Efecto de la salinidad sobre el crecimiento de plantines de Cucurbita maxima Duch. x Cucurbita moschata Duch.

Authors

  • Cynthia Defilipis Universidad Nacional de Luján
  • Franco Angel Rossi Universidad Nacional de Luján
  • Gastón Devecchi Universidad Nacional de Luján
  • Alvaro Codaro Universidad Nacional de Luján
  • Gabriel Céccoli Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Carlos Alberto Bouzo Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

DOI:

https://doi.org/10.14409/fa.2023.22.e0007

Keywords:

rootstock, salinity, melon

Abstract

Salinization of rooting media in intensive production as a consequence of the use of irrigation water with high electrical conductivity has increased in greenhouse environments. One strategy to mitigate the effect of salts on crops is the use of plants grafted on a rootstock that tolerates this abiotic stress. Melon (Cucumis melo L.) is usually grafted using as rootstock different species of the genus Cucumis or Cucurbita, interspecific hybrids of the genus Cucurbita, or with Lagenaria siceraria. In this work, three experiments were conducted to quantify the pattern of aerial and root biomass accumulation of seedlings of Cucurbita maxima Duch. x Cucurbita moschata Duch. Four treatments were carried out using nutrient solutions of different salinity (0.84, 4.00, 6.00 and 8.00 dS m-1). The increase in the amount of salts supplied at the end of the experiments in the higher salinity treatments resulted in a lower accumulation of dry matter in the plants. Growth analysis using the leaf weight ratio (RPF), absolute growth rate (TAC), relative plant growth rate (ICRF) and leaf relative growth rate (ICRP) corroborated this decrease. The results obtained indicate that it would not be advisable to use this hybrid as a rootstock for seedling production under saline conditions.

Author Biographies

Gabriel Céccoli, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Universidad Nacional del Litoral – Facultad de Ciencias Agrarias – Cátedra de Fisiología Vegetal-Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral), CONICET, UNL Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe) 

Carlos Alberto Bouzo, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Universidad Nacional del Litoral – Facultad de Ciencias Agrarias – Cátedra de Fisiología Vegetal-Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral), CONICET, UNL Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe) 

References

Ayers, R.S.; Westcot, D.W. (1994). Water quality for agricultura. FAO Irrigation and Drainage paper Nº 29. https://www.fao.org/3/t0234e/t0234e.pdf.

Babaj, I.; Sallaku, A.; Balliu, A. (2012). The effect of plug size and grafting method on the dry matter partitioning and stand establishment rate of grafted cucumber seedlings under saline conditions. Acta Horticulturae 960, 225-230. https://doi.org/10.17660/ActaHortic.2012.960.32

Barkla, B; Vera-Estrella, R.; Balderas, E.; Pantoja, O. (2008) Mecanismos de tolerancia a la salinidad en plantas En: F. Rebolledo y A. López, (eds.). Una ventana al quehacer científico (pp 263-272). Instituto de Biotecnología, UNAM. México, D.F.

Bertucci, M.B., Suchoff, D.H., Jennings, K.M., Monks, D.W., Gunter, C.C., Schultheis, J.R., Louws, F.J. (2018). Comparison of root system morphology of Cucurbit rootstocks for use in Watermelon grafting. HortTechnology 28(5),629-636.

Burés, S. (1997). Sustratos. Ediciones Agrotécnicas S.L. Madrid, España.

Chen, G., Wang, R. (2008). Effects of salinity on growth and concentration of sodium, potassium and calcium in grafted cucumber seedling. Acta Horticulturae 771,217-224.

Colla, G.; Rouphael, Y.; Cardarelli, M.; Massa, D.; Salerno, A. (2006). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. Journal of Horticultural Science & Biotechnology 81(1), 146-152. https://doi.org/10.1080/14620316.2006.11512041

Colla, G.; Rouphael, Y.; Cardarelli, M.; Massa, D.; Salerno, A. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004

Comas, L., Becker, S., Cruz, V., Byrne, P., Dierig, D. (2013). Root traits contributing to plant productivity under drought Frontiers in Plant Science. 4(442),1-16.

