Effects of temperature, photoperiod and cabagge cultivars, during larval food, on morphological parameters of adults of Plutella xylostella L. (Lepidoptera: Plutellidae)
DOI:
https://doi.org/10.14409/fa.2025.24.e0033Keywords:
diamondback moth, adult size, food, environmental conditionsAbstract
Plutella xylostella is one of the most important pests of Brassicaceae crops throughout the world. The aim of the work was to evaluate the effect of two cultivars of Brassica oleracea subsp. capitata (Ruby Perfection and Globe Master), four different temperatures (17, 20, 25 y 30 ºC) and three photoperiods (14:10, 12:12 and 9:15 hours of light: dark), during larval development, on to morphological parameters of diamondback moth adults and to know the relationships between these parameters and the applied factors. The study was conducted under controlled conditions, and when the adults emerged, measured length of femur of the middle and hind legs, labial palp, and front wing, using a stereomicroscope (40x). The effect of the factors studied on adult’s morphological parameters was analyzed using ANOVA; linear regression models were performed to describe the relationship between parameters. In P. xylostella larvae fed with Globe Master, combined with 20ºC and 12 hours of light, the lengths of: anterior wing, femur of second and third pair of legs, were higher. The size of the morphological parameters was negatively affected. When they were exposed to temperatures at 25 °C or higher, and photoperiods of 9 hours of light. The labial palp was the most stable in the face of changes in food, temperature and photoperiod. The relationships between morphological parameters of P. xylostella, and the factors evaluated, did not show allometry.
References
Azevedo, R., French, V. & Partridge, L. (2002). Temperature modulates epidermal cell size in Drosophila melanogaster. Journal of Insects Physiology. 48: 231-237.
Balzarini, M., Di Rienzo, J., Tablada, M., Gonzales, L., Bruno, C., Córdoba, M., Robledo W. & Casanoves, F. (2017). Estadística y Biometría. 2a ed. Córdoba. Ed. Brujas. Universidad Nacional de Córdoba. 426 p.
Begum, S., Tsukuda, R., Fujisaki, K. & Nakasuji, F. (1996). The effects of wild cruciferous host plants on morphology, reproductive performance and flight activity in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Researches on Population Ecology. 38(2): 257-263.
Bellostas, N., Sørensen, A.D., Sørensen, J.C. & Sørensen, H. (2007). Genetic variation and metabolism of glucosinolates. Advances in Botanical Research. 45: 369-415.
Boggs, C.L. & Niitepõld, K. (2016). Effects of larval dietary restriction on adult morphology, with implications for flight and life history. Entomologia Experimentalis et Applicata. 159: 189-196.
Campos, W.G. (2008). Photoperiodism and seasonality in neotropical population of Plutella xylostella L. (Lepidoptera: Yponomeutidae). Neotropical Entomology. 37(4): 365-9.
Cartea, M.E. & Velasco, P. (2008). Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochemistry Reviews. 7: 213-229.
Casasa, S. & Moczek, A.P. (2018). Insulin signalling’s role in mediating tissue-specific nutritional plasticity and robustness in the horn-polyphenic beetle Onthophagus taurus. Proceedigns of the Royal Society. B. 285: 20181631.
Chen, S., Fleischer, S.J., Saunders, M.C. & Thomas, M.B. (2015). The influence of diurnal temperature variation on degree-day accumulation and insect life history. PLoS ONE. 10(3): e0120772.
Chowdhury, P., Hasanuzzaman, M., & Nahar, K. (2022). Glucosinolates and its role in mitigating abiotic and biotic stress in Brassicaceae. Plant stress physiology—perspectives in agriculture, 10.
Cieslik, E., Leszczynska, T., Filipiak-Florkiewicz, A., Sikora, E. & Pisulewski, P.M. (2007). Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chemistry. 105: 976-981.
Couture, J.J., Mason, C.J., Habeck, C.W. & Lindroth, R.L. (2016). Behavioral and morphological responses of an insect herbivore to low nutrient quality are inhibited by plant chemical defenses. Arthropod Plant Interactions. 10: 341.
Curis, M.C., Bertolaccini, I. & Lutz, A. (2017). Efecto de dietas en adultos de Spodoptera cosmioides (Lepidoptera: Noctuidae) sobre la fertilidad, fecundidad y longevidad del adulto. Revista FAVE–Ciencias Agrarias. 16 (2): 17-24.
Curis, M.C., Bertolaccini, I.,Lutz, A. & Favaro, J.C. (2019). Estado del MIP de Plutella xylostella (L.) (Lepidoptera:Plutellidae) en Argentina. Revista FAVE-Ciencias Agrarias. 18 (2): 7-18.
Day, T. & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. American Naturalist. 159: 338-350.
Di Rienzo, J.A., Casanoves F., Balzarini, M.G., González, L., Tablada, M. & Robledo, W.C. (2017). InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
Dmitriew, C. & Rowe, L. (2007). Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). European Society for Evolutionary Biology. 20: 1298-1310.
Dmitriew, C. & Rowe, L. (2011). The effects of larval nutrition on reproductive performance in a food-limited adult environment. PLoS ONE. 6(3).
Ebrahimi, N., Talebi, A.A., Fathipour, Y. & Zamani, A. A. (2008). Host plants effect on preference, development and reproduction of Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Advances in Environmental Biology. 2(3): 108-114.
Ghosh, S.M., Testa, N.D. & Shingleton, A.W. (2013). Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proceeding of the Royal Society B. 280: 20130174.
