., Galantini, J. A., Capurro, J. E., & Martínez, J. M. (2016). Winter cover crops in soybean monoculture: effects on soil organic carbon and its fractions. Soil & Tillage Research, 161, 95-105. http://dx.doi.org/10.1016/j.still.2016.04.006
Erktan, A., Or, D., & Scheu, S. (2020). The physical structure of soil: determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 148, 107876. https://doi.org/10.1016/j.soilbio.2020.107876
Food and Agriculture Organization of the United Nations (FAO) (2020). State of knowledge of soil biodiversity. Status, challenges and potentialities. FAO. https://www.fao.org/documents/card/en/c/cb1928en
Fiorini, A., Remelli, S., Boselli, R., Mantovi, P., Ardenti, F., Trevisan, M., Menta, C., & Tabaglio, V. (2022). Driving crop yield, soil organic C pools and soil biodiversity with selected winter cover crops under no-till. Soil and Tillage Research, 217, 105283. https://doi.org/10.1016/j.still.2021.105283
Geisen, S., Briones, M. J. I., Gan, H., Behan-Pelletier, V. M., Friman, V. P., de Groot, G. A., Hannula, S. E., Lindo, Z., Philippot, L., Tiunov, A. V., & Wall, D. H. (2019). A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 136, 107536. https://doi.org/10.1016/j.soilbio.2019.107536
Halliday, W. D., Bourque, C., & Blouin-Demers, G. (2019). Food quality influences density-dependent fitness, but not always density-dependent habitat selection, in red flour beetles (Coleoptera: Tenebrionidae). The Canadian Entomologist, 151, 728-737. https://doi.org/10.4039/tce.2019.47
Hénin, S., Monnier, G., & Combeau, A. (1958). Méthode pour l´étude de la stabilité structurale des sols. Annales Agronomiques, 9, 73-92.
Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait-based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73, e13147. https://doi.org/10.1111/ejss.13147
Instituto Nacional de Tecnología Agropecuaria (INTA). (13 de enero de 2023). Visor GeoINTA. http://visor.geointa.inta.gob.ar/
Jian, J., Du, X., Reiter, M. S., & Stewart, R. D. (2020). A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biology & Biochemistry, 143, 107735. https://doi.org/10.1016/j.soilbio.2020.107735
Jiang, Y., Ma, N., Chen, Z., & Xie, H. (2018). Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of northeastern China. Applied Soil Ecology, 128, 61-70. https://doi.org/10.1016/j.apsoil.2018.04.006
Kelly, C., Fonte, S. J., Shrestha, A., Daane, K. M., & Mitchell, J. P. (2021). Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. Applied Soil Ecology, 166, 104068. https://doi.org/10.1016/j.apsoil.2021.104068
Krüger, H., Frolla, F. & Zilio, J. (2018). Un indicador de compactación relacionado con el agua del suelo. En A. Quiroga, R. Fernández & C. Álvarez (Eds.), Análisis y evaluación de propiedades físico hídrica de los suelos (1ra. ed. pp. 45-50). Ediciones INTA. https://ri.conicet.gov.ar/bitstream/handle/11336/114961/CONICET_Digital_Nro.004feb64-8f54-4a1a-8200-c2913b702596_B.pdf?sequence=5&isAllowed=y
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., De Aquino, A., Barois,
I., Barros, M. E., Bedano, J. C., Blanchart, E., Caufield, M., Chagueza, Y., Dai, J.,
Decaëns, T., Domínguez, A., Domínguez, Y., Feijoo, A., et al. (2022). Soil
macroinvertebrate communities: A world-wide assessment. Global Ecology and
Biogeography, 31, 1261-1276. https://doi.org/10.1111/geb.13492
Laossi, K. R., Barot, S., Carvalho, D., Dejardins, T., Lavelle, P., Martins, M., Rendeiro, A. C., Rousseau, G., Sarrazin, M., Velasquez, E., & Grimaldi, M. (2008). Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia, 51, 397-407. https://doi.org/10.1016/j.pedobi.2007.11.001
Masters, G. J. (2004). Belowground herbivores and ecosystem processes. En W. W. Weisser & E. Siemann (Eds.), Insects and ecosystem function (1ra. ed. pp. 93-109). Springer.
Mc Cune, B., & Mefford, M. J. (2011). PC-ORD. Multivariate Analysis of Ecological Data (Versión 6.0). Gleneden Beach, Oregon: MjM Software.