Di Rienzo J., Casanoves F., Balzarini M., Gonzalez L., Tablada M., Robledo C. (2020) InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Edelstein, M.; Plaut, Z.; Ben-Hur, M. (2010). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany 62(1),177-184 https://doi.org/10.1093/jxb/erq255

Edelstein, M., Ben-Hur, M. (2012). Use of grafting to mitigate chemical stresses in vegetables under arid and semiarid conditions. Advances in Environmental Research 20,163-179.

El-Shraiy, A.; Mostafa, M.; Zaghlool, S.; Shehata., S. (2011). Physiological Aspect of NaCl-salt Stress Tolerant among Cucurbitaceous Cultivars. Australian Journal of Basic and Applied Sciences 5(11), 62-71. http://www.ajbasweb.com/old/ajbas/2011/November-2011/62-71.pdf

Flowers, T. (2004). Improving crop salt tolerance. Journal of Experimental Botany 55(396), 307-319. https://doi.org/10.1093/jxb/erh003

Geraud, F.; Chirinos, D. (1995). Desarrollo de la planta de tomate Lycopersicon esculentum cv. Rio Grande en la zona de Rio Limón del Estado Zulia, Venezuela. II. Índice de crecimiento relativo, razón de peso foliar y gamma. Revista Facultad de Agronomía 12, 15-23.

Greenway, H.; Munns, R. (1980) Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31(1), 149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053

Ho, M., Rosas, J., Brown, K., Lynch, J. (2005). Root architectural tradeoffs for water and phosphorus acquisition Funct. Plant Biol. 32, 737-748.

Huang, Y., Bie, Z., He, S., Hua, B., Zhen, A., Liu, Z. (2010). Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environmental and Experimental Botany 69, 32-38.

Karaaḡaḉ, O.; Balcaya, A. (2013). Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Scientia Horticulturae 149(4), 9 - 12. https://doi.org/10.1016/j.scienta.2012.10.021

Karlanian, M. (2010). Como medir pH y conductividad eléctrica. Economia & Viveros. https://www.economiayviveros.com.ar/archivo/enero2010/como_hacerlo.html

King, S.; Davis, A.; Zhang, X.; Crosbya. K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae 127(2), 106-111. https://doi.org/10.1016/j.scienta.2010.08.001

Kusvuran, S. (2012). Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research 7(5), 775-781. https://doi.org/10.5897/AJAR11.1783

Lams Piedra, A.; Gonzales Cepero, M. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales 34(4),31-42. http://scielo.sld.cu/pdf/ctr/v34n4/ctr05413.pdf

Lee, J. (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29(4),235-239. https://doi.org/10.21273/HORTSCI.29.4.235

Lee, J.; Kubota, C.; Tsao, S.; Bie, Z.; Hoyos Echevarría, P.; Morra, L.; Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127 (2), 93-105. https://doi.org/10.1016/j.scienta.2010.08.003

Libutti, A.; Monteleone, M. (2017). Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions. Agricultural Water Management 186,40-50. https://doi.org/10.1016/j.agwat.2017.02.019

Maynard, L. (2007). Cucurbit crop growth and development. En: University of Purdue Conference Proceedings, Indiana, United States of America. https://www.agry.purdue.edu/cca/2007/2007/Proceedings/Liz%20Maynard-CCA%20proceedings%201_KLS.pdf

Medina, E. (1977). Distribución de asimilados y análisis de crecimiento. En: Instituto Venezolano de Investigaciones Cientificas. Caracas, Venezuela. .Introducción a la ecofisiología vegetal (pp. 51-56).

Meier, U. (2001). Estadios de las plantas mono y dicotiledóneas [BBCH Monografía]. Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura. https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20span/page.pdf

Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetic 16(4) ,237-251.

Miralles J.; Valdes, R.; Martínez-Sánchez, J.; Bañon, S. (2012). Pot-in-pot reduces salinity, chloride uptake, and maintains aesthetic value in Euonymus japonicas Thunb. under saline irrigation. HortScience 47(5), 607-613. https://doi.org/10.21273/HORTSCI.47.5.607

Modarelli, G.; Rouphael, Y.; De Pascale, S.; Öztekin, G.; Tüzel, Y.; Orsini, F.; Gianquinto, G. (2020) Appraisal of salt tolerance under greenhouse conditions of a Cucurbitaceae Genetic Repository of potential rootstocks and scions. Agronomy 10(7), 967. https://doi.org/10.3390/agronomy10070967