Girard, F. P., Bertolaccini, I., Arregui, C., Favaro, J. C., Curis, M. C., & Sánchez, D. (2012). Efecto de la temperatura y de la dieta sobre parámetros biológicos de la polilla de las coles (Lepidoptera, Plutellidae). Entomotropica. 27(3): 103-109.
Golizadeh, A., Kamali, K., Fathipour, Y. & Abbasipour, H. (2007). Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Insect Science. 14: 309-316.
Golizadeh, A., Kamali, K., Fathipour, Y. & Abbasipour, H. (2009). Life table of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on five cultivated brassicaceous host plants. Journal of Agricultural Science and Technology. 11: 115-124.
Hamilton, A.J., Endersby, N.M., Ridland, P.M., Zhang, J. & Neal, M. (2005). Effects of cultivar on oviposition preference, larval feeding and development time of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), on some Brassica oleracea vegetables in Victoria. Australian Journal of Entomology. 44: 284-287.
Iannacone, J. & Alvariño, L. (2007). Crecimento alométrico de larvas de Spodoptera eridania (Cramer, 1782) (Lepidoptera: Noctuidae). Biologist. 5(2): 52-59.
Jugovic, J., Zupan, S., Bužan, E. & Čelik, T. (2018). Variation in the morphology of the wings of the endangered grass-feeding butterfly Coenonympha oedippus (Lepidoptera: Nymphalidae) in response to contrasting habitats. European Journal of Entomology. 115: 339-353.
Leach, H., Jaclyn Stone, J., Steven Van Timmeren, S. & Isaacs, R. (2019). Stage-specific and seasonal induction of the overwintering morph of spotted wing Drosophila (Diptera: Drosophilidae). Journal of Insect Science. 19(4), 5: 1-7.
Marchioro, C.A. & Foerster, L.A. (2011). Development and survival of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) as a function of temperature: effect on the number of generations in tropical and subtropical regions. Neotropical Entomology. 40(5): 533-541.
Mc Donald, J.M.C., Ghosh, S.M., Gascoigne S.J.L. & Shingleton, A.W. (2018). Plasticity through canalization: The contrasting effect of temperature on trait size and growth in Drosophila. Frontiers in Cell and Developmental Biology. 6: 156.
Mirth, C.K., Frankino, W.A. & Shingleton, A.W. (2016). Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships? Current Opinion in Insect Science. 13:93-98.
Nijhout, H.F., Davidowitz, G. & Roff, D.A. (2006). A quantitative analysis of the mechanism that controls body size in Manduca sexta. Journal of Biology. 5:16.
Parker, J. & Johnston, L.A. (2006). The proximate determinants of insect size. Journal of Biology. 5(5): 15.
Reznik, S., Dolgovskaya, M. & Ovchinnikov, A. (2015). Effect of photoperiod on adult size and weight in Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology. 112(4): 642-647.
Saeed, S., Jaleel, W., Naqqash, M.N., Saeedd, Q., Syed, M.Z., Zakad, M., Sarward, Z.M., Ishtiaqa, M., Qayyuma, M.A., Siale, M.U., Qurat-Ul-Ained, Batoold, M., Khanf, K.A., Ghramhf, H.A., Hafeezi, M., Ansarij, M.J. & Sharmak, G.K. (2018). Fitness parameters of Plutella xylostella (L.) (Lepidoptera; Plutellidae) at four constant temperatures by using age-stage, two-sex life tables. Saudi Journal of Biological Sciences. 1-7.
Sarfraz, M., Dosdall, L.M. & Keddie, B.A. (2006). Diamondback moth-host plant interactions: Implications for pest management. Crop Protection. 25: 625-639.
Sarfraz, M., Dosdall, L.M. & Keddie, B.A. (2007). Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology. 100: 215-224.
Sarfraz, R.M., Dosdall, L.M. & Keddie, B.A. (2009). Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. European Journal of Entomology. 106: 583-594.
Shearer, P.W., West, J.D., Walton, V.M., Brown, P.H., Svetec, N. & Chiu, J.C. (2016). Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecology. 16 (11): 1-18.
Sehnal, F., Svacha, P. & Zrzavy, J. (1996). Evolution of insects metamorphosis. 3-58. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.) Metamorphosis. Academic Press Inc. London. 687 pp.
Shingleton, A.W., Estep, C.M., Driscoll, M.V. & Dworkin, I. (2009). Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences. 276: 2625-2633.
Thuler, R.T., De Bortoli, S.A. & Hoffman-Campo, C.B. (2007). Classificação de cultivares de brássicas com relação à resistência à traça-das-crucíferas e à presença de glucosinolatos. Pesquisa Agropecuária Brasileira. 42: 467-474.
van Lenteren, J.C. & Noldus, L.P.J.J. (1990). Whitefly plant relationships, behavioral and ecological aspects. Gerling, D., Ed. Whitefly: their bionomics, pest status and management, intercept, Andover, 47-89.In: Golizadeh, A., Kamali, K., Fathipour, Y., Abbasipour, H. 2009. Life table of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on five cultivated brassicaceous host plants. Journal of Agricultural Science and Technology. 11: 115-124.
Wu, X., Huang, H., Childs, H., Wu, Y., Yu, L., & Pehrsson, P. R. (2021). Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annual Review of Food Science and Technology. 12(1): 485-511.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 FAVE Sección Ciencias Agrarias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.