Menta, C., Conti, F. D., Lozano Fondón, C., Staffilani, F., & Remelli, S. (2020). Soil arthropod responses in agroecosystem implications of different management and cropping systems. Agronomy, 10, 982. https://doi.org/10.3390/agronomy10070982
Miransari, M. (2014). Plant growth promoting Rhizobacteria. Journal of Plant Nutrition, 37, 2227–2235. https://doi.org/10.1080/01904167.2014.920384
Morrone, J. J., & Coscarón, S. (1998). Biodiversidad de artrópodos argentinos (Vol. 1). Ediciones Sur. https://seargentina.com.ar/libros-digitales-de-libre-acceso/
Müller, P., Neuhoff, D., Nabel, M., Schiffers, K., & Döring, T. F. (2022). Tillage effects on ground beetles in temperate climates: a review. Agronomy for Sustainable Development, 42, 65. https://doi.org/10.1007/s13593-022-00803-6
Murrell, E. G. (2017). Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Current Opinion in Insect Science, 23, 81-88. https://doi.org/10.1016/j.cois.2017.07.008
Roig-Juñent, S., Claps, L. E., & Morrone, J. J. (2014a). Biodiversidad de artrópodos argentinos (1ra. ed., Vol. 3). Sociedad Entomológica Argentina. https://seargentina.com.ar/libros-digitales-de-libre-acceso/
Roig-Juñent, S., Claps, L. E., & Morrone, J. J. (2014b). Biodiversidad de artrópodos argentinos (1ra. ed., Vol. 4). Sociedad Entomológica Argentina. https://seargentina.com.ar/libros-digitales-de-libre-acceso/
Romaniuk, R., Navarro, R., Beltrán, M., Eiza, M., Castiglioni, M., & Mousegne, F. (2018). Efecto a corto plazo de la inclusión de vicia y trigo como cultivos de cobertura sobre le C, N y P en distintas fracciones de la materia orgánica, y la disponibilidad de macro y micronutrientes. RIA, 44(2), 48-60. http://www.scielo.org.ar/pdf/ria/v44n2/v44n2a08.pdf
Rosario-Lebron, A., Leslie, A. W., Chen, G., & Hooks, C. R. R. (2018). The effect of barley cover crop residue and herbicide management on the foliar arthropod community in no-till systems. Agronomy, 8, 87. https://doi.org/10.3390/agronomy8060087
Sharma, A., Singh, G., & Singh, R. (2021). Faunal diversity of spider families Dictynidae, Dysderidae, Eresidae and Filistatidae (Araneomorphae: Araneae: Arachnida) in India. International Journal of Zoology and Applied Biosciences, 6(1), 1-9. https://doi.org/10.5281/zenodo.4460086
Stasiov, S., Vician, V., Bencat, T., Pätoprstý, V., Lukácik, I., & Svitok, M. (2021). Influence of soil properties on milipede (Diplopoda) communities in forest stands of various tree species. Acta Oecologica, 113, 103793. https://doi.org/10.1016/j.actao.2021.103793
Stehr, F. W. (1991). Immature insects (1ra. ed., Vol. 2). Kendall-Hunt Publishing Company.
Sylvain, Z. A., & Wall, D. H. (2011). Linking soil biodiversity and vegetation: implications for a changing planet. American Journal of Botany, 98(3), 517-527. http://www.jstor.org/stable/41149201
Ter Braak, C. J. F. (1986). Canonical Correspondence Analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167-1179.
Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G., & Vernon, R. S. (2015). Biology, ecology, and control of elaterid beetles in agricultural land. Annual Review of Entomology, 60, 313–334. https://doi.org/10.1146/annurev-ento-010814-021035
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS, 111, 5266-5270. https://doi.org/10.1073/pnas.1320054111
Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-37.
Weeks, R. D., & Holtzer, T. O. (2000). Habitat and season in structuring ground-dwelling spider (Araneae) communities in a short grass steppe ecosystem. Environmental Entomology, 29(6), 1164-1172.
White, C. A., Holmes, H. F., Morres, N. L., & Stobart, R. M. (2016). A review of the benefits, optimal crop management practices and knowledge gaps associated with different cover crop species. Research Review, 90. AHDB. https://ahdb.org.uk/a-review-of-the-benefits-optimal-crop-management-practices-and-knowledge-gaps-associated-with-different-cover-crop-species
Zhang, Z., Kaye, J. P., Bradley, B. A., Amsili, J. P., & Suseela, V. (2022). Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral associated fractions. Global Change Biology, 28, 5831-5848. https://doi.org/10.1111/gcb.16296
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 FAVE Sección Ciencias Agrarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.