Munns, R.; Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Naranjo Morán, J. (2014). Evaluación de la tolerancia a la salinidad de cucurbitáceas silvestres del Ecuador y sus potenciales usos como patrones en injertos de cucurbitáceas comerciales. (Tesis de grado, Facultad de Ingeniería en Mecánica y Ciencias de la Producción FIMCP – ESPOL, Guayaquil. Ecuador). http://www.dspace.espol.edu.ec/handle/123456789/25205

Niu, G.; Cabrera, R. (2010). Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience 45(11), 1605-1609 https://doi.org/10.21273/HORTSCI.45.11.1605

Petropoulos, S.; Olympios, C.; Ntatsi, G.; Akoumiankis, C.; Passam, H. (2011). Effects of grafting and salinity on agronomic characteristics and ion uptake by cucumber plants grown in a closed hydroponic system. En: International Symposium on Advanced Technologies and Management Towards Sustainable Greenhouse Ecosystems: Greensys2011 952 (pp. 637-643). https://doi.org/10.17660/ActaHortic.2012.952.80

Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae 127(2), 172-179. https://doi.org/10.1016/j.scienta.2010.09.001

Roy, S.; Negrao, S.; Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology 26, 115-124. https://doi.org/10.1016/j.copbio.2013.12.004

San Bautista, A.; Calatayud, A.; Nebauer, S.; Pascual, B.; Maroto, J.; López-Galarza, S. (2011). Effects of simple and doublé grafting melón plants on mineral absorption, photosynthesis, biomass and yield. Scientia Horticulturae 130(3), 575-580. https://doi.org/10.1016/j.scienta.2011.08.009

Santos, A.; Sá, F.; Souto, L.; Silva, M.; Moreira, R.; Lima, G., Mesquita, E. (2018). Tolerance of varieties and hybrid of pumpkin and squash to salt stress. Journal of Agricultural Science 10(1), 38-44. https://doi.org/10.5539/jas.v10n1p38

Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, wáter stress and organic pollutants. Scientia Horticulturae 127(2), 162-171. https://doi.org/10.1016/j.scienta.2010.09.016

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2008). El injerto en el cultivo de melón y sandía como alternativa al uso de bromuro de metilo. http://app1.semarnat.gob.mx:8080/sissao/images/pdf/MELONYSANDIA-CO.pdf

Sivritepe, H. O.; Sivritepe,N.; Eriş, A.; Turhan, E. (2005). The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Scientia Horticulturae 106,568-581. https://doi.org/10.1016/j.scienta.2005.05.011

Svengor, S.; Yasar, F.; Kusvuran, S.; Ellialtoglu, S. (2011). The effect of salt stress on growth, clorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Reaserch 6(21), 4920-4924. https://doi.org/10.5897/AJAR11.668

Taffouo, V.; Djiotie, N.; Kenné, M.; Din, N.; Priso, J.; Dibong, S.; Akoa, A. (2008). Effects of salt stress on physiological and agronomic characteristics of three tropical cucurbit species. Journal of Applied Biosciences 10,434-441. http://www.m.elewa.org/JABS/2008/10(1)/2.pdf

Valdés R.; Franco, J.; Sánchez Blanco, M.; Bañón, S. (2015). Relationships among electrical conductivity measurements during saline irrigation of potted Osteospermum and their effects on plant growth. The Journal of Horticultural Science and Biotechnology 90(5), 571-577. https://doi.org/10.1080/14620316.2015.11668716

Zhao, X.; Guo, Y.; Huber, D.; Lee, J. (2011). Grafting effects on postharvest ripening and quality of 1-methylcyclopropene-treated muskmelon fruit. Scientia Horticulturae 130(3), 581-587. https://doi.org/10.1016/j.scienta.2011.08.010

Yetisir, H., Uygur, V. (2010). Response of grafted watermelon onto different gourd species to salinity stress. Journal of Plant Nutrition 33,315-327.

Published

2023-06-07

How to Cite

Defilipis, C., Rossi, F. A., Devecchi, G., Codaro, A., Céccoli, G., & Bouzo, C. A. (2023). Efecto de la salinidad sobre el crecimiento de plantines de Cucurbita maxima Duch. x Cucurbita moschata Duch. FAVE Sección Ciencias Agrarias, 22, e0007. https://doi.org/10.14409/fa.2023.22.e